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ABSTRACT: 

 

Flooding is considered as one of the most devastated natural disasters due to its adverse effect on human lives as well as economy. 

Since more population concentrate towards flood prone areas and frequent occurrence of flood events due to global climate change, 

there is an urgent need in remote sensing community for faster and reliable inundation mapping technologies to increase the 

preparedness of population and reduce the catastrophic impact. With the recent advancement in remote sensing technologies and 

integration capability of deep learning algorithms with remote sensing data makes faster mapping of large area is feasible. Therefore, 

this study attempted to explore a faster and low cost solution for flood area extraction by integrating convolution neural networks 

(CNNs) with high resolution (1.5m) SPOT satellite images. By consider the system requirement as a measure of cost, capabilities 

(speed and accuracy) of a deeper (ResNet101) and a shallower (MobileNetV2) CNNs on flood mapping were examined and compared. 

The models were trained and tested with satellite images captured during several flood events occurred in Japan. It is observed from 

the results that ResNet101 obtained better flood area mapping accuracy than MobileNetV2. Whereas, MobileNetV2 is having much 

higher capabilities in faster mapping in 0.3 s/ km2 with a competitive accuracy and minimal system requirements than ResNet101.  

 

 

1. INTRODUCTION 

1.1 Background 

During the past decade, world`s water related disasters became 

frequent and severe as an adverse effect of changing pattern in 

global climate. According to annual report of HELP global report 

on water and Disaster 2019, year 2018 was marked highest 

number of water-related disasters in all parts of the world. 

Around 6,500 people lost their lives by water-related disasters 

among them majority are corresponds to flood events. Although, 

the global efforts and advancement of science and technology 

towards disaster mitigation approaches exacerbated, the amount 

of economic and human losses couldn’t controlled as expected 

due to the increase in concentration of humans towards the 

vulnerable areas for flooding. Particular in Japan, population is 

more likely to concentrate on flood-prone areas besides the fact 

that geography and the climate of japan is more susceptible for 

frequent extreme hydro-meteorological events. According to 

infrastructure development institute of Japan and Japanese river 

association, about 49% of the population and 75 % real estates of 

the country are located in alluvial plains exposed to flood risk.  

Therefore, development of faster mapping of disaster events such 

as flooding is vital for authorities for their emergency response 

and proper action plans towards the protection of human lives 

and assets. Additionally, timely damage assessment is also 

crucial for better relief work planning as well. 

 

With the advancement of the satellite imagining technologies 

during the last few decades and capabilities of commercial 

satellites to capture images on demand within hours, remote 

sensing rewarded as highly demanding surveying option for 

disaster mapping in near real time. 

 

Existing studies on this regard, were mostly focused on manual 

methods such as change detection from pre and post disaster 

event using image algebra (band differencing, band rationing), 

post classification comparison and object-based change detection 

(Amit and Aoki, 2018). However, the mapping performance of 

aforementioned methods vary upon several factors including 

study area, water characteristics, environmental and atmospheric 

conditions etc. (Goffi et al., 2020). Most importantly, such 

manual method requires longer time and unable integrate with an 

emergency response systems in the contexts of time, accuracy 

and automation capability. Thus, remote sensing community is 

always committed to develop technologies for better 

performance in near real time. Where, researchers found the best 

possible solution was to introduce neural networks, the basis of 

Deep Learning (DL) into such remote sensing applications (Ma 

et al., 2019, Chen et al., 2017; Zhu et al., 2017) due to its 

capability to produce accurate results for a larger area within 

almost no time in comparison to traditional methods.   

 

Various DL approaches including Convolutional neural networks 

(CNN) and recurrent neural network (RNN) widely used for 

various remote sensing applications such as image classification, 

segmentation and object detection. Among them CNN have 

attained surprising dominance  in remote sensing community due 

to its impressive results in challenging applications such as image 

classification and segmentations. Moreover, its image handling 

capability and integration ability of automatic feature extraction 

attracted majority of the researchers towards DL from 

conventional image processing technologies (Yang and Cervone, 

2019). 

