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ABSTRACT:

The Cerrado biome in Brazil covers approximately 24% of the country. It is one of the richest and most diverse savannas in the
world, with 23 vegetation types (physiognomies) consisting mostly of tropical savannas, grasslands, forests and dry forests. It is
considered as one of the global hotspots of biodiversity because of the high level of endemism and rapid loss of its original habitat.
This work aims to analyze the potential of Landsat Analysis Ready Data (ARD) in combination with different environmental data
to classify the vegetation in the Cerrado in two different hierarchical levels. Here we present results of a pixel-based modelling
exercise, in which field data were combined with a set of input variables using a Random Forest classification approach. On the
first hierarchical level, with the three classes savanna, grasslands and forest, our model results reached f1-scores of 0.86, 0.87 and
0.85 leading to an overall accuracy of 0.86. In the second hierarchical level we differentiated a total of 12 vegetation physiognomies
with an overall accuracy of 0.77.

1. INTRODUCTION

The Brazilian Savanna, also known as Cerrado, is the second
largest biome in Brazil (MMA, 2015), considered as a biod-
iversity hotspot and providing environmental services of global
importance. Despite that, the Cerrado has lost around 88 Mha
(46%) of its native vegetation with a projection that 31-34% of
the remaining biome is likely to be cleared by 2050 (Strassburg
et al., 2017). The rate of conversion of native Cerrado vegeta-
tion is up to two times the conversion observed in the Amazon
in the past five years (Rocha et al., 2011). Most of the native
vegetation conversion tends to occur in areas with dense ve-
getation that have favorable climate and soil conditions and in
flat terrains that are suitable for mechanized farming (Alencar
et al., 2020). The conversion of natural vegetation into agricul-
tural land is leading to major carbon emissions (Noojipady et
al., 2017) and biodiversity loss (Ratter et al., 1997), stressing
the importance of frequent mapping approaches that enable to
monitor and assess ongoing change processes.

The Brazil Investment Plan (BIP) under the Forest Investment
Program (FIP) seeks to promote sustainable land use and forest
management improvement in the Cerrado Biome in order to
reduce pressure on remaining forests, reduce greenhouse gas
(GHG) emissions and increase carbon dioxide sequestration
(Tuchschneider, 2013). As part of BIP, the project ”Develop-
ment of systems to prevent forest fires and monitor vegetation
cover in the Brazilian Cerrado” aims to improve Brazil’s capa-
city to monitor deforestation, prevent the risk of forest fires and
improve models for estimating greenhouse gas (GHG) emis-
sions, making tools and data available to environmental agen-
cies 1.

The project will provide the basis for improving the manage-
ment of water, forest and soil resources in the Brazilian Cer-
∗ Corresponding author
1 More information in: http://fip.mma.gov.br/projeto-fm/

rado, which, together with other projects financed by the FIP in
Brazil, should promote the sustainable management of forests.
In the context of this project, one of the activities it to modify
the existing land cover classification system for the Cerrado de-
veloped by IBGE (Brazilian Institute of Geography and Stat-
istics) on the basis of the Food and Agriculture Organization
of the United Nations (FAO) Land Cover Classification System
framework. Therefore, it will be possible to discriminate forest
from non-forest vegetation taking into account the spectrum of
structural vegetation complexity in the Cerrado. However, map-
ping heterogeneous tropical areas, such as the Cerrado, is chal-
lenging due to the natural, climatic and topographic factors and
the peculiarities of the characteristic physiognomies.

To make mapping approaches comparable Ribeiro and Walter
(2008) divided the major Cerrado formations into a dominant
herbaceous stratum (Grasslands), shrublands (savannas) and a
woody-dominated stratum (Forests).

It has been shown that remote sensing based approaches have
the potential for mapping these classes, but the strong season-
ality of natural vegetation and the spectral ambiguities between
some physiognomies makes it hard to differentiate them (Sano
et al., 2010, Grecchi et al., 2013).

While the Brazilian National Institute for Space Research’s of-
ficial deforestation and land use maps still rely mostly on visual
image interpretation (INPE, 2019b), some (semi-) automatic
approaches have been developed by Ferreira et al. (2007) ,
Neves et al. (2019) , Girolamo-Neto et al. (2017) , Schwieder et
al. (2016) . Even though these approaches are useful in specific
case studies, they were usually restricted to comparably small
extents and do not account for variations in environmental char-
acteristics present across the entire Cerrado extent.

