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ABSTRACT:  Lidar scan angle can affect estimation of lidar-derived forest metrics used in area-based approaches (ABAs). As 

commonly used first-order metrics and various user-developed metrics are computed in the form of a grid or a raster, their response to 

various scan angles needs to be investigated similarly. The objective of this study was to highlight the impact of scan angles on 11 

metrics (9 height-based and 2 other commonly used metrics) at the level of the grid-cell. The study area was divided into a grid of cell 

size 30 m. In every grid-cell, the flight lines that sampled at least 90% area of the grid-cell were identified. The flight lines and the 

corresponding point clouds were then classified based on their mean scan angle into four classes 0°-10°, 10°-20°, 20°-30° and 30°-

40°.  Metrics were computed for one flight line per class for each grid-cell. This resulted in a maximum of four values for a metric in 

every grid-cell. Comparing these values revealed the evolving nature of the metrics with the scan angle. For the comparison we used 

a paired t-test and simple linear regression. We observed that most of the metrics were systematically under-estimated with increasing 

scan angle. Gap-fraction, rumple index were affected more than standard deviation of height while the maximum height was relatively 

stable. Among the height percentiles, the higher percentiles were relatively more stable compared to the lower percentiles. Scan angles 

can indeed have an impact on the estimation of lidar derived metrics. Although, many of the metrics studied showed statistically 

significant differences in their computation for different scan angles, their impact on the accuracies of ABA models needs to be studied 

further by accounting for the differences as shown in this study. 

 

1. INTRODUCTION 

Lidar acquires an explicit three-dimensional representation of the 

forest structure. Such information is essential to model both 

ecological and resource management information, and there is a 

broad spectrum of methods, across various airborne LiDAR 

platforms, for improved characterisation of forest ecosystems 

and a better understanding of their functioning. It is possible to 

extract several forest inventory attributes with improved 

accuracies for better resource management (Bohn & Huth, 2017; 

Breidenbach et al., 2010; Côté et al., 2018; Næsset, 2007; 

Wallace et al., 2012). Lidar data can also be used to assess 

biophysical variables, such as above-ground biomass (AGB) and 

Leaf Area Index (Bouvier et al., 2015; Breidenbach & Astrup, 

2012; Lefsky et al., 2002; Vincent et al., 2017)  

 

In Area-based approaches (ABAs), a set of ALS variables (Xi) – 

derived from lidar data for a given area – is linked to a target 

variable (Y) measured at the same area on the ground (White et 

al., 2017). This is done for a handful of different plots to build a 

predictive model to predict the target variable for the entire 

forest. The fundamental unit of a predictive model is a small 

subset from the lidar point cloud, the area of which equals the 

area of a reference field plot (i.e., typically 0.025 to 0.07 ha). A 

model developed for representative plots is then applied to the 

whole forest area divided into grid cells, the area of which still 
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equals the area of reference field plots. Any given target forest 

attribute is thus predicted at the cell level. Notwithstanding the 

trade-off between area coverage, the density, and the resolution 

of measurements between different platforms (i.e. aerial and un-

manned aerial vehicles (UAV)), studies have recommended 

further investigation of variation in acquisition parameters for 

forest parameter assessment (Cao et al., 2016; Korhonen et al., 

2011; Tompalski et al., 2019). Some studies focussed on the 

effect of point density on the accuracy of stand attribute 

predictions (Bouvier et al., 2019; Næsset, 2009; Singh et al., 

2016). Relevant lidar metrics selected to build predictive models 

were found to differ significantly with pulse density in Næsset, 

(2009) but in Bouvier et al., (2019) there was no change in the 

four metrics used. However, in the range of explored pulse 

densities, i.e. from 0.06 to 12.7 pulses/m², in all the studies 

considered together, only minor or even no impact on stand 

attribute predictions was found.  

 

Another critical acquisition parameter is the maximum off-nadir 

scan angle (Bater et al., 2011). Liu et al., (2018) demonstrated the 

effect of scan angle on gap fraction estimation which, in turn, 

affects the estimation of LAI. Tompalski et al., (2019) 

recommend the disentangling of various acquisition parameters, 

including scan angle, to develop robust transferable models. 

Studies utilising lidar-based metrics generally do not consider the 

influence of scan angles, and there may be unaccounted biases 
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which may cancel each other in predictive models (Roussel et al., 

2018). There can only be one, or a few flight-passes for a given 

area, and it is evident that the ‘viewing configuration’, or the scan 

angle with which each grid-cell is sampled will be different 

(Figure 1). Owing to these inconsistencies, metrics computed for 

an entire forest, in the form of a raster may possess inherent 

biases. For airborne acquisitions, Evans et al., (2009) recommend 

limiting the maximum scan angle to 15° to reduce measurement 

errors, despite a reduction in flight time and cost that would have 

enabled higher scan angles. In Montaghi, (2013), several metrics 

were found to be relatively stable up to an angle of 20 degrees. 

