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ABSTRACT: 

 

Seagrasses are marine flowering plants which are part of a highly productive coastal ecosystem and play key roles in the coastal 

processes. Unfortunately, they are declining in area coverage globally, and seagrass losses can be attributed to climate change such as 

sea-level rise, increase in sea surface temperature, and decrease in salinity, as well as human-related activities. The objective of this 

research is to assess the historical changes in the seagrass habitat and environment of Busuanga, Philippines using time series data 

available in the Google Earth Engine (GEE) platform. These include satellite data such as MODIS, Landsat 5, 7, and 8, and SeaWIFS. 

Reanalysis data such as HYCOM was also utilized in this research. Results from HYCOM data show that there has been a 0.0098 °C 

increase in the sea surface temperature per decade in Busuanga while MODIS data indicates an increase of 0.0045 °C per decade. 

Moreover, HYCOM data also shows an overall average of 0.76 mm in sea surface elevation anomaly and a decreasing trend in salinity 

values at 0.0026 psu per decade. Chlorophyll-a concentration has a minimal increase based on results from MODIS and SeaWIFS. 

Aside from changes in water parameters, changes in the land also affect seagrasses. Forest loss may cause increased siltation in the 

coastal ecosystem which can lead to seagrass loss. Based on the results of Landsat satellite image processing, there has been forest 

cover loss in Busuanga with the highest loss occurring in 2013 when super typhoon Yolanda ravaged the island. Lastly, results from 

the linear spectral unmixing of 778 Landsat images from 1987-2000 show that the average percent cover of seagrasses in Busuanga 

were declining through the years. 

 

1. INTRODUCTION 

Seagrasses are unique marine flowering plants that can live 

entirely submerged in water (Short and Coles, 2001). They serve 

as a nursery for juvenile fishes and as feeding grounds for various 

marine animals including endangered species such as sea turtles 

and dugongs (Koedsin et al., 2016; Roelfsema et al., 2009). They 

help in improving the visibility and water quality in their area and 

they act as buffers to reduce currents and erosion (Hemminga and 

Duarte, 2000), as well as increase oxygen levels in the water 

column. Furthermore, they have various commercial uses and 

provide high-value ecosystem services (United Nations 

Environment Programme, 2020; Watson et al., 1993; Waycott et 

al., 2009). Unfortunately, seagrasses are declining in coverage 

globally. 

 

Seagrasses can be found in all coastal areas of the world, except 

along Antarctic shores, and they thrive in coastal zones that are 

most heavily influenced by humans (Hemminga and Duarte, 

2000). However, seagrasses are one of the most rapidly declining 

ecosystems on earth, with rates of disappearance at 7% per year 

(Waycott et al., 2009). In the Southeast Asian region, the largest 

seagrass extent can be found in the Philippines (Fortes et al., 

2018). Since 1980, seagrasses have been declining globally at a 

rate of 110 square kilometers per year and 29% of their known 

extent has disappeared since 1879 when they were first recorded 

(Waycott et al., 2009). However, these values may have been 

underestimated because the study did not include Southeast Asia, 

which is the global hotspot of seagrasses, because of lack of data 

(Sudo and Nakaoka, 2020). Recent analysis of seagrass beds in 

Southeast Asia show seagrass to be declining at an average rate 

of 10.9% per year since the late 1990s (Sudo et al, under review). 

Evidence points to human disturbance as the primary cause of 

seagrass decline globally (Duarte, 2002; Hemminga and Duarte, 

2000; Short and Wyllie-Echeverria, 1996), which is exacerbated 

by climate change (Harley et al., 2006; Short and Neckles, 1999; 

Waycott et al., 2009). Studies predict more seagrasses will be lost 

if proper resource management will not be put into place (Borum 

et al., 2004; Turner and Schwarz, 2006). 

 

Proper management of seagrasses is necessary for their 

protection and survival. However, this is hindered by lack of 

information and resources. A better understanding of the seagrass 

environment is crucial for their conservation and to prevent 

further loss. Historical data can provide information about the 

health and status of seagrasses and their environment. 