 

1.2 CNN for Image Classification and Segmentation 

CNNs are type of feed-forward artificial neural network made up 

of layers which includes learnable parameters including weights 

and biases (Gebrehiwot et al., 2019). Many studies have been 

carried out in CNN based image segmentation methods such as 

fully convolutional network (FCN), Seg-Net, U-Net etc.  

However, most of the remote sensing applications were used 

FCN based models as fully connected neural layers were replaced 
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by convolution neural layers to preserve the 2-D structure of the 

satellite images.  
 

There are great number of works focused on FCN based 

approaches for image classification and segmentation. Among 

them works carried out by Castelluccio et al., (2015); Fu et 

al.,(2017) , Marmanis et al.,(2016) and Ireland et al., (2015) 

obtained promising results with about 80%- 90% of class 

accuracy. The common finding with aforementioned studies and 

other researches on similar direction is deeper convolutional 

networks corresponds to better results. It is highly agreed with 

the existing literature about FCN that higher feature extraction 

level can be achieved by going deeper network architectures. 

 

1.3 Challenges of CNN Integration with Remote Sensing 

Applications 

One of the challenging issues of segmentation problems in 

remote sensing applications is that to balance the trade-off 

between strong down sampling (for better feature extraction with 

deeper networks) and accurate boundary localization. The most 

commonly used solution was to use hybrid FCN architecture (e.g. 

Sherrah, 2016). Although it improves the results this adds extra 

complexity to the model and leads to a longer training time and 

requires much computation resources. Most importantly, longer 

processing time accompanies with deeper networks highly 

matters when it comes to applications like disaster detection 

systems. Thus, there is a great necessity both in computer vision 

and remote sensing community to build and identify smaller and 

effective neural networks for balance the trade-off with minimum 

resources. Consequently, Iandola et al., (2016); Wu et al., (2015) 

and Wang et al., (2016) demonstrated effective small scale 

networks with competitive accuracy. However, the primary focus 

of these models were to minimize the overall size of the model to 

address the issue of resource restriction regardless of the model 

capabilities. In order to address both time and the resource issues, 

Howard et al., (2017) developed MobileNets network which can 

be used even in mobile devices without any advanced system 

properties. Yet, there is no or minimum attention has been given 

by the remote sensing community to investigate its potential for 

remote sensing application. 

  

1.4 Motivation and Manuscript Organization   

The motivation of this study was to examine and demonstrate the 

potential of a smaller network (MobileNet) for remote sensing 

applications with specific emphasis on flood area extraction from 

optical satellite data using image segmentation technique in order 

to integrate with an automatic disaster detection system. The 

performance of MobileNet for flood area extraction was 

compared with the readily used deep CNN network (Resnet101) 

which won the best FCN architecture with a larger margin at 

highly competitive computer vision challenge of ILSVRC 2015. 

This manuscript is organized as follows. The subsequent section 

consists of brief introduction and comprehensive comparison of 

MobileNet network with widely used Resnet101 network 

architecture followed by data and methodology sections. 

Thereafter, results and discussion sections can be found along 

with conclusion of the study.   
 

2. MOBILENET ARCHITECTURE  

MobileNet network is primarily built with depthwise separable 

convolutions (filters) know as factorized convolutions. These 

convolutions factorize standard convolutions into depth wise 

convolution and a 1x1 (point wise) convolution. Figure 1 is 

illustrates the difference between typical convolution layer and a 

depth-wise separable convolution layer. 

 

A regular convolution layer applies a convolution kernel (or 

filter) to all of the channels of an input image. It slides the kernel 

across the image and each step performs a weighted sum of the 

input pixels covered by the kernel across all input channels. But 

in the depth wise convolutions has two layers, one for filtering 

and the remaining is for combining. As of Howard et al., (2017) 

if a network uses 3x3 depth wise separable convolutions,  8~ 9 

times computation cost reduction can be observed for a negligible 

reduction in accuracy. Similar observation has been experienced 

in this study as well. Further explanation on this regard will be 

discussed in results section of this manuscript. 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of typical convolution and depth-wise 

separable convolution  

 

2.1 Comparison of Network Architectures of ResNet and 

MobileNet  

The primary difference of the two networks can be found in the 

developmental objective of the two networks. The main focus of 

ResNet network development was not to computationally 

economical but to obtain the highest possible computational 

accuracy. Consequently, deepest network at present with 152 

layers was designed.  Since the network is much deeper it faced 

an issue of optimization. Furthermore, such deep networks 

having the trade-off of size and latency. Which alleviate such 

networks for being utilized in real world applications with 

computationally limited platforms such as autonomous vehicles, 

robotic visions and automated applications for near real time 

systems regardless of the higher computational accuracy. In 

contrast, MobileNet was designed to perform with competitive 

accuracy with minimal computation cost (Howard et al., 2017). 

