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ABSTRACT: 

In this study, a dense Copernicus Sentinel-1 time series is analyzed to gain a better understanding of the influence of undergrowth 

vegetation, in particular of eagle fern (Pteridium aquilinum), on the C-band SAR signal in a temperate forest in the Free State of 

Thuringia, Germany. Even if signals from the ground below the canopy may not be expected at C-band, previous studies showed 

seasonal fluctuations of the backscatter for temperate forests without canopy closure, notably for evergreen coniferous stands. Many 

factors can be responsible for these observed fluctuations, but in this study, we analyze one possible factor: the presence of undergrowth 

vegetation, in particular, of fern. Especially, the Sentinel-1 backscatter signal is analyzed for different acquisition configurations 

regarding its temporal and its spatial stability at different growth stages. This time series study shows that a difference of backscattered 

signal of up to 0.7 dB exists between forest patches with a dense fern density in the understory and the ones with low undergrowth 

vegetation. This signal difference depends on the season and is remarkably strong comparing winter (no fern undergrowth) with 

summer (major fern undergrowth). 

 

1. INTRODUCTION AND STATE OF THE ART 

Forests are a key element in the global carbon cycle with 

immense carbon storage potential in highly heterogenous 

ecosystems (Garestier et al. 2008). In an effort to understand the 

impact of climate change and as a vital socio-economic resource, 

the monitoring of forest stands has long been a part of remote 

sensing research (White et al. 2016; Holmgren and Thuresson 

1998). With the launch of daylight- and weather-independent 

radar satellites, combined with the ability to penetrate tree 

canopies at longer wavelengths, radar remote sensing has played 

a major role in forest monitoring in the last decades (Quegan et 

al. 2000; Shimada et al. 2011).  

While there is a growing understanding of the multitude of 

influencing external parameters on the SAR signal itself, it is 

often a complex and demanding process to separate the 

individual influencing parameters such as moisture, structure or 

temperature. Monteith et al. (2018) investigated multiple external 

factors, like temperature, wind speed, vapor-pressure deficit 

(VPD) or vegetation water content (VWC), on P- and L-band 

time series with ground-based radar systems. These studies 

provide sensitivity analyses in high temporal resolution but are 

often restrained to a small region of interest. 

With the launch of the Copernicus Sentinel-1 constellation 

(Sentinel-1A and -1B), the European Space Agency provides free 

access to C-band SAR data with high spatial (up to 10m) and 

temporal resolution (up to 6 days). Particularly in Europe, the 

dense time series with a short revisit time of at least 6 days enable 

analyses of bio-physical vegetation dynamics at unprecedented 

temporal scale.  

Since then, seasonal behavior of Sentinel-1 backscatter time 

series of different natural land cover types has been observed and 

analyzed (Dubois et al. 2020; Vreugdenhil et al. 2018). The 

observed periodicity in signal variation can be related to different 

plant and soil properties that have individual (diurnal to yearly) 

cycles (Monteith and Ulander 2018). Recent publications focus 

on agricultural monitoring to assess seasonal influences and 

compare phenological stages to backscatter signals (Rütschi et al. 

2018; Stendardi et al. 2019). Similar analyses, focusing on the 

phenology monitoring of deciduous and coniferous forests, have 

been presented (Frison et al. 2018; Dostálová et al. 2018). These 

studies have shown that very high temporal resolution is 

necessary to effectively analyze phenological (vegetation 

structure) influences on SAR backscatter.  

As the importance of the utilization of these dense time series 

becomes more apparent, research focuses on developing 

approaches using advanced temporal metrics, like multitemporal 

recurrence plots for deforestation mapping (Cremer et al. 2020). 

Similarly, Dostálová et al. (2021) applies temporal signatures of 

different vegetation types for a more advanced landcover 

classification on European scale. While some of these approaches 

utilize (qualitative) phenological data for comparative measures, 

they do not focus on analyzing the quantitative influence of 

external parameters such as moisture, VPD or VWC. Instead, 

they concentrate on the general ability of SAR data to predict or 

classify surface features. 

With the shifting focus on temporal analyses, a profound 

understanding of the underlying temporally guided influences on 

the radar signal is necessary. One parameter that is not well 

investigated is the influence of undergrowth vegetation on the C-

band signal from temperate forests having no canopy closure. 

Larger wavelengths (e.g., L-band or P-band) should penetrate the 

canopy of temperate forests and can potentially return 

backscattered signal from the undergrowth (Joshi et al. 2017). 

However, the influence of the undergrowth vegetation on smaller 

wavelengths, like X- and C-band, is not proven and will depend 

on the canopy structure, height and density (Garestier et al. 