Unfortunately, remote areas are less likely to have historical 

ground monitoring data of the seagrass habitat and environments 

available. Recent advancements in technology for environmental 

monitoring, such as remote sensing, may push the proper 

management of seagrasses in the right direction.  

 

Remote sensing is a tool suitable for large scale mapping and 

monitoring of the coastal environment. However, the processing 

of large datasets for environmental monitoring presents some 

challenges, for instance, availability of expensive hardware 

required for computationally intensive and time-consuming data 

processing. Among the recent innovations in remote sensing 

which can solve such problems is the development of the Google 

Earth Engine (GEE) platform. 

 

In 2010, GEE, a cloud-based platform for analyzing geospatial 

data on a planetary-scale (Gorelick et al., 2017), was launched by 

Google (Wicker, 2010).  It creates a stage for the public to utilize 

Google’s vast capabilities in cloud storage and computing.  

Several geospatial datasets are available in the GEE public data 

catalog such as Landsat, Moderate Resolution Imaging 

Spectroradiometer (MODIS), Sea-viewing Wide Field-of-view 
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Sensor (SeaWIFS), HYbrid Coordinate Ocean Model 

(HYCOM), etc. Lansdat, MODIS and SeaWIFS are products of 

satellite systems while HYCOM is a data-assimilative hybrid 

isopycnal-sigma-pressure coordinate ocean model which is a 

product of collaborating institutions such as the University of 

Miami, the Naval Research Laboratory (NRL), and the Los 

Alamos National Laboratory (LANL)  (Chassignet et al., 2007). 

The GEE platform made these products easily accessible in their 

cloud storage and developed a system for time-consuming and 

computationally intensive applications like time series analysis 

of remotely sensed data to be easily accomplished. 

 

The main objective of this research is to monitor the seagrass 

habitat and environment in Busuanga, Palawan, Philippines using 

time series analysis of available data in the GEE platform. This 

includes analysis of sea surface temperature, sea-level rise, 

salinity, chlorophyll-a concentration, forest loss, and percent 

cover change of seagrasses. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study area is in Busuanga Island (Figure 1), which is the 

largest island in the Calamianes Group of Islands, situated in the 

Northern part of Palawan province in the Philippines. The 

municipality of Busuanga is a 3rd class municipality with an 

estimated population of 22,046 in the year 2015 (Philippine 

Statistic Authority, 2015). 

 

 
Figure 1. Location of the study area 

The coastal ecosystem in Busuanga is relatively unspoiled 

(Cadigal et al., 2017) in comparison to other areas in the 

Philippines which are damaged due to human-induced 

disturbances, bad tourism and aquaculture practices, direct 

mechanical damages, release of toxic compounds into the coastal 

waters, etc. Busuanga has thriving seagrass beds, mangroves, 

macroalgae, and coral reefs (Calamianes IFRM Plan, n.d.). 

However, tourism and urban development are starting to increase 

in this part of the country which is why it is imperative to monitor 

the coastal resources for protection and conservation 

(Calamianes IFRM Plan, n.d.). Unfortunately, historical 

monitoring data is scarce in Busuanga. 

 

2.2 Extraction of Time Series Data in GEE 

Remote sensing is a valuable tool for environmental monitoring 

especially in areas where historical data is limited. The GEE 

platform takes advantage of Google’s massive capabilities in data 

storage and processing.  The extraction and processing of data in 

GEE involve three major stages: selection, filtering, and plotting 

of time series data for analysis. In the selection stage, a collection 

of available images is created which is carried out by specifying 

the start and end date of specific satellite images covering the 

study area. A shapefile of the study area boundary was uploaded 

to GEE and was used in the selection stage. The next step was 

filtering the image collection for specific bands such as sea 

surface temperature from HYCOM and MODIS, chlorophyll-a 

concentration from MODIS and SeaWIFS, and sea surface 

elevation anomaly and salinity from HYCOM. Furthermore, a 2-

kilometer buffer from the land, as shown in Figure 1, was created, 

and was used as a boundary for analysis of the time series data. 