Previous studies highlighted the benefits of dense remote sens-
ing time series, derived land surface phenological metrics (LSP)
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and analyzed their relationship to the grassland-savanna-forest
gradient of the Cerrado. They suggested the importance of in-
tegrating other environmental variables, such as terrain (Sano et
al., 2019, Bendini et al., 2019b, Schwieder et al., 2018).

Recent advances in remote sensing technologies offer great op-
portunities for mapping land use and land cover over large ex-
tents. Several operational sensor systems are currently in orbit
and the development of infrastructure for remotely sensed data
storage and dissemination enables to consistently derive ARD
(Potapov et al., 2020, Frantz, 2019). This development is cata-
lyzed by the accessibility of cloud computing platforms (e.g.
Amazon Web Services (AWS), Google Earth Engine (GEE) and
Microsoft Azure), and the rapid evolution of machine learning
approaches in the field of remote sensing. Together, these devel-
opments enable to explore the full potential of integrated data
analyses, in which metrics derived from time series of ARD
(e.g., phenological or spectral-temporal metrics) are combined
with environmental data that are meaningful for a specific do-
main.

Recently, Alencar et al. (2020), as part of the MapBiomas
project (https://mapbiomas.org), which aims to generate annual
land use and land cover classification of Brazil, proposed a
methodology based on GEE, in which they combined mosa-
ics of spectral metrics, including sub-pixel fractions, indices,
individual spectral bands of all Landsat-7 ETM+ (Enhanced
Thematic Mapper Plus) and Landsat-8 OLI (Operational Land
Imager) imageries between 1985 to 2017, and slope data from
ALOS (Advanced Land Observing Satellite) global digital sur-
face model with 30 meters (m) spatial resolution. This approach
enabled them to classify the vegetation of the entire Cerrado
on an annual basis for the considered period. They achieved
a very promising overall accuracy of 0.71 considering the 33
years. Although this is a great effort and contributes to the ana-
lysis of land changes over time, a significant confusion between
grasslands and savannas is apparent in these data. Besides, they
do not account for all vegetation types present in the Brazilian
Cerrado. These limitations are critical in the context of public
policy decisions (e.g., based on the forest code) and, therefore,
classification errors may affect the implementation of environ-
mental conservation efforts in this highly threatened biome.

Large-scale mapping of the Cerrado vegetation using remote
sensing technologies is still a challenge due to the high spatial
variability and spectral similarity among its vegetation types.
To the best of our knowledge, there is no research published
that differentiated the natural vegetation for the entire Cer-
rado, with a high level of thematic detail in terms of vegetation
physiognomies.

Therefore, the objective of this study is to analyze the potential
of Landsat ARD combined with various environmental data to
classify the different physiognomies in the Cerrado based on
two hierarchical levels of thematic detail.

2. MATERIALS AND METHODS

2.1 Fieldwork and reference data

Reference data were collected during roadside surveys across
five thousand kilometers on the most important remaining areas
of natural vegetation in the biome Cerrado during March and

July, 2019, in which a group of specialists on vegetation visu-
ally identified the classes and registered them on a Global Posi-
tioning System (GPS)-enabled tablet. The stopping points were
selected randomly.

A mosaic composed of the most recent available Landsat-8
OLI images was used to navigate along the regions by using
a GPS device connected to a tablet. High resolution images
available in Google Earth were used as auxiliary data. We
used the physiognomy definitions described in Table 1, based
on the first and second hierarchical level of Ribeiro and Wal-
ter (2008) classification system. These physiognomies were
defined by Ribeiro and Walter (2008) and consist in a hier-
archical classification structure. The first hierarchical level (re-
ferred as level-1) consists on three classes: grassland, savanna
and forest; which are further split in a total of 12 sub classes in
level-2.

We compiled the reference data for both thematic levels from
several field campaigns and data collection efforts as follows.
We collected 652 ground-truth data points during the roadside
surveys: savanna (479), forest (92), grassland (81), from level-
1, and for level-2: Campo limpo (14), Campo rupestre (58),
Campo sujo (9), Cerradao (9), Cerrado rupestre (10), Cerrado
sensu stricto (381), Mata de Galeria and Ciliar (61), Mata de
galeria (32), Mata seca (22), Palmeiral (14) and Vereda (74).