2008). 

In this paper, we analyze Copernicus Sentinel-1 time series over 

a period of 4.5 years in combination with meteorological data as 

well as optics-based (Sentinel-2) tree cover density information 

to investigate a link between fern undergrowth and the radar 

backscatter signal in temperate coniferous forests. For this, we
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individually analyze polarizations, pass directions and 

meteorological seasons of the available time series. 

Section 2 provides an overview of the study site and presents the 

utilized satellite datasets, the in situ fern measurements and the 

auxiliary data. Section 3 defines the applied methodology of the 

initial time series extraction; the data stability analyses at spatial 

and temporal scales as well as the concluding comparison of fern 

growth and radar backscatter. In Section 4 differences of 

backscatter depending on the presence of fern undergrowth are 

presented based on seasonal variation and acquisition scenarios. 

Finally, the results and principal outcomes are discussed in 

Section 5. 

 

2. STUDY AREA AND DATA 

This study focuses on a small part of a coniferous temperate 

forest in central Thuringia, Germany. In the following section, 

the applied datasets and their sources are presented. 

 

2.1 Study area 

The study site is located within the federal forestry district “Jena-

Holzland” in the southeast of the Free State Thuringia in central 

Germany (see Fig. 1). The intensively managed forest consists of 

evergreen pine and some spruce trees. It is an old growth forest 

stand with large canopy gaps due to management activities in the 

southern part and well-developed undergrowth (see Fig 2). The 

average tree cover density (TCD) in the southern part is 85%, 

while the northern region shows a TCD of 92%. The undergrowth 

consists principally of fern, blueberries and regrowing trees like 

young birch. In 2019 the southern part of the study site was 

further thinned by logging activities. The average tree height 

ranges from 20 to 25m (Thiel et al. 2020). The elevation of the 

study site ranges from 350m in the northern part to 370m (a.s.l) 

in the southern part with gentle terrain topography. The yearly 

temperature averages around 10°C with average precipitation 

between 600 and 650mm (Bauer 2013). 

 

2.2 Fern measurements 

From April 2020 through October 2020, fern vegetation 

parameters, i.e., fern height and phenological stage, was 

monitored in biweekly field campaigns for the 14 locations 

shown in Fig. 1. The locations correspond to the position of well-

known soil moisture measurement stations, which ensures that 

the measurements are taken at the same location each time. The 

locations were categorized according to their respective fern 

densities, which was determined and categorized into four classes 

by expert inspection. A fern density of 0 means there is no fern 

at this location, a fern density of 1 means the undergrowth is 

made of approx. 33 % of fern, a fern density of 2 of 66%, and the 

third class means the undergrowth presents full and exclusive 

fern cover. According to Fig. 1, three locations have a fern 

density of 0, six locations a fern density of 1, three locations a 

fern density of 2 and three locations a fern density of 3. An 

 
Figure 1: Geographical location of the study area in the Free State of Thuringia, Germany and reference points for fern 

measurements (color-coded) in the northern (top) and southern (bottom) part of the study area as well as the Sentinel-2 based tree 

cover density (TCD) of the coniferous forest surrounding the study site (left). (Copernicus Land Monitoring Service 2020) 

Figure 2: Current (2020) in situ vegetation cover situation 

of the study area: a) understory vegetation and tree density; 

b) tree canopy (bottom-up). 

Table 1: Fern height [cm] and corresponding phenological 

stage at each measurement location. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-127-2021 | © Author(s) 2021. CC BY 4.0 License.

 
128



 

 

overview of the different fern density classes is presented in 

Fig. 3. Although fern represents the most important undergrowth 

vegetation of the selected test sites, it is visible from Fig. 2a that 

other shrub vegetation is also present on some sites, especially 

blueberry bushes or small trees. Those may also affect the 

temporal Sentinel-1 signal but were not considered during this 

study. In this study, only class 0 (no fern) and class 3 (all fern) 

are analyzed. For each measurement date, three ferns, which were 

representative of the area, were measured with a folding meter 

stick at each location in a radius of approx. 5m. The three 

measurements were then averaged to provide one height estimate 

and one phenological stage per location per date. Table 1 

summarizes the dates of the fern measurements, as well as the 

corresponding derived height and phenological stage. 