However, with the increasing popularity of light systems 

embedded on low altitude platform – such as ULM or UAVs – it 

is imperative to understand the response of various commonly 

used metrics to varying scan angles as limiting the scan angle to 

15-20 degrees is hardly feasible in an operational mode for 

reasons of time and data volume optimisation. This would allow 

for better management of the biases and result in more informed 

mission planning for efficient data acquisition.  

 

In the present study, with the objective to contribute to the 

understanding of how scan angles modify metrics that are 

commonly used in ABA approaches, we analysed the impact of 

scan angles on a set of metrics that can be used to describe the 

horizontal and vertical vegetation structure of a riparian forest 

located in the Landes area, in south-west France. 

 

 

 
 

 
Figure 1: Acquisition geometry from different flight lines 

 

2. MATERIALS 

2.1 Study area 

The study area  is a riparian zone bordered by pine forests in the 

Ciron valley in the southeast of the Gironde and the northwest of 

the Lot-et-Garonne departments, in the Aquitaine region of 

south-western France. As a result of related projects, field plot 

information was available for 30 circular sites (15 m radius) 

along the river Ciron (flowing in SE-NW direction) and its 

tributaries, covering a total length of approximately 45 km. The 

plots are representative of the riparian ecosystem. The field 

measurements are indicative of structurally diverse vegetation in 

the region, with as many as 33 different species of trees and a 

diameter at breast height (DBH) varying from 7.5 cm to 87 cm ( 

Figure 2). The riparian region includes the active floodplains. It 

is highly biodiverse because of sparse forest management 

activities. In contrast, periodic management practices are carried 

out in the pine forests located beyond the riparian region. 

 

 
 

Figure 2: Example of the riparian environment in the study 

area 

 

2.2 Lidar data 

In early October 2019, INFOGEO (France) acquired lidar data 

using a VQ580 laser scanner (RIEGL, Austria) on an ultralight 

aircraft platform. The flying altitude was approximately 250 m, 

which enabled data-acquisition at an overall point density of 

around 68 pts/m². Overlap of 35%-40% and several passes over 

any given area (Figure 3) ensured that several locations across 

the region were sampled with multiple ‘viewing’ configurations 

(Figure 1). However, it was not possible to obtain all the 

configurations for all the areas. Additional sensor specifications 

are available in Table1. Data pre-processing was carried out by 

INFOGEO, which involved classification of ground points using 

TerraScan (Terrasolid Ltd., Finland). 

 

Date of acquisition Early October 2019 

Sensor RIEGL VQ580 

Wavelength Near-infrared 

Field of view 60° (+30°/-30°) 

Beam divergence 0.2 mrad 

Footprint diameter 52 mm @ 250m 

Ground speed 25 m/s 

Point density 68 pts/m² 

Flight altitude AGL 250 m 

 

Table 1: Technical specifications of the sensor 

 

3. METHODS 

3.1 Metrics selection 

While new metrics are continually being developed to improve 

prediction of forest attributes (Almeida et al., 2019; Bouvier et 

al., 2015; Véga et al., 2016), first order derivatives such as height-

based and density-based metrics are commonly utilised in ABA 

approaches (Mitchell et al., 2012). We thus considered height-

based metrics such as mean, maximum, standard deviation, 

coefficient of variation of heights, and height percentiles (10th, 

30th, 50th, 70th and 90th). When computing these metrics, the 

understory vegetation and ground points were not considered by 

filtering out all points below a height threshold of 1m. Besides 

typically describing distributions (Roussel et al., 2018), these  
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metrics are also considered to be descriptors of forest structural 

conditions.  

 

We also included two other widely studied metrics in our study: 

gap fraction and rumple index. The distribution of foliage 

determines the proportion of open areas in forest vegetation, 

which, in turn, determines the amount of energy from the sun and 

the sky that travels through the canopy (Nilson, 1971). Gap 

frequency or gap fraction  is a good indicator of the structural 

characteristics of the vegetation and can be assessed from lidar 

data (Bouvier et al., 2015). Gap fraction was calculated as 

described by Bouvier et al., (2015) by dividing the number of first 

returns below a specific reference height (2m) by the total 

number of first returns. Rumple index is the ratio of the outer 

surface area of the canopy to the ground surface (Parker & Russ, 

2004). It is a measure of the structural complexity of the stand. It 

characterises the outer-canopy, which is related to the 

development of the forest stand.  