These datasets were completed with the official vegetation map
on a scale of 1:250,000 produced by IBGE in 2012 and updated
in 2013. This map was produced by the RADAMBRASIL pro-
ject 2 on a scale of 1:1,000,000 and later adaptations were car-
ried out to the one used in this study. The legend of the veget-
ation in the Cerrado utilized on the map refers to the one pub-
lished in the technical manual of Brazilian vegetation (IBGE,
2012).

We utilized data kindly provided by the State Environmental
Departments of Brazil, and also included ground samples from
a public repository (Câmara et al., 2019) . Manually collected
samples, based on Google Earth image visual inspection, were
also included.

We prepared annual vegetation cover layers for year 2014 util-
izing PRODES data (INPE, 2019a) 3, which includes forest and
deforested polygons. We produced a mask based on PRODES
data to remove samples that were within deforestation areas.
We proceeded a quality screen on samples by visual inspection
based on Google Earth imagery.

Finally, our reference database comprised a total of 2828
samples, distributed in the following way. Level-1: savan-
nas (1250), grasslands (805) and forests (773). For the level-2
classes, the database contained samples for Campo limpo (276),
Campo rupestre (210), Campo sujo (319), Cerradão (160), Cer-
rado rupestre (162), Cerrado sensu stricto (580), Ipuca (91),
Mata riparia (446), Mata seca (76), Palmeiral (135), Parque de
Cerrado (246), Vereda (127). For this work, as we used data
from different sources, we proceeded harmonization between
both IBGE legend (IBGE, 2012) and Ribeiro and Walter (2008).
Figure 1 shows the spatial distribution of the samples.
2 The Amazon Radar Project (RADAMBRASIL Project, was created in

July, 1975, to collect data on mineral resources, soils, vegetation, land
use and cartography of the national territory, with the aim of an integ-
rated mapping of the natural resources

3 Available from http://terrabrasilis.dpi.inpe.br/download/dataset/cerrado-
prodes/vector/prodes cerrado 2000 2018 v20190405.zip (download
date: 17-Dec-19)
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Figure 1. Distribution of the reference samples (n = 2828) across 
Cerrado biome.

The description of the physiognomies of the Cerrado on the first 
and second hierarchical level of (Ribeiro et al., 2008) classific-
ation system is shown in the Table 1.

2.2 Predictor variables

In this section we will describe the predictor variables. We se-
lected informative variables that condition the different forms 
of life that characterize the physiognomies described by Ribeiro 
and Walter (2008) .

We derived Land Surface Phenological metrics (LSP) from a 
dense Landsat enhanced vegetation index (EVI) time series of 
the phenological season 2013 - 2014. Time series data gaps, 
due to sensor errors or cloud cover, were interpolated using a 
radial basis convolution filter (Schwieder et al., 2016, Bendini 
et al., 2019a). A total of 11 LSP were derived using TIMESAT 
(Jönsson, Eklundh, 2004), extracted for the seasonal cycle ob-
served in the EVI time series. These metrics relate for example 
to the start and end of the season, the maximum EVI value of 
the season or the amplitude and are explained in detail in Jöns-
son, Eklundh (2004) .

Spectral temporal metrics (STM) (Griffiths et al., 2013, Rufin et 
al., 2015) were calculated for the dry season of the year 2014, 
consisting of the surface reflectance (SR) median values of the 
cloud free pixels of all spectral bands of Landsat images ac-
quired between June and August 2014.

To account for variations in less dynamic environmental vari-
ations we included soil property maps from the Global Gridded 
Soil Information (SoilGrid) database (Hengl et al., 2017). This 
database is based on global compilation of soil profile data and 
environmental layers. The outputs of SoilGrids are global soil 
property maps at six standard depth intervals at a spatial resolu-
tion of 250 meters. We included variables related to sand, clay, 
silt content, and organic carbon concentration as well as the pH 
of the soil in 30 centimeters (cm) depth.

Level-1 Level-2 Description

Grassland Campo
limpo

Predominantly herbaceous, with rare
shrubs and complete absence of trees.
It is found more frequently on slopes,
plateaus, water sources, surrounding
the Veredas and on the edge of gallery
forests.