Table 1 discusses model architecture difference in ResNet101 

and MobileNet V2 (which was implemented in this study). For 

all the experimental purposes in this study we have used 

ResNet101dilated and MobileNetV2dilated as encoder and a 

common PPM+ deep supervision trick decoder for ResNet101 

and MobileNetV2 models respectively. 

 

 Table 1. Comparison of model architecture used in this study 

 

For better use of the image features and to reduce the burden in 

design phase of the system, pre-trained version of the 

aforementioned models were fine-tuned with remote sensing 

Model Name ResNet101 MobileNetV2 

Number of 

feature maps 

2048 320 

Number of 

parameters 

(millions) 

42.5 4.3 

Encoder ResNet101dilated MobileNetV2dilated 

Decoder PPM + deep 

supervision trick 

PPM + deep 

supervision trick 

Typical 

convolution 

Depth wise 

convolution 

Point wise 

convolution 
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images. Several researchers have stated the advantages of using 

pre-trained networks despite using a network train from scratch. 

Among them Sherrah, 2016, one of the very first discussed 

successfully such applications in remote sensing images.  

 

Both models were pre-trained with the densely annotated 

ADE20K dataset, which spans diverse annotations of scenes, 

objects, parts of objects and in some cases even parts of parts 

(Zhou et al., 2018).  Further, Zhou et al., 2018, mentioned that 

pre-trained models with ADE20K data set is having high 

potential to segment wide variety of objects and scenes. Models 

were trained using images contained 10.5 object classes and 19.5 

instances. Overall, 20000 images were used to train for 150 

object categories. 

 

Moreover, the capability of trained models with large number of 

object categories for remote sensing applications is rare or has 

not been documented. Thus, in this study authors attempted to 

explore the potentials and capabilities of such pre-trained 

networks for remote sensing applications. 

  

2.2 Related Works 

With the availability of high spatial and spectral resolution data 

containing complex details of land features, there was an urging 

need in developing an advanced mapping technologies with 

abilities to cater issues with conventional rule based technologies 

and potentials to handle data with larger complexities. More 

importantly when it comes to flood area mapping, rule based 

technologies tend to fail due to lack of abilities to handle high 

spectral variations of flood waters and mixing of spectral 

properties of land and flooded pixels (Feng et al., 2015;Sarker et 

al., 2019). Consequently, yet there is no successful regional scale 

work has been found in literature for flood area mapping with 

rule based technologies despite few successful local scale works 

(Ogashawara et al., 2013, Amarnath 2014, Haq et al., 2012).  

 

Further, object-based mapping also failed in the context of flood 

area mapping as flood water spread along the other land use 

classes create inter-class spectral similarity alongside the intra-

class spectral heterogeneity (Sarker et al., 2019). Such issues 

evolved flood mapping into a new era with deep neural networks 

(DNNs). With the recent advancements in computer peripheral 

for speed up computations such as graphical processing units 

(GPUs), DL achieved much attention not only in computer vision 

applications but also in its sub divisions such as remote sensing 

due to its high potential of integrating with near real time 

information dissemination systems. 