 

3.2 Data preparation to analyse effects of scan angle 

As stated in the introduction, the grid-cell is the unit area used to 

apply an ABA model. The dimensions of the grid-cell are similar 

to those of field reference plots, which are 30 m diameter circular 

plots in this study. Hence, we attempted to discretise the scan 

angles according to a grid containing cells of 30 m x 30 m and 

analysed the point cloud in every cell to understand the impact of 

variations in scan angle on pre-defined metrics. Due to the 

acquisition geometry as illustrated is Figure 1, not every grid-cell 

is sampled with all the possible scan angles. In other words, the 

data with continuous scan angles, i.e. 1°, 2°, 3°…10°, 11° etc. is 

not available for every grid-cell. Five classes of scan angle 

(absolute value) were thus defined based on the scan angle rank 

of the LAS dataset, namely 0°- 10° as class 1, 10°- 20° as class 

2, 20°- 30° as class 3, 30°- 40° as class 4 and >40° as class 5. The 

scan angle is based on 0 degrees for nadir and -90° and +90° to 

the left and right sides of the aircraft respectively (ASPRS, 2013). 

We hypothesised that, for each pair of scan-angle classes (class 

1-class 2, class 1-class 3 etc.), the number of common grid-cells 

sampled from the five different classes of angle would be 

sufficiently high and representative of the diversity of the stand 

types present across the site.  

 

The steps of the process followed are: (i) for each grid-cell, we 

identified all the flight lines from which the lidar sensor sampled 

it either entirely or partially, and divided the point cloud in the 

grid-cell into subsets based on the flight lines. We did not 

consider any flight lines and, by extension, point clouds that 

partially sampled a grid-cell if they covered less than 90% of its 

area to avoid including in the analysis metrics that are not 

representative of the whole forest plot within the grid-cell; (ii) we 

then computed the mean scan angle for each of the remaining 

point clouds. We assumed that from a particular flight line and at 

a flight height of 250 m, the sensor samples a given grid-cell 

largely homogeneously and that the mean scan angle could be 

considered representative of the acquisition characteristics. This 

assumption was necessary for the sake of simplification, as it is 

not possible to analyse the influence of scan angle continuously. 

In practical applications, all regions are not sampled equally with 

all scan angles, i.e. the laser beams are never parallel. When a 

grid-cell was viewed with the same scan-angle class from more 

than one flight line, we considered the flight line that had mean 

scan angles closest to the respective class median values (0° for -

10° to +10°, 15° for 10° to 20° etc.); (iii) the metrics were 

computed for the point clouds from each of the remaining flight 

lines. After considering the area threshold of 90%, there were 

instances where some classes had no flight lines/point clouds and 

in such cases, the metrics were not calculated. 

 

The result comprised a stack of five rasters in which every grid-

cell had a vector of five values for the metrics, one for each class 

of scan angle (including NA values for empty classes). During 

the data acquisition, a certain buffer area was considered on 

either side of the riparian forests. These areas contained urban 

settlements and agricultural fields. We used a 95th height  

 
 

Figure 3: Canopy height model of the Ciron valley area with field plot locations and data acquisition flight lines 
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percentile raster to conditionally filter out all the pixels in the five 

layers corresponding to a 95th percentile value of 7 m or less. The 

number of grid-cells with points belonging to class 5 (40°-50°) 

were significantly lower compared to other classes. We also 

observed that these grid-cells were in regions where the aircraft 

was making a turn during data acquisition. Therefore, we did not 

consider class 5 and conducted further analysis of the other four 

classes. After dropping class 5 and retaining only grid-cells 

corresponding to forests (95th height percentile > 7 m) we first 

analysed the diversity of viewing configurations that could be 

found on the area by counting the number of scan angle classes 

per grid-cell. Then, metrics were compared for grid-cells viewed 

concurrently from the first four classes of scan angles. 2000 

common grid-cells distributed across the entire study area were 

available.  

 

3.3 Analysis of scan angle effects on the selected metrics  

For a statistical understanding of the influence of scan angle on 

metrics, we compared the distribution of metrics using mean and 

standard deviation. We used the paired sample t-test or dependent 

sample t-test to determine whether the mean difference between 

two sets of observations is zero. In a paired sample t-test, each 

subject or entity is measured twice, resulting in pairs of 

observations.  We compared the metric values for class 2, class 3 

and class 4 to class 1 values. The null hypothesis (𝐻0) being that 

the true mean difference (𝜇𝑑) between the classes is equal to zero. 