Strandberg et al. (1997) defined seven development and growth 

stages of leatherleaf fern leaves. We also used seven stages to 

describe the phenology of the eagle fern (Pteridium aquilinum) 

of our study area. However, we defined them slightly differently, 

according to both moisture and structural changes of the ferns, 

which corresponds to the relevant characteristics for the radar 

signal. We considered stages where the stems elongated, stages 

where the leaves were fully developed providing a horizontal 

moisture layer a few meters above ground, or stages where the 

fern was drying out. The seven phenological stages (PS) were 

defined as follows: 

- PS1: sprouts with rolled fern fronds (vertical stem) 

- PS2: sprouts rolling out fern frond (long vertical stem) 

- PS3: fern frond unfolding, leaflets 

- PS4: fully developed fern (horizontal leaf cover) 

- PS5: beginning of browning (moisture content 

diminishes) 

- PS6: completely brown but still standing (dried out) 

- PS7: dead eagle fern 

 
Figure 3: Determined fern density classes: a) overview of forest floor and class 0 (no fern), 14.06.2020; b) class 1 (approx. 33% 

fern cover), 17.06.2020; c) class 2 (approx. 66% fern cover), 17.06.2020; d) class 3 (full fern cover), 17.06.2020. 

 
Figure 4: Phenological stages (PS) of fern in the study area at the different measurement dates: a) 14.04.2020, PS1; b) 

30.04.2020, PS2; c) 15.05.2020, PS3; d) 29.05.2020, PS3; e) 17.06.2020, PS4; f) 03.07.2020, PS4, g) 23.07.2020, PS4; h) 

06.08.2020, PS4; i) 30.09.2020, PS5; j) 28.10.2020, PS6. 
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The different stages are shown in Fig. 4 for the different 

measurement dates, except for PS7, which can be seen in the 

background of Figure 4a and 4b. 

A decrease of fern height is noticeable for a few stations between 

15.05.2020 and 29.05.2020, due to frost conditions in early May 

2020. The fern growth observed between 30.04.2020 and 

15.05.2020 was stopped (see Figure 4c, frostbitten fern) and new 

fern grew between early May and 29.05.2020, leading to a 

temporary decrease of the measured fern height (Fig. 4d). The 

fern measurements have only been conducted in 2020, but it is 

assumed in the following that the behavior and fern location is 

the same for the previous years. 

 

2.3 Sentinel-1 

We used Copernicus Sentinel-1A and -1B dual-polarimetric 

(VV, VH) interferometric wide swath (IW) ground range 

detected (GRD) C-band SAR time series data over a period of 4.5 

years with a mean temporal resolution of six days providing high 

temporal sampling to map temporal dynamics in forest 

ecosystems (Tab. 2). To ensure equal intervals between 

acquisitions, only data since the launch of Sentinel-1B in mid-

2016 was considered. Each scene has been processed to RTC 

product using pyroSAR, with application of orbit files, 

radiometric calibration to gamma0, multilooking to 20m pixel 

size, radiometric terrain flattening and geocoding (Truckenbrodt 

et al. 2019). With a spatial resolution of 20 meters, the detail is 

sufficient to cover the fern measurement sites within multiple 

pixels. We independently examined co- and cross-polarized SAR 

data. The study site has only a small extent in east-west direction 

and therefore exhibits a small range (± 0.1°) of incidence angles 

for each SAR dataset. As the incidence angle of scenes from 

relative orbit number 117 shows a high deviation from the other 

scenes, we only utilized scenes from relative orbit number 44 and 

168 in the following analysis to allow a comparison of 

descending and ascending datasets that is independent from the 

incidence angle. 

 

2.4 Auxiliary data 

Ground temperature (2m) and precipitation data from a nearby 

weather station operated by the Thuringian State Office for 

Agriculture (TLLLR) was acquired for the same timespan as the 

SAR observations. The daily averages for the dates of the 

Sentinel-1 data acquisitions were extracted and used for the 

analysis. The Copernicus Land Monitoring Service (CLMS) 

TCD dataset of 2018 was used to determine the average tree 

cover density for the study site (Copernicus Land Monitoring 

Service 2020). It has a spatial resolution of 10m and ranges from 

0% (no tree cover) to 100% (no ground surface visible). The TCD 

product is based on optics-based Sentinel-2 data and has a user’s 

and producer’s accuracy above 92%. 

 

3. METHODOLOGY 

In this section, we describe the process of extracting time series 

data using a Python framework and how we analyze the influence 

of fern undergrowth using different backscatter metrics. 

3.1 Data pre-processing 

The time series datasets have been created by developing an 

Opensource Python framework (1) (github.com/marlinmm/SentinelTime) 

utilizing the packages rasterio, fiona and GDAL. Most of the 

pre-processing steps are automated to allow fast and easy 

adaptability. Time series datasets are extracted for each fern 

measurement location site from the SAR datasets based on the 

mean of all SAR pixels which touch the 20m square bounding 

box around each measurement location (thin lines in Fig. 5). For 

each class, all pixels are spatially averaged to maximize the 

robustness of each time series. 