 

Disaster area recognition is one of the key areas in remote sensing 

where the application of DL, reported an increase trend. The main 

cause for the observation was due to its adaptability and 

generalization nature in comparison to the conventional disaster 

mapping technologies.  A handful of works can be found in recent 

literature on flood mapping using CNN methods. Those studies 

can be found mainly in two categories, depending whether the 

change detection technique was used or not. Amit et al., (2017) 

used pre and post event images for the extraction of disaster area 

from aerial images. Even though the authors argued the potential 

of the method to be implemented on disaster detection 

mechanism around the world, yet there are several limitations 

with the methodology which need to be addressed. The main 

drawback is the necessity of image pre-processing. As the colour 

variation of remotely sensed images controlled by many factors 

such as satellite sensor, spatial location, seasonality etc., regional 

application of the method will be costly. Moreover, one of the 

major drawbacks of change detection mechanisms is the 

necessity of pre disaster image. As the occurrence of the disaster 

events are unpredictable in the contexts of location and time, 

requirement of pre-disaster image cease the usability of the 

method in an emergency response systems.   

 
Sarker et al., (2019) and Nogueira et al., (2018) proposed new 

CNN network architectures for flood area mapping using low and 

high resolution satellite images respectively. Where the Sarker et 

al., (2019) used Landsat images while Nogueira et al., (2018) 

applied to images with ground resolution 3m. However, flood 

area extraction ability of the Sarker et al., (2019) need to be 

improved further for its applicability with emergency response 

systems. Whereas, the CNN model developed by Nogueira et al., 

(2018) apparently have high potential of being adopted for 

emergency response system however, the lack of information 

about generalisation ability and computational performance 

makes it difficult understand its appropriateness.  Therefore, in 

this study authors tried to investigate on a low cost and accurate 

CNN based flood area extraction solution for high resolution 

optical satellite images which can be adopted for near real-time 

emergency warning system with a minimal system requirement. 

 

3. DATA AND METHODOLOGY 

The proposed system of this study consists of three distinct steps. 

During the first step training and validation data sets will be 

prepared. Thereafter, a model training and training accuracy 

estimation will be performed. Model validation will be evaluated 

as the second step. As for the final step, testing will be performed 

with each trained models. The overview of the overall 

methodology used in this study is shown in Figure 2.  

 

3.1 Data 

All the training images were taken by SPOT 6 and SPOT 7 

satellite senor during or just after the heavy rainfall events 

occurred in Joso, Kurashiki and Osaki cities from Ibaraki, 

Okayama and Miyagi prefectures of Japan respectively. 

Whereas, test images were observed at Fukushima and 

Saitama prefectures. Map of training data and test sites used 

in this study are shown in Figure 3. Further information about 

the data sets can be found at Table 2 and 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 2. Overall methodology used in the study 

 

Validation accuracy > 90 % 

Training data preparation 

Model training 

Model validation 

Testing 

Else 
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3.1.1 Training Data Preparation: All the satellite images 

used in this study were pan sharpened in ERDAS Imagining 2016 

environment using HCS resolution merge technique. The original 

resolution of panchromatic images and multispectral images are 

1.5 m and 6.0 m respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Location Map of training and test data sets. Training 

data sets bounded by yellow boxes © SPOT image AIRBUS DS 2018  

 

Location Joso Osaki Kurashiki 

Satellite 

sensor 
SPOT 6 SPOT 7 

Resolution 1.5 m 

Colour 

composite 

True colour :Red: band 1 

Green: band 2 

Blue: band 3 

Occurrence 

of event  

2015/09/9-11 2018/07/5-5 

Imaging 

date 

2015/09/12 2015/09/11 2018/07/09 

Sample size 

(pixels) 

512 x 512 

Number of 

samples 

1211 

Table 2. Training data sets used in the study 

 

Location Abukuma, Arakawa, Utagawa 

Satellite 

sensor 

SPOT 7 

Resolution 1.5 m 

Colour 

composite 

True colour :Red: band 1 

Green: band 2 

Blue: band 3 

Occurrence 

of event  

2019/10/13-15 

Imaging 

date 

2019/10/13 

Sample size 

(pixels) 

512 x 512 

Total area 693 Km2 

Table 3. Test data sets used in the study 

 

The true colour composites were prepared from respective pan 

sharpened images. No other pre-processing steps were performed 

for the data sets used in this study. The data sets used to train the 

models consists with images obtained under different conditions 

(colour variation, spectral characteristics etc.). In order to avoid 

the possible negative effects on a smooth automating process of 

flood area extraction, manual intervention in image pre-

processing steps such as colour variation balancing were not 

undertaken. Thus, model was trained using satellite images with 

minimal pre-processing exposure. 