The two tailed alternative hypothesis (𝐻1) assumes that the true 

mean difference (𝜇𝑑) is not zero. The level of significance was 

0.05. The dispersions of differences between class 1 and class i 

(i= {2,3,4}) were also assessed by computing the standard 

deviations of the cell by cell differences for each pair of scan-

angle classes considered. 

 

Furthermore, we also compared the metric values for each of 

classes 2, 3 and 4 to class 1 using simple linear regression to 

assess the impact of scan angle as we move away from a 

predominantly vertical ‘viewing conditions’  (class 1). The linear 

relationships were tested for statistical significance in two 

aspects, namely, slope and intercept. The equation for the linear 

regression model that can be used to explain the relation between 

𝑌 (class i, where i = {2,3,4}) and 𝑥 (class 1) is as follows: 

 

𝑌 = 𝛽0 + 𝛽1𝑥 +  𝜖   (1) 

 

𝛽0 is the coefficient for intercept and 𝛽1 is the coefficient for the 

slope. Using the linearHypothesis() function in R, we jointly 

tested for the significance of 𝛽0 = 0 and 𝛽1 = 1, at a level of 

significance of 0.05. For P-values<0.05, the null hypotheses were 

rejected, thereby indicating that there was a bias in the estimation 

of the metrics for higher scan angles, either due to the slope or 

the intercept. 
 

4. RESULTS 

4.1 Summary of the grid-cells 

There were 16758 grid-cells with a 95th height percentile value 

of 7 m or more considered as forest. Among these, 2446 grid-

cells did not return any class of scan angles; 906 grid-cells 

contained any one class; 4549 grid-cells contained any two 

classes; 6857 grid-cells contained any three classes; and 2000 

grid-cells contained four classes. 

 

4.2 Mean differences and standard deviation 

The results of the paired t-tests for the sample of 2000 grid-cells 

containing the four scan-angle classes are presented in Table 2.  

 

Table 2: Tabulation of the paired t-tests, standard deviation of differences (with the increase relative to cl1-cl2 in % in parenthesis) and 

joint hypothesis tests for the intercept = 0 and slope = 1 scenario; cl1, cl2, cl3, cl4 are short for classes 1, 2, 3 and 4 respectively. 

(#=unitless, *** = <0.001, ** = <0.01, *=<0.05, . = <0.1, ‘ ‘= >0.1) 
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Figure 4: Scatter plots for selected metrics that depict the evolution of the metric under the influence of scan angle.  
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As per the mean differences, for almost every metric there was 

an underestimation for the inclined classes, which led to 

statistically significant differences as shown in the table. The max 

(maximum) metric was not significantly affected across class 1, 

class 2 and class 3; however, class1-class 4 was statistically 

significant with a mean difference of 0.183 m. For the mean 

metric, the mean differences for class 1-class 2 and class 1-class 

3 are statistically significant at 0.113 m and 0.130 m respectively. 

In the case of coefficient of variation of height and rumple index, 

the metrics for class 2 seem to have been overestimated compared 

to the reference class (class 2>class 1). There was no difference 

between class 1 and class 3 and a significant underestimation for 

class 4 compared to class 1.  

 

For coefficient of variation, the mean difference for class 1-class 

4 was approximately 0.869 m. The mean differences for the 

percentiles were mostly positive (ranging from 0.09 to 0.18) for 

class 1-class 2 and class 1-class 3. The lower percentiles had no 

significant mean difference for class 1-class 4, with the exception 

of p30 (30th percentile), which had a p-value of around 0.02. 

Within the percentiles, for class 1-class 2 and class 1-class 3, p10 

had the highest mean difference and the p90 (90th percentile) had 

the lowest mean difference. For any given metric, the standard 

deviations of the differences had an increasing trend from class 

1-class 2 to class 1-class 4. This was observed for all metrics with 

no exception. 

 

4.3 Simple linear regression (cli~cl1) 

A visual analysis of the scatterplots for class i vs class 1 showed 

that class 1 metrics are linearly related to the metrics of the other 

scan-angles. Figure 4 depicts the scatterplots for a subset of six 

metrics. Some metrics such as gap fraction and rumple index 

were clearly affected by the scan angle, while some such as p10 

(10th percentile) were affected to a lesser extent. The effect of 

scan angle on mean, max (maximum), and p90 is relatively 

lesser. Testing how different the regression lines are from the y=x 

line can reveal the existence of systematic (intercept) and 

variable (slope) biases (Table 2). We observed that for almost 

every metric, the slopes of the respective regressions lines were 

less than one. For the height percentiles, between p10 to p90 there 

was a gradual shift of the regression lines towards the y=x. Lower 

percentiles were more affected by a change in scan-angle than 

higher percentiles. The null hypothesis, that slope = 1 and 

intercept = 0, was not rejected for the max metric for class 2~class 

1. Although the slope values for class 3~class 1 and class 4~class 

1 are close to 1, under the joint hypothesis test, the null 

hypothesis was not rejected due to a significant effect of the 

intercept. This was also the case for other metrics as shown in 

Table 2. Coefficient of variation, gap fraction, and rumple index 

appear to be considerably influenced by the scan angle either due 

to the existence of a significant systematic bias (CV and rumple 

index), or due to variable bias (gap fraction and rumple index). 