The last step is plotting and downloading the monthly and/or 

yearly spatial average values of the various parameters within the 

2-km boundary. After downloading, time series plots of the data 

downloaded were created for visualization and further analysis of 

the data. 

 

A time series is a set of data obtained from observations collected 

sequentially over time (Meghea et al., 2012). There are two 

general objectives of using time series analysis: (1) to understand 

or model a sequence of random variables at fixed sampling 

intervals and (2) to predict future values based on the history of 

the series and possibly the driving factors related to the series 

(Cryer and Chan, 2008). Time series can be separated into trends 

and seasonal changes that can be modeled deterministically with 

mathematical functions of time (Nielsen, 2011). Analysing the 

trend constitutes the use of empirical methods to quantify and 

explain variations in a system over a period of time (Chandler 

and Scott, 2011). Time series can be applied in various 

applications such as physics, economy, engineering, 

environmental science, etc. In this research, it was applied to 

monitor and assess the seagrass habitat and environment using 

remotely sensed data and global models.  

 

 

 

Busuanga Island 
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Figure 2. Time series data of the spatial average within the 2km 

buffer from the land of sea surface temperature, chlorophyll-a 

concentration, sea surface level anomaly, and salinity extracted 

from MODIS and HYCOM in Busuanga. 

Examples of the time series data downloaded from GEE are 

shown in Figure 2 such as sea surface temperature and 

chlorophyll-A concentration from MODIS (2002-2020) and sea 

surface elevation anomaly and salinity from HYCOM (1993-

2020). The locally estimated scatterplot smoothing (loess), a 

smooth curve that locally reduces the residual variance 

(Bărbulescu, 2016), was also included in the time series plots to 

visualize the general trend of the data. Furthermore, the time 

series were decomposed using the additive model to determine 

the trend and seasonality of the parameters. 

 

Unfortunately, observation data of water quality parameters in 

Busuanga are not available. To validate the trend of the extracted 

values, the MODIS sea surface temperature was compared to 

values from HYCOM while the chlorophyll-a concentration from 

MODIS was compared to SeaWIFS extracted chlorophyll-a 

concertation values within overlapping time frames of the 

available data. 

 

2.3 Forest/Land Cover Change Monitoring 

GEE made available in their platform the global forest loss data 

created by Hansen et al. in 2013. In their study, they defined 

forest cover as 25% or greater canopy closure at the Landsat pixel 

of 30 meters by 30 meters spatial resolution for trees greater the 

five meters in height. They focused on the conversion of forest 

cover to non-forest cover wherein 2000 is the reference year for 

pairing Landsat images (Hansen et al., 2013). The forest loss data 

in Busuanga from 2001-2018 was extracted in GEE by getting 

the spatial average within the boundaries of the area. This 

information was plotted as time series and downloaded for 

further analysis. 

 

Furthermore, to confirm the forest loss in the study area, 

Normalized Difference Vegetation Index (NDVI), one of the 

most widely used vegetation indices in remote sensing (Campbell 

and Wynne, 2011), were also extracted from available MODIS 

data from 2001-2018. Monthly spatial NDVI averages were 

calculated and then the trendline was determined. 