3.1.2 Annotation Data Preparation: Annotation masks used 

in this study contain labels from 1 to 3 representing no data, land 

(remainders excluding other two categories) and flooded area 

respectively. In order to improve the accuracy of training data 

preparation, true colour and false colour composites of both post 

disaster and pre disaster images along with NDWI image were 

used as shown in Figure 4. Frequently encountered issue during 

annotation data preparation was misclassification of empty paddy 

lands with paddy area covered with flooded water. To overcome 

aforementioned error, NDWI image was utilized along with pre 

and post disaster images since literature (e.g. Soltanian et al., 

2019; Qiao et al., 2011 and Rokni et al., 2019) emphasized the 

advantages of using NDWI images towards flood area extraction. 

The expert was carefully compared all three images of each scene 

and prepared the annotation files in Adobe Photoshop CC 2019 

environment. The annotation images used in this study was in 

grey scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Annotation data preparation ((a) True colour composite 

of SPOT image (b) false colour composite (c) NDWI image (d) 

annotation image) © SPOT image AIRBUS DS 2018 

 

3.1.3 Image Registration and Tilling: Consequently, as 

shown in Figure 5 image registration was carried out for the 

annotation file in ERDAS imaging 2016 environment with 

corresponding post-disaster image by matching the map model 

and spatial reference. Consequently, spatially referenced 

annotation files and image files were diced into 512x512 before 

start the training process. All the testing images were also tilled 

into same size with training images. Thereafter, 1/10 of 

annotation and respective post disaster image tiles were randomly 

separated for validation purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Training image sample preparations ((a) True colour 

composite of SPOT image (b) corresponding annotation image of 

Osaki Japan) © SPOT image AIRBUS DS 2018   

I. Image registration II. Image tilling III. Sample images 

Registered 

Channels 

Channels 

Original image 

Annotation image 

(a) 

(b) 

True colour composite False colour composite NDWI 

(a) (b) (c) 

Grey scale annotation image 

(d) 
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3.2 Training Phase 

This study adopted the sample program from Zhou et al., (2018) 

and used pre-trained version of Resnet101 and MobileNetV2 

with ADE20K dataset. Two GPUs (graphical processing unites) 

were used for training process and only one GUP was used during 

testing phase. The experimental setup used in this study is 

summarized at Table 4. Post disaster image files and 

corresponding annotation files were used to train the networks. 

The ppm_deepsup was the common encoder for networks while 

resnet101dilated and mobilenetv2dilated were used as decoders 

for Resnet101 and MobileNetV2 respectively. 2048 feature 

channels were used in Resnet101 whereas, MobileNetv2 used 

320 feature maps. 

 

During the training process, number of batch per GPU , 

optimisation algorithm and learning rate for decoder and encoder 

were commonly set for both models as 2, SGD (Stochastic 

gradient descend) and 0.02 respectively.  The training process 

was carried out for 30 epochs with 5000 iterations per each epoch. 

 

Operating system Ubuntu 18.04 

Framework Pytroch 1.3.1 

Networks used  ResNet101, MobileNetV2 

GPU NVIDIA TITAN RTX 

VRAM:24GB 

 Driver Version: 430.64        

CUDA Version: 10.1   

Table 4. Experimental setup used in the study 

 
3.3 Validation and Testing Phase 

Once the training process completed, trained models were 

validated with the validation data set. Models were trained for 

further epochs unless model reached more than 90% validation 

accuracy. The accuracy of the validation phase was estimated 

using Jaccard index or intersection over union (IOU) (Equation 

(7)). For each class, mean IOU and pixels wise accuracy 

(Equation (8)) were estimated. The estimated model weights of a 

certain epoch at which model gained more than 90 % accuracy 

used for inference. 

 

693 km2 area was available for testing purposes. However, 

annotation data was available only for the Abukuma area 

covering 67.19 km2. Thus, quantitative analysis of test data was 

carried out only for the Abukuma area while qualitative analysis 

was conducted for whole area. 