Campo
rupestre

Predominantly herbaceous and
shrubby, with occasional presence of
trees up to 2m and occupying stretches
of rocky outcrops. It usually occurs at
altitudes above 900m.

Campo
sujo

Exclusively herbaceous, with sparse
shrubs and sub-shrubs often made up
of less developed individuals of Cer-
rado tree species.

Savanna
Cerrado
sensu
stricto

Low and tortuous trees, with irregu-
lar and twisted branches, usually with
evidence of burning. In the rainy
season the sub-shrub and herbaceous
strata become exuberant due to their
rapid growth.

Cerrado
rupestre

A subtype of Cerrado sensu stricto that
occurs in rocky environments.

Parque
de Cer-
rado

Characterized by the presence of trees
grouped in small elevations of land,
known as ”murundus”. The trees have
an average height of 3 to 6m and form
a tree cover of 5% to 20%.

Forest Cerradao

Forest with similarities to savannas
due to species composition. Tree cover
can range from 50 to 90%. The aver-
age height of the trees varies from 8
to 15m. Although it may be perennial,
many species show deciduousness.

Mata
de
Galeria
and
Ciliar

Mata de Galeria follows small rivers
forming corridors. Perennial and
with sudden transition to savannas.
The average height varies between 20
and 30m, with an overlap of crowns
providing tree coverage of 70 to 95%.
Mata Ciliar is alongside medium and
large rivers, where arboreal vegetation
does not form galleries.

Mata
Seca

Characterized by different levels of de-
ciduous trees, depending on conditions
and mainly on the depth of the soil.
The average height of the trees varies
between 15 and 25m. Tree cover of 50
to 95%.

Savanna Palmeiral

Characterized by the presence of a
single species of arboreal palm. In
general, they are found on well-
drained land, although they also occur
on poorly drained land, where galler-
ies can follow the drainage lines.

Vereda

Physiognomy with the predominance
of Mauritia Flexuosa arboreal palm
(Buritis), amid more or less dense
clusters of shrub-herbaceous species.
The Veredas are surrounded by Campo
Limpo, which is generally flooded.

Forest Ipuca

Ipucas are fragments of alluvial sea-
sonal semi deciduous forests that flood
every six months and occur in the re-
gion of the Araguaia plain due to the
meeting of the Cerrado, Amazonian
and Pantanal biomes.

Table 1. Description of physiognomies on the 1st and 2nd
hierarchical level of Ribeiro and Walter (2008) legend.
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Height Above the Nearest Drainage (HAND) is a quantitative
topographic algorithm based on SRTM (Shuttle Radar Topo-
graphy Mission) data (Rennó et al., 2008). It uses topographic
data to obtain the vertical distance of each pixel in the watershed
in relation to the drainage. In this way, it is strongly related to
the water conditions in the soil and, therefore, to the natural
vegetation present in the land cover. In this work, the HAND
data for the Cerrado were generated from the SRTM with spa-
tial resolution of 1 arc-second in which faults were corrected
by the USGS (United States Geological Survey) based on the
3-arc-second SRTM. The processes for generating HAND are
as follows: refilling of sinks, calculation of flow direction and
accumulation area, generation of drainage channels. The pro-
cessing task was carried out in TerraHidro (Abreu et al., 2012).

Terrain data such as elevation, slope, vertical and horizontal
curve were derived from both Topodata database (de Moris-
son Valeriano, de Fátima Rossetti, 2012) as well as Tandem-X
DEM (Gruber et al., 2012).

Table 2 shows all the selected variables, their brief description
and its units of measurement.

Predictor Description [units]
TANDEM X 90 Altitude [m]

Topodata HN Horizontal curvature [m]
Topodata VN Profile curvature [m]
Topodata SN Slope[%]

BDTICM Absolute depth to bedrock [mc]
BLDFIE Bulk density [kg/m3]
CECSOL Cation Exchange Capacity [cmolc/kg]
CLYPPT Clay particles [%]
OCSTHA Soil organic carbon stock [ton/ha]
ORCDRC Soil organic carbon content [permille]
PHIHOX pH index measured in water [pH]
SLTPPT Silt particles [%]

HAND 1K Vertical Distance [m]
LSP Amp Amplitude [EVI]
LSP BV Base value [EVI]
LSP EoS End of Season [day of the year - DOI]

LSP EoSVal End of Season value [EVI]
LSP LDer Left Derivative [EVI]
LSP LoS Length of Season [DOI]
LSP Mfit Peak [EVI]
LSP MoS Middle of Season [DOI]
LSP RDer Right Derivative [EVI]
LSP SoS Start of Season [DOI]

LSP SoSVal Start of Season [EVI]
STM blue med median SR at Blue band [%]
STM green med median SR at Red band [%]

STM nir med median SR at NIR band [%]
STM swirI med median SR at SWIR I [%]
STM red med median SR at Red band [%]

STM swirII med median SR at SWIR II band [%]

Table 2. Selected variables, their brief description and its units
of measurement.