 

5. DISCUSSION 

The mean differences  revealed the variations in metrics for 

different classes, but it could not adequately convey some of the 

biases (sometimes means are equal but can hide the existence of 

biases). On the other hand, simple linear regression was able to 

add to this information in two aspects. Firstly, as a visual 

diagnostic, it presented linear relationships between the classes 

for all the metrics. It also showed an increasing spread of the data 

as class 1 was compared with classes 2, 3, and 4. This spread is 

responsible for the increase in the standard deviations of the 

differences as shown in Table 2. The rate of increase of the 

standard deviations are very high for the metrics (except max and 

rumple when comparing class 1-class 2 to class 1-class 3), with a 

percentage increase ranging between +2% and +42% and +50% 

and +112% when comparing class 1-class 2 to class 1-class 3 and 

to class 1-class 4, respectively. Secondly, the different slope and 

intercepts revealed the inherent biases in the estimation of these 

metrics from different scan angles. Rumple index and gap 

fraction were considerably affected which is significant as studies 

(Bouvier et al., 2015; Véga et al., 2016) have reported that these 

metrics were useful to improve models to predict forest 

parameters. Liu et al. (2018) observed that the scan angle affected 

the gap fraction differently in different forests (and different 

structural conditions). However, they did conclude that the 

estimation is maximum for vertical observation, i.e. nadir, which 

was also observed in this study.  

 

The height based metrics were affected to a lesser extent. The 

max metric showed the least variation. The higher percentiles 

appeared to be relatively stable compared to the lower 

percentiles. Montaghi (2013) reported that the higher percentiles, 

in particular, remained relatively stable compared to density 

metrics (not explored in this study). They also said that the 

Understory ratio, defined as “the ratio between all returns below 

a given height (e.g., 2 m) and the number of these returns plus 

returns classified as ground”, was also affected by the scan angle. 

The computation of the understory ratio is similar to the 

calculation of the gap fraction in this study. 

 

The variation in the estimation of metrics could potentially 

impact the quality of ABA models that utilise these metrics. 

Practical limitations in flight planning cause the grid-cells in an 

area to be sampled with different “viewing conditions”. When 

several classes of angles are used together, changes in the metrics  

will also be due to differences in scan-angle and not only in stand 

characteristics. This effect could perhaps be systematically 

addressed by taking into account classes of scan angle when 

building models. For example, building one model for one class 

of scan angles which would necessitate more field plot 

measurements; or using regression analysis to model the effect of 

scan angle, with the possibility to partially correct for these 

effects before developing the model.  

 

The limitations of the study are related to the generalisation of 

scan angles with mean scan angles in a range of 10° to one class 

value. Within-class variations could not be addressed 

systematically. Moreover, even the mean scan angle for a flight 

line is a generalisation of range of scan angles. It is not possible 

to overcome these acquisition limitations. Furthermore, the 

characteristics of the stands could also have a significant role to 

play. This was however not addressed in the present study. It is 

pertinent that the intermingling of the effects of stand 

characteristics and scan angle be decoupled for a systematic 

appraisal. Radiative transfer based simulation of forest point 

clouds could open up potential avenues to address these issues.  

 

6. CONCLUSIONS 

In this study, we analysed metrics that are frequently used in 

ABA methods to understand their response to varying scan 

angles. Metrics were computed in the form of a grid for each class 

of ‘viewing configuration,’ i.e. scan angle. There was a 

noticeable impact on the metrics with gap fraction, rumple index, 

and CV of height being affected significantly. Higher height 

percentiles were affected to a lesser extent than lower height 

percentiles and the maximum height metric was relatively stable. 

The key advantage of ABA methods is the ability to characterise 

within-stand variability. This has been a proven development 

over the conventional stand-level based inventory (White et al., 
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2017). However, practical data acquisition constraints may 

eventually lead to biases in metrics as demonstrated in this study.  

These biases can vary depending on the locations of the grid-cell 

and how they are sampled. The capacity to handle these biases 

could significantly contribute in improving the accuracy of the 

ABA models.  
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