 

 𝐼𝑜𝑈 =
(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
    (7) 

 

𝑝𝑖𝑥𝑒𝑙 𝑤𝑖𝑠𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠
   (8) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
     (9) 

 

 
The accuracy assessment of testing phase was carried out mainly 

using recall and precision indexes which are commonly used in 

data science. For the tested categories in this study, precision and 

the F-score was estimated. It is observed that ResNet101model 

obtained more than 95% training accuracy and less than 0.01 loss 

at the 23rd epoch, while MobileNetV2 reached similar training 

accuracy at 29th epoch. Thus, evaluation was carried out using the 

weights at 30th epoch for both the models. 

   

 

Ground truth labels  

No data 

(1) 

Land  

(2) 

Flood 

area (3) 
Precision 

Test 

result 

label 

No 

data 

(1) 

a b c a/(a+b+c) 

Land 

(2) 
d e f e/(d+e+f) 

Flood 

area 

(3) 

g h i i/(g+h+i) 

Recall a/(a+d+g) b/(b+e+h) c/(c+f+i)  

Table 5. Accuracy assessment for test data set 

 
4. RESULTS AND DISCUSSION 

Results and discussion section is organized as follows. 

Subsection 4.1 discusses about the validation phase while other 

sections presents the results and discussion about test phase.   

 

4.1 Training Time and Validation Accuracy 

As mentioned in the previous section model training was carried 

out until validation accuracy obtained more than 90%. 

ResNet101 model obtained the validation accuracy more than 

90% even with the estimated weights at 23th epoch. Whereas, 

MobileNetV2 was reached the same level of accuracy with 30th 

epoch weights (Figure 6). Table 6 summarizes the training time 

and validation accuracy of the models. As of the system 

capabilities used in this study, in average more than half hour 

training time difference was observed for an epoch. Overall, 

ResNet101 obtained above 91% accuracy whereas MobileNetV2 

able to obtained above 90% validation accuracy. However, 

obtained difference in class IoU during model validation is 

smaller. Thus, in comparison to used training resources, 

MobileNetV2 obtained a competitive accuracy with a minimal 

system requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Comparison of training accuracy (6(a)) and loss (6(b)) 

of models 

 

 
Model 

name 

Training 

Time 

(h:mins) 

Intersection over Union 
Accuracy 

(%) No data Land Flood 

ResNet101 27 h 41m 0.9739 0.8445 0.8518 91.17 

MobileNetV2 10 h 25 m 0.9825 0.8479 0.8699 90.17 

Table 6. Accuracy comparison of models during validation  
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4.2 Test Results 

As mentioned in section 3, qualitative and a quantitative analyses 

were carried out with test results. During the qualitative analysis 

test results were discussed comparing the original post disaster 

image. Whereas, quantitative analysis was carried out mainly on 

the following two contexts. (i) processing time and (ii) accuracy.    

According to the given explanation in subsection 3.3, accuracy 

was estimated. As illustrated in Figure 7, processing time was 

estimated from the time taken by tilling of original image up to 

creation of final geo-referenced mosaic image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Processing steps of test phase of the model 

 

4.2.1 Processing Time Estimation: 

Tilling and tfw file creation: The test images were diced into 

512 x 512 size before feed them to the trained model. Due to 

possible occurrence of header information loss during testing, 

spatial reference need to be added before creation of mosaic 

image. 

Inference: Thereafter, tilled images were added to trained 

models for inference. 

Geo-referencing and Mosaic image creation:  Subsequently, 

obtained result images were geo-referenced using corresponding 

tfw files. Finally, Mosaic images were created using spatially 

referenced image files.    

 

 
Area (km2) 

ResNet101 

(seconds) 

MobileNetV2

(seconds) 

Arakawa 553.6 367.07 152.59 

Abukumagawa 67.2 67.13 22.52 

Utagawa 73.0 69.58 23.80 

       Table 7. Comparison of processing time during testing 

 

As per the obtained results summarized in Table 7, to process an 

area of 1 km2 MobileNetV2 required in average 0.3 seconds for 

all 03 test sites while ResNet101 need 0.7 s/km2. Overall, 

MobileNetV2 probably save about 7 minutes time during a 

processing of 1000 km2 area. Saving 7 minutes computation time 

might not have much value unless it is an integrated system 

developed for dissemination emergency warnings during a flood 

event. In such situation, earlier information retrieval will lead to 

save invaluable human lives as well as economic assets. Though 

it is extremely important to save time, accurate flood area 

extraction also matters. 