We re-sampled all data to 30 m x 30 m and tiled it into 60 x 60
km tiles for mass processing using FORCE (Frantz, 2019).

2.3 Classification and Validation

The predictor variables were used together with the reference
data to train a Random Forest classifier (RF). RF is a non-

parametric machine learning algorithm that is based on decision
trees. As individual decision trees are prone to errors, RF uses
an ensemble of many decision trees that were independently
trained with random subsets of the input data to overcome this
limitation (Breiman, 2001). The algorithm implementation in
R (R Core Development Team, 2019) further allows to assess
the variable importance of each input variable based on the Gini
coefficient (Liaw et al., 2002).

The classification accuracy was assessed using Monte Carlo
simulation, in which 1000 simulations were carried out by ran-
domly selecting 70% of the samples to train the RF classifica-
tion model, while the remaining 30% were used for validation.
In each iteration, a confusion matrix was calculated, and the av-
erage confusion matrix was used to derive the overall accuracy
and the class-wise f1-scores.

Additionally, the model was validated using independent
ground truth samples, which were randomly drawn from a
land cover reference map of the Brasilia National Park. This
map was generated by the Image Processing and GIS Laborat-
ory of Federal University of Goiás (LAPIG/UFG) for the year
2010, based on high resolution imagery, and the map created by
Manuel et al. (2003). For a visual comparison, we used the final
model to map the spatial patterns of the observed vegetation in
the Brasilia National Park.

3. RESULTS AND DISCUSSIONS

3.1 Results

On the hierarchical level-1 our model results reached an over-
all accuracy of 0.86, ranging from 0.82 to 0.90 after 1000 it-
erations, with class-wise f1-scores of 0.86, 0.87 and 0.85 for
the classes savanna, grasslands and forest. The producers ac-
curacies for these classes were respectively 0.85, 0.90 and 0.87.
The related confusion matrix is shown in Figure 2.

Figure 2. Confusion matrix for the classification model of
Level-1.

The level-2 classification with 12 classes was assessed with a
mean overall accuracy of 0.77, ranging from 0.72 to 0.81 Fig-
ure 3 shows the confusion matrix for the model for classifying
level-1.

The five most important variables for the level-1 clas-
sification model were the Tandem-X elevation (TAN-
DEM X 90), soil fractions of clay (CLYPPT), the
median of the surface reflectance of the red band
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Figure 3. Confusion matrix for the classification model of
Level-1.

(STM 2014 red med), the EVI value during the start of
the season (LSP Metrics 2014 SoSVal) and the minimum EVI
value during the season (LSP Metrics 2014 BV). Figure 4
shows 3D-scatterplot of three most important variables for the
Level-1 classification model based on the Gini importance
index.

Figure 4. 3D-scatterplot of three of the most important variables
for the level-1 classification model based on the Gini importance

index.

We can observe higher SR values on the red band during the
dry season for grasslands, showing an increasing gradient from
forests to grasslands. This was also observed by other authors
that worked with spectral characterization of the Cerrado veget-
ation (Ferreira, Huete, 2004, Jacon et al., 2017).

We can also observe in Figure 4 that higher values of clay
content are present in the grassland class. We checked the
samples with the 1:250,000 scale Brazilian official soil Map
(IBGE, 2017). The majority of the grasslands samples are
within latosols, which are soils with a large clay content. On
the other hand, the other classes are most distributed on entisols

and plinthosols, which could have favored the low clay con-
centration in these classes. More studies are needed to under-
stand these patterns, and also to analyze if there is a bias on the
samples distribution.