 

2.4 Monitoring of Seagrass  

Remote sensing has been extensively utilized through the years 

for seagrass monitoring using various sensors and platforms. In a 

study by Traganos et. al. in 2018, they presented the capabilities 

of the GEE platform for large scale seagrass mapping which can 

eventually lead to a global-scale monitoring. In their research, 

they used support vector machine to classify Sentinel-2 satellite 

images and achieved an overall accuracy of 72% (Traganos et al., 

2018). In this study, to monitor the status and changes in the 

seagrasses of Busuanga, a linear spectral unmixing method was 

performed using Landsat 5, 7, and 8 images. The Landsat satellite 

imagery was chosen for this research because of its extensive 

collection since 1980s which is crucial in determining the 

possible seagrass loss. Spectral unmixing was the method used to 

classify seagrasses because there are no available historical 

seagrass training data for Busuanga which can be used for 

supervised classification methods. Only field data points from 

recent field surveys were available and these were utilized to 

determine the spectral signatures of the sample points. Then, the 

extracted spectral signatures were used to identify similar 

spectral signatures from archived images using the spectral 

umixing method. Spectral unmixing is a sub-pixel classification 

wherein the proportions of different classes contributing to the 

spectrum measured at a particular pixel are estimated (Rees, 

2013). Five classes were used in the spectral unmixing: seagrass, 

corals, macroalgae, sand, and deep water. A total of 778 Landsat 

satellite images of the study area with less than 20% cloud cover 

from December 1987 to April 2020 were available in GEE and 

utilized in this research. Among them, 296 were from Landsat 5, 

278 from Landsat 7, and 204 from Landsat 8. Shown in Figure 3 

is the total number of available images per year. Pure spectra or 

endmembers were gathered from images within August to 

December 2019 which corresponds to the field survey dates 

conducted in Busuanga. Seagrass percent cover data from the 

field survey were utilized for validation of the seagrass spectral 

unmixing results. After obtaining satisfactory results from the 

validation, the endmembers were used for the linear spectral 

unmixing of all images from 1987-2020. 

 

 
Figure 3. Number of Landsat satellite images used for spectral 

unmixing per year 

The seagrass field data survey was carried out using the 

SeagrassWatch (Seagrass-Watch, 2010) manual wherein three 

50m transects were laid out parallel to each other and 

perpendicular to shore, and 25m apart, on the each site, and 

seagrass percent cover were estimated at 5 meter intervals within 

0.25 m2 quadrats along the transects. The average values were 

computed for each site to represent the seagrass percent cover for 

the area. Due to the closeness of some sites, values were averaged 

from them as well and seven sites (shown in Figure 13) were used 

to validate the seagrass percent cover results from spectral 

umixing. 
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3. RESULTS AND DISCUSSION 

3.1 Increase in Sea Surface Temperature 

Global mean sea temperature continues to rise year after year, 

and extreme temperatures will have negative effects on 

seagrasses (Short and Neckles, 1999). Depending on the species, 

the effects of increased temperature will vary. Minimal increase 

in temperature may have positive effects, such as increased 

productivity, on some species while extreme change may result 

in variations in seasonal and geographic patterns of species and 

abundance (Lee et al., 2007).  

 

 
Figure 4. Decomposition of sea surface temperature in 

Busuanga from HYCOM and MODIS 

According to a study by Hoegh-Guldberg et al. in 2014, the 

temperature in the Pacific Ocean increases by 0.05°C per decade 

(Hoegh-Guldberg et al., 2014). Based on the time series data 

from HYCOM (Figure 4), an increase of 0.0098°C per decade 

occurs in the coastal waters of Busuanga while the MODIS data 

indicates an increase of 0.0045°C per decade. This is relatively 

lower than the average increase in temperature in the Pacific 

Ocean. Furthermore, both datasets show the seasonality of sea 

surface temperature in the study area with high temperatures 

occurring in May while low temperatures happening in February. 

Figure 5 shows a comparison of the sea surface temperature time 

series from HYCOM and MODIS. Temperature from MODIS is 

slightly higher when compared to the HYCOM data from 2002 

to 2013. They have a better agreement in temperature values in 

recent years. 