 

Flood Area Extraction Accuracy: Due to non-availability of 

ground truth data of Arakawa and Utagawa areas, flood area 

extraction accuracy was estimated only for Abukumagawa region. 

4.2.2 Flood Area Extraction Accuracy: Due to non-

availability of ground truth data of Arakawa and Utagawa areas, 

flood area extraction accuracy was estimated only for 

Abukumagawa region. Figure 8 represents the extracted 

inundated areas by ResNet101 and MobileNetV2 models.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of flood area extraction (a). Arakawa 

(b). Abukumagawa (c). Utagawa © SPOT image AIRBUS DS 2019 

 

Overall, it is obvious that the false extraction and mis-extraction 

of flooded areas are comparatively low for all three testes areas. 

However, false extraction of flooded areas are relatively high in 

Utagawa region than other areas. Such observation is more likely 

to correlate with the larger paddy coverage of Utagawa region 

than other two areas. Both models were more or less equally 

failed to extract inundated areas covered with less amount flood 

water regardless of their overall success in mapping flooded areas 

with greater accuracy.  

  

Inundated area extraction capability of two models were 

quantitatively analysed using Abukumagawa ground truth data. 

The post disaster image and the corresponding annotation image 

data are shown in Figure 9. During the analysis it is found that 

average percentage difference of extracted flood area between 

ResNet101 model and MobileNetV2 models is 1.6% for 

Abukumagawa region. Thus, the deeper ResNet101 obtained 

higher flood area extraction capability for the tested 03 sites. 

However, qualitatively it can be observed that there are several 

areas where MobileNetV2 shown better performance than 

ResNet101 in flood area mapping. The estimated precision recall 

and F-score estimations for flood area extraction are summarised 

at Table 8.        

      

 

 

 

 

 

  

 

Figure 9. Post disaster image (a) and annotation image (b) of 

Abukumagawa © SPOT image AIRBUS DS 2019 

Flooded  area 

Other 

Tilling and tfw file creation 

Inference using trained model 

Adding spatial reference to results  

Creation of final Mosaic file 

ResNet101 model MobileNetV2 model 

(a) 

(b) 

(c) 

(a) (b) 
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Model ResNet101  MobileNetV2 

Precision (%) 81.5 80.1 

Recall (%) 80.1 79.6 

F-score 0.80 0.79 

         Table 8. Accuracy comparison of flood area mapping 

 

The observed slightly higher precision and recall values of 

ResNet101, demonstrates the lesser false extraction and mis-

extraction of inundated area mapping capability than 

MobileNetV2. Overall, both models were reported higher mis-

extraction than false extraction which can be observed with 

Figure 8 as well. However, in comparison to MobileNetV2, 

comparatively higher precision values than recall of ResNet101 

indicates the higher mis-extraction than false extraction tendency 

of the model. The differences of extracted flooded areas in 

Arakawa and Utagawa with two models were also less than 1%. 

This indicates further that the both models having almost similar 

capability to map the inundated areas. However, when it comes 

to the mapping of slightly inundated areas with lesser flood water 

(e.g. circled area in yellow of Figure 10) was not up to the desired 

level and need to be further improved. 

  

 

 

 

 

 

 

Figure 10. Inundated area mapping with (a) ResNet101 (b) 

MobileNetV2 models © SPOT image AIRBUS DS 2019  

 

The possible fact caused such inability regardless of the size of 

the model, might the spectral characteristics difference in training 

and test data sets at lightly inundated areas. Further, this study 

used quite larger sample size at training phase in order to save 

processing time at testing, this might lead to knowledge loss 

about such areas by the network. The similar works in literature 

(11*11 (Sarker et al., 2019) and 32*32 (Amit and Aoki, 2017))) 

used extremely smaller samples for training. Hence, authors will 

test such possibilities in future for the possible improvements on 

final results while preserving the processing speed. 