The five most important variables for the level-2 clas-
sification model were the Tandem-X elevation (TAN-
DEM X 90), the EVI value during the peak of the season
(LSP Metrics 2014 Mfit), the Cation Exchange Capacity of
soil (CECSOL), the EVI value during the start of the season
(LSP Metrics 2014 SoSVal) and the minimum EVI value dur-
ing the season (LSP Metrics 2014 BV). Figure 5 shows 3D-
scatterplot of three most important variables for the level-2 clas-
sification model based on the Gini importance index.

Figure 5. 3D-scatterplot of the three most important variables
for the level-2 classification model based on the Gini importance

index.

Grasslands classes as Campo Limpo, Campo Sujo and Campo
Rupestre are more rare than the others, so they mostly remain
in environmental protection areas, mainly plateaus, which have
higher elevations. Campo rupestre class usually occurs in re-
gions with elevation higher than 900 meters (Ribeiro et al.,
2008). Also, as we can observe, these grasslands are commonly
above latosols, which are soils with higher content of clay and
cation capacity exchange.

The Palmeiral class is characterized by the massive presence of
palm trees, that usually occurs in lowlands, in the plateau of
Maranhão-Piauı́ states (Floresta de Cocais and Costeiro ecore-
gions). They are associated to ground surface water. The same
for Parque de Cerrado class, that is mostly concentrated on the
Araguaia river floodplain (Bananal ecoregion) (Ribeiro et al.,
2008). Furthermore, these ecoregions have the lowest eleva-
tions in the Cerrado (Sano et al., 2019).

Additionally, we validated the level-1 model using completely
independent ground truth data in the Brasilia National Park
(Ferreira, 2003) with an overall accuracy of 0.71, and f1-class
scores of 0.64, 0.76 and 0.73, for savanna, grasslands and forest.
This shows the robustness of a global model that enables to clas-
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sify the remaining natural vegetation of the entire Cerrado with
a high level of thematic detail.

Figure 6. Map comparisons: a) Ferreira et al., 2003; b)
Mapbiomas Collection 4.0; c) Our map; d) Google Satellite

(April 7, 2019).

3.2 Discussion

The use of ARD data derived from Landsat time series and a se-
lection of environmental data, together with a well distributed
set of reference data, enabled us to differentiate the main veget-
ation physiognomies of the Cerrado on two hierarchical levels.

Even though our classifications could be assessed with high
overall accuracies we observed confusion between savannas
and grasslands. Alencar et al. (2020) also showed some areas
where the native vegetation appeared as a mosaic of grasslands,
savannas, and forests, indicating a limitation of Landsat data to
discriminate these three vegetation types properly, which might
be due to the moderate spatial resolution (30 m).

The producers accuracies of our classes for level-1 are higher
than reported by Alencar et al. (2020) (0.61, 0.54, 0.75 for
savanna, grassland and forest, respectively).

Our results suggest that combining various important environ-
mental data with ARD is a promising approach for differentiat-
ing these vegetation physiognomies. This finding is in line with
other studies that showed the correlation between the different
vegetation gradients of the Cerrado to the EVI time series can
be used as a proxy of the phenological variation (Schwieder et
al., 2018), suggested the importance of environmental variables
for the delimitation of different types of vegetation (Sano et al.,
2019) and highlighted the relation between terrain proxies and
the phenological information (Bendini et al., 2019b).

Visually we can see that the maps are consistent when compar-
ing to other maps. In case of Ferreira et al. (2003) , the visual
comparison needs to be done carefully, as the map is based
on spatial segments. Additionally, it needs to be considered
that fire events, which are frequent in the Cerrado, might have
changed the vegetation structure. These can be reasons for a
underestimating of the savannas in both our approach and Map-
biomas approach.

By assessing the confusion matrix from Figure 3, confu-
sion between the grassland physiognomies and Cerrado Sensu
stricto becomes apparent. This can be associated to the fact that
we merged the different sub classes of Cerrado Sensu stricto

(Cerrado Ralo, Tı́pico and Denso) into one class. And even in
the field, it can be hard to differentiate Cerrado Ralo and Campo
Sujo. Ribeiro and Walter (2008) claim that several Cerrado cov-
erages do not have evident transition areas. So, despite the high
accuracies for the level-1 model, we assume that our approach
is still underestimating the savannas in that region.