 

 
Figure 5. Comparison of sea surface temperature data from 

MODIS and HYCOM 

3.2 Sea Level Rise 

Based on a study by Saunders et al in 2013, there may be a 17% 

loss of seagrasses globally if the sea level rises by 1.1m in 2100 

(Saunders et al., 2013). An increase in water depth results in 

attenuation of light intensity penetrating the water which causes 

lower seagrass productivity (Short and Neckles, 1999). However, 

this may be compensated by a landward migration of seagrasses 

(Brodie and De Ramon N’yeurt, 2018; Short et al., 2016). The 

problem arises when there are infrastructures in the coastal zone 

blocking the migration of seagrasses which will lead to their 

mortality. Reanalysis data from HYCOM (Figure 6) indicate a 

generally increasing sea level in Busuanga. Based on the 

HYCOM time series data from 1993-2019, an overall average of 

0.76 mm in sea surface elevation anomaly occurs in Busuanga 

and it increases at the rate of 0.0027 mm per decade. Sea surface 

elevation anomaly also exhibits seasonality with the highest 

values occurring during the months of October to December 

while the lowest values during the months of March to April. The 

general trend of the sea surface elevation anomaly is increasing 

but the values are observed to be decreasing in recent years. 

 

 
Figure 6. Decomposition of sea surface elevation anomaly in 

Busuanga from HYCOM 

3.3 Salinity Change 

Climate change causes more intense storms and increased rainfall 

which leads to increased freshwater run-off from the land to the 

coastal ecosystem (Short et al., 2016) causing a decrease in 

salinity. On the other hand, sea-level rise causes greater saltwater 

intrusion in the coastal and estuarine locations which may result 

in an increase of salinity values. Salinity change, whether an 

increase or decrease, will impact seagrasses (Short and Neckles, 

1999). Different species have varying responses to salinity 

changes. Effects include a decrease in productivity and biomass, 

limitation in reproduction and distribution, changes in 

community structure, or even mortality (Duarte, 2002; Short and 

Neckles, 1999).  

 

 
Figure 7. Decomposition of salinity in Busuanga from HYCOM 
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Based on HYCOM data from 1993 to 2020, a decreasing trend of 

0.0026 psu per decade in salinity values occurs in Busuanga, as 

shown in Figure 7, which also indicates seasonality with the 

highest salinity happening in May while the lowest salinity 

occurs during August to October. This coincides with the dry and 

wet season, correspondingly, in Busuanga. During the wet 

season, higher precipitation occurs which causes a decrease in 

sea water salinity. 

 

3.4 Chlorophyll-a Concentration 

Chlorophyll-a concentration is useful in estimating productivity 

and it is also an indicator of light stress in seagrasses (Gallegos 

et al., 2004). An increase in chlorophyll-a concentration may 

indicate the presence of an increased phytoplankton population 

in the water which may result in less light penetrating the water 

and reaching the seagrass beds. Fortunately, results from MODIS 

(2002-2020), and SeaWIFS (1997-2010), as shown in Figure 8, 

indicate a minimal increase in chlorophyll-a concentration in 

Busuanga with only 0.00013 mg/m3 and 0.000037 mg/m3 per 

decade, respectively. 

 

 
Figure 8. Decomposition of chlorophyll-a concentration in 

Busuanga from MODIS 

Because of lack of observation data, comparison of chlorophyll-

a concentration between MODIS and SeaWIFS were examined 

(Figure 9). Within the overlapping years of the two datasets, 

2002-2010, it can be observed that similar trend occurs. In both 

datasets, the increase and decrease in chlorophyll-a concentration 

happens within the same period.  

 

 
Figure 9. Comparison of chlorophyll-a concentration from 

MODIS and SeaWIFS 

3.5 Forest Loss 

Forest loss will result in increased siltation in coastal ecosystems 

(Duarte, 2002; Milliman and Meade, 1983). Increased siltation 

will result in increased light attenuation and possible burial of 

seagrasses which may lead to a decline in seagrass diversity, 

biomass, and production (Duarte, 2002; Terrados et al., 1999). 

Figures 10 and 11 shows the forest cover loss in Busuanga based 

on the results of Hansen et al. global forest loss data (Hansen et 

al., 2013).  