 

Moreover, this study did not conduct any image pre-processing 

tasks (e.g. Amit and Aoki, 2017) to eliminate the effects of 

possible colour variations caused due to differences in weather 

conditions of the imaging date. Lack of such normalizations 

during training data preparations may also contributed negatively 

to the final results. Nevertheless, at the current stage of the study 

able to use minimal training samples covering only three 

prefectures of Japan. As explained at the Section 1 and 2 

automation flood mapping become extremely difficult due to 

larger variation in spectral characteristics of flood water, hence it 

is obvious that networks need to be trained with more number of 

training samples covering different regional inundation events. 

Moreover, it should be noted that there is an inevitable addition 

of human error factor at the preparation of annotation images due 

to unavailability of ground truths for corresponding flood events 

at the time of this manuscript preparation.  

   

By comparing the obtained higher accuracy at validation phase 

by the trained models and comparatively lesser performance at 

testing phase also suggested the necessity of model training with 

various spectral characteristics of flood water. Overall, obtained 

competitive accuracy of flood area mapping with minimum 

training samples using original forms of the satellite data conveys 

the potential of improved flood area extraction with better 

training. 

 

At the time of this manuscript preparation, there is no existing 

study which estimated the CNN`s capability of flood area 

mapping with high resolution (> 1.5 m) optical satellite images. 

However, Amit and Aoki, (2017) and Gebrehiwot et al., (2019) 

carried out similar study with Aerial image data and obtained 

more than 90% accuracy whereas Sarker et al., (2019) reached 

more than 76% precision in flood area mapping in his study with 

low resolution Landsat satellite data. Nogueira et al., was attained 

maximum of 84% IOU accuracy for his inundation area mapping 

with high resolution (3m orthorectified) satellite data at the 

testing phase. However, none of the studies were discussed about 

processing speed of the networks which is a crucial measure for 

emergency response systems.  Consequently, it is clear that this 

study provides a greater insight about CNNs networks and their 

capabilities to integrate with emergency response systems.  

  

Considering the processing time along with the obtained 

accuracy of the models it can be concluded that both models 

having high potentials for inundation area mapping. Further 

improvements are necessary for accurate flood mapping before 

integrating to an emergency warning system. At the current stage 

of the study, ResNet101 slightly ahead in flood mapping than 

MobileNetv2. However, MobileNetV2 is having high potential 

of adopting to an emergency warning system due to its 

competitive accuracy along with less system requirements and 

lesser processing time than ResNet101 in flood mapping.   

 

5. CONCLUSIONS 

More than half of the world population concentrated into flood 

prone areas. Particular in Japan about 49% of the population and 

75% of the real state are located in alluvial plains under 

inundation risk. Hence, faster and reliable flood mapping is vital 

for support emergency response planning. With the recent 

development in remote sensing imaging technologies and DL 

networks this become feasible.  

  

Therefore, this study explored the capabilities of deeper and 

shallower CNN networks for precise inundation mapping from 

high resolution optical satellite data in a shorter time. This study 

used SPOT satellite images captured from 03 prefectures of 

Japan at flood events occurred in year 2015 and 2018 for training 

data preparation and tested with images obtained during 

Typhoon-19 in year 2019. The tested model architectures of this 

study are ResNet101 which the deepest network at present and 

MobileNetV2, one of the shallowest network which was 

developed to use even in mobile devices with minimum system 

requirement.  

 

ResNet101 was able to extract flood area with 80.1% accuracy 

with processing speed of 0.7 s/km2 while MobileNetV2 network 

with 79.6 % accuracy at 0.3 s/km2 speed. Obtained results 

demonstrated that MobileNetV2 having a high potential of flood 

area mapping from optical satellite data with competitive 

accuracy. It is observed that both networks are obtained 90% 

accuracy in Jaccard index during the validation phase where it 

(a) (b) (c) 
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less performed at the testing phase. This reflects the necessity of 

further training with different inundation conditions. Overall, it 

is found that in comparison to the existing studies of the field this 

study provides a better insight to scientific community towards 

the low cost automation solution for inundation mapping with 

high resolution satellite data.  
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