These time series are analyzed for different polarizations (VV, 

VH) and pass direction (asc. and desc.). We apply a Gaussian 

filter with a kernel size of two sigma (standard deviation) on the 

time series to de-emphasize short-term (e.g., weekly) dynamics 

for the benefit of seasonal dynamics (thick lines in Fig. 5). We 

use meteorological data for a detailed comparison and temporal 

correlation with the C-band SAR signal (Fig. 5).  

 

3.2 Spatial and temporal stability analysis 

This study aims at analyzing backscatter differences between 

different fern classes. As the observed backscatter difference 

between the different fern classes as well as the number of data 

points is rather low (see section 4.1.), it is necessary to analyze 

its stability to ensure that the observed difference between class 

0 (no fern) and class 3 (all fern) is significant compared to the 

measurement accuracy of Sentinel-1 backscatter (Schmidt et al. 

2018; El Hajj et al. 2019). For this, we analyzed both the stability 

of the difference information for different spatial extents and 

temporal samples.  

We consider that the inherent radiometric uncertainty of Sentinel-

1 is balanced using backscatter difference in a spatially averaged 

window and over a long period of time. To confirm this assertion, 

we show the maximum impact of considering different spatial 

extent and temporal density on the backscatter difference.  

To evaluate spatial stability of our data, we compared the 

averaged backscatter time series of the bounding box (see 3.1) to 

the backscatter signal of the single central pixel over the fern 

measurement site. This should reveal the influence of the local 

neighborhood.  

The temporal consistency of the SAR backscatter signal 

dynamics was evaluated by a stepwise reduction of the temporal 

resolution of the series. To ensure an unbiased reduction, the 

reduction omitted every other data point by half and only used 

every fourth data point for a reduction to 25% of the original 

dataset. This kept the whole 4.5 years of the time series, but 

gradually decreased the temporal density of the samples in the 

series. The goal of these reductions was to analyze if the 

considered temporal sampling has an influence on the backscatter 

difference, whilst keeping the seasonal variations of the time 

series. 

 

3.3 Visibility of fern in the SAR signal 

The objective of the study is to analyze, if the SAR time series 

behave differently for the individual test site locations that have 

different fern density classes. This would imply an influence of 

the fern undergrowth on the backscattered signal. The nearest 

neighboring measurement sites of class 0 and 3 are selected to be 

compared in the analysis. Studies suggest, a thin canopy is 

necessary to enable the C-band signal to pass through the canopy 

to lower parts of the forest structure (Garestier et al. 2008; 

Townsend 2002). Therefore, the TCD layer was used to examine 

the tree cover density for each measurement site. As the fern 

growing season starts in mid-spring and reaches its maximum 

Table 2: Overview of the Sentinel-1 acquisition parameters. 

 

Dataset
Flight 

Direction

Relative 

Orbit

Inc. 

Angle

Number of 

Acquisitions

Timespan of 

Acquisition

1 Descending 168 38.9 256
07/14/2016 - 

12/14/2020

2 Ascending 44 36.5 246
07/05/2016 - 

12/17/2020

3 Ascending 117 44.7 234
07/17/2016 - 

12/16/2020
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height in the meteorological summer, the strongest measurable 

impact is predicted in summer with a smaller impact in autumn 

as the fern starts to dry out. To validate these hypotheses, we 

analyzed the difference between the maximally fern-covered 

(Fig. 3d) sites and areas without undergrowth fern vegetation 

(Fig. 3a) and compared the difference of backscatter of the four 

meteorological seasons (Trenberth 1983) for all combinations of 

acquisition scenarios. To determine statistical significance, 

ANOVA and Tukey’s post-hoc tests were performed.  

 

4. RESULTS  

This section presents the backscatter analyses for (systematic) 

influence of fern undergrowth on particular SAR signal 

configurations. To rule out other external factor as much as 

possible, the spatial and temporal stability of the data is analyzed 

as well. The Copernicus Sentinel-1 time series for fern density 

class 0 and fern density class 3 is shown in Figure 5 in 

combination with meteorological data. The different acquisition 

scenarios are highlighted in different colors and line styles. 

 

4.1 Spatial and temporal stability 

To ensure robust results on the spatial domain, the spatially 

averaged time series is compared to the analysis of a single pixel 

(after speckle treatment) time series for each measurement 

location