 

 
Figure 10. Yearly forest loss area in Busuanga (2001-2018) 

As indicated in Figure 10, the highest loss occurred in 2013 when 

super typhoon Yolanda ravaged the island. It is also significant 

to note that in 2006, an airport was established in Busuanga for 

cargo planes and small aircrafts. It was renovated in 2008 to be 

able to accommodate larger passenger planes. Based on the 

graph, a large increase in forest loss happened after the 

establishment of the airport because of growth in development 

and tourism on the island. 

 

 
Figure 11. Map of forest loss in Busuanga (2000-2018) 

Looking at the map of forest loss (Figure 11), there was no 

concentrated area of loss. Patches of forest loss can be seen 

dispersed within the study area which indicates no concentrated 

massive development. Aside from using forest loss data, 

vegetation indices such as Normalized Difference Vegetation 

Index is a good gauge for land cover change. Based on the 

MODIS NDVI time series in Busuanga from 2001 to 2019, as 

shown in Figure 12, there is a decreasing general trend in NDVI 

values. This trend confirms the loss of forest cover in the study 
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area based on the data by Hansen et. al. However, the highest 

forest cover loss which occurred in 2013 is not evident in the 

NDVI values. This is because the difference in forest loss is not 

massive enough to significantly drop the NDVI average values. 

 
Figure 12. Monthly Average NDVI Values of Busuanga, 

Philippines from MODIS (2001-2018) 

3.6 Seagrass Percent Cover Change 

Seagrass area is in decline all over the world because of natural 

and anthropogenic factors. It may be difficult to determine the 

exact cause of the decline because it is usually a combination of 

various factors. In this study, different factors which may lead to 

seagrass loss were presented. To determine if there is a decline in 

seagrass cover in the study area, the linear spectral unmixing 

method was performed on archived Landsat images in GEE. A 

map of the result of the linear spectral unmixing of seagrasses 

using Landsat 8 images from August to December 2019 is shown 

in Figure 13. Overlaid on this map are the location and percent 

cover of seagrasses gathered from the field around Busuanga.  

 
Figure 13. Map of seagrass percent cover in Busuanga 

To validate the results of the linear spectral unmixing of seagrass 

percent cover, a correlation analysis was performed using the 

field survey data. Figure 14 shows the results of the validation 

indicating an R square of 0.7741.  

 
Figure 14. Validation of seagrass spectral unmixing using 

seagrass percent cover gathered from field surveys 

 

After validation, the same method was applied to a total of 778 

Landsat 5, 7 and 8 images from 1987 to 2020 to determine if there 

is seagrass loss in the study area. All of the images used were 

calibrated top-of-atmosphere (TOA) reflectance available in 

GEE. To summarize the spectral unmixing results, a 500-meter 

buffer was created from the land and was used as a boundary of 

pixels and all values within this boundary were averaged.  

 

The plots of the yearly average of the linear spectral unmixing 

results of seagrasses is shown in Figure 15 and it indicates a 

decreasing trend in seagrass percent cover in Busuanga. The high 

seagrass percent cover in 1992 may be due to a significantly low 

number of available images for this year which may have resulted 

to amplification of errors. Water column correction was not 

implemented in the data processing because the parameters 

needed to accomplish this vary from image to image such as 

depth and attenuation coefficient. However, because the values 

are averaged annually, this lessens the errors in the time series 

like seasonal, tide and water quality variability when compared 

to processing single images per year. 

 
Figure 15. Yearly average seagrass percent cover from spectral 

unmixing 

3.7 Correlation Analysis 

The annual average of seagrass percent cover, sea surface 

temperature, seas surface elevation anomaly, salinity, 

chlorophyll-a concentration, and forest loss were calculated, and 

a correlation analysis was performed between these parameters. 