For future investigations we aim to analyze the samples and try
to improve the number of ground truth points by conducting ad-
ditional fieldwork. The use of data from different sources can
lead into semantic problems on the class labeling. We also point
to the opportunity of using Sentinel-1 SAR data to improve the
separation between the sub classes of Cerrado Sensu Stricto,
once they are mostly associated to biomass density. Berger et
al. (2019) explored the potential of multi-temporal Sentinel-
1 data for herbaceous biomass mapping in savanna ecosystem
over Kruger National Park (KNP), South Africa. They achieved
good results indicating that Sentinel-1 time series can be suc-
cessfully employed for this type of mapping application.

In case of Veredas, which achieved the lowest accuracies,
we believe that in particular for this class, the spatial con-
text is determinant. As we can see from Table 1, the Vereda
physiognomy is characterized by the predominance of Buritis,
with more or less dense clusters of shrub-herbaceous species
and surrounded by Campo Limpo, being generally flooded. We
can see this by analyzing the confusion matrix from Figure 3.
The most part of the misclassifications for Vereda class was ob-
served with Campo Limpo, Mata Riparia and Cerrado Sensu
Stricto. Perhaps this specific pattern can not be detected from
a Landsat-30m pixel. We point out to opportunities of using
Deep Learning algorithms, specially the Convolutional Neural
Networks, that take into account the spatial context, to detect
this physiognomy.

And as far as we know, it is the first time to report a (semi-)
automatic methodology that can achieve such good accuracies
for level-2 classification, considering samples from the different
regions of the whole Cerrado. The results are promising and we
aim to improve the classification models presented here, and run
the methodology for all over the biome.

Numerous projects have been developed to produce Earth Ob-
servation (EO) Data Cubes such as the Australian Geoscience
Data Cube (AGDC) (Dhu et al., 2017, Lewis et al., 2017)
and the Framework for Operational Radiometric Correction for
Environmental monitoring (FORCE) (Frantz, 2019), that en-
able to pre-process remote sensing data and organize and store
them ARD for immediate analysis. The Brazil Data Cube pro-
ject4, currently developed by INPE provides multidimensional
ARD data cubes from medium-resolution EO images, including
Landsat, CBERS and Sentinel satellites images.

We believe that once these maps can be generated on a pixel-
level and using ARD combined with other environmental data
that can be integrated on a EO Datacube structure, using cloud
processing platforms, i.e. Google Earth Engine, Amazon Web
Services or Azure, there is a possibility of deriving important
proxies related to ecosystem structure and to biodiversity con-
sequently, being potentially considered for developing a system
for monitoring biodiversity.

4 More information can be seen at http://brazildatacube.org/.
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Câmara, G. et al., n.d. Land cover change maps for mato grosso
state in brazil: 2001-2017 (version 3). PANGAEA - Data Pub-
lisher for Earth Environmental Science.

de Morisson Valeriano, M., de Fátima Rossetti, D.,
2012. Topodata: Brazilian full coverage refinement of
SRTM data. Applied Geography, 32(2), 300–309. ht-
tps://doi.org/10.1016/j.apgeog.2011.05.004.

Dhu et al., 2017. Digital Earth Australia – Unlocking New
Value from Earth Observation Data. Big Earth Data, 1(1-2),
64–74.

Ferreira et al., 2007. Spectral linear mixture modelling ap-
proaches for land cover mapping of tropical savanna areas in
Brazil. International Journal of Remote Sensing, 28(2), 413–
429.

Ferreira, L. G., Huete, A. R., 2004. Assessing the
seasonal dynamics of the Brazilian Cerrado vegetation
through the use of spectral vegetation indices. Interna-
tional Journal of Remote Sensing, 25(10), 1837–1860. ht-
tps://doi.org/10.1080/0143116031000101530.

Ferreira, M. E., 2003. Análise do modelo linear de mistura es-
pectral na discriminação de fitofisionomias do parque nacional
de brası́lia (bioma cerrado).

Frantz, D., 2019. FORCE—Landsat + Sentinel-2 Analysis
Ready Data and Beyond. Remote Sensing, 11(9), 1124.

Girolamo-Neto et al., 2017. Assessment of texture features for
Brazilian savanna classification: A case study in Brası́lia na-
tional park. Braz. J. Cartogr, 69, 891–901.

Grecchi, R. C., Gwyn, Q. H. J., Bénié, G. B., Formaggio, A. R.,
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