The correlation results are shown in Figure 16. Seagrass percent 

cover was positively correlated with sea surface temperature, 

salinity, chlorophyll-a concentration from MODIS and forest loss 

while it was negatively correlated with sea surface elevation 

anomaly and chlorophyll-a concentration from SeaWIFS. The 

opposing correlation between seagrass percent cover and 

chlorophyll-a concentration from MODIS and SeaWIFS is due to 

the difference in the range of available data between them. 

SeaWIFS data was available from 1997-2010 while MODIS data 

was available from 2002-2020. It is also important to note that 

there was a minimal increase of chlorophyll-a concentration in 

Busuanga through the years. The correlation between seagrass 

percent cover and the parameters were relatively low because 

seagrass loss can be attributed to a combination of various 

phenomena. The highest correlation with seagrass percent cover 
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is sea surface elevation anomaly which means that as the sea 

surface elevation anomaly increases, the seagrass percent cover 

decreases based on the data presented. Furthermore, relatively 

high positive correlation was observed between sea surface 

temperature and forest loss, sea surface temperature (HYCOM) 

and chlorophyll-a (MODIS), and salinity and forest loss. The 

high correlation does not prove causation, but it shows that there 

is a relationship between the variables. Positive correlation 

indicates that as one variable increases, the other also increases 

based on the data shown in this study. 

 
Figure 16. Correlation matrix between the annual average of 

seagrass percent cover, sea surface temperature (SST_HYCOM 

and SST_MODIS), sea surface elevation anomaly (SSEA), 

salinity, chlorophyll-a concentration (Chla_SEAWIFS and 

Chla_MODIS) and forest loss 

4. CONCLUSIONS 

The seagrass habitat is part of the coastal environment which is 

among the most productive ecosystems on earth (Duarte et al., 

2018). It serves as shelter to a variety of marine species and 

provides valuable goods and services to humans (Koedsin et al., 

2016; Roelfsema et al., 2009; United Nations Environment 

Programme, 2020). The health of this habitat is highly influenced 

by coastal water quality. Degraded water conditions leads to loss 

of seagrass habitat (Waycott et al., 2009). For that reason, it is 

important to monitor various coastal water quality parameters, as 

well as land cover changes, for the benefit of the marine 

organisms and people living in coastal communities that rely on 

seagrasses. 

GEE provides a platform that makes available several geospatial 

datasets suitable for large scale mapping and monitoring of the 

coastal environment. It also eliminates the need for expensive 

hardware and large storage for processing such datasets. 

Furthermore, GEE has made it efficient to process time-

consuming and computationally intensive applications, such as 

time series analysis of remotely sensed data. 

In this study, using time series analysis of datasets in Busuanga 

using GEE, we found out that sea surface temperatures were 

increasing at 0.098°C per decade based on HYCOM data, while 

MODIS data showed an increase of 0.0045°C per decade. Sea 

surface elevation anomaly also increased at a rate of 0.0027 mm 

per decade, while salinity was decreasing at 0.0026 psu per 

decade, based on HYCOM data. On the other hand, chlorophyll-

a concentration increased minimally through time, at a rate of 

0.00013 mg/m3 and 0.000037 mg/m3 based on MODIS and 

SeaWIFS data, respectively. Using the Hansen et. al. global 

forest loss data available in GEE, we observed forest loss in 

Busuanga. Lastly, based on spectral unmixing results of 778 

Landsat images from 1987-2000, we observed seagrass percent 

cover decline in Busuanga. The correlation analysis showed that 

seagrass percent cover was positively correlated with sea surface 

temperature, salinity, chlorophyll-a concentration from MODIS 

and forest loss, while it was negatively correlated with sea 

surface elevation anomaly and chlorophyll-a concentration from 

SeaWIFS. 

 

For future research, we suggest employing advanced statistical 

methods to further analyze the relationship between water quality 

parameters and seagrass loss in Busuanga. Also, to improve the 

accuracy of seagrass monitoring using satellite images, water 

column corrections may be applied. However, this may be a 

challenge because of the extensive collection of images needed 

to be processed and the parameters needed for water column 

correction will differ from one image to another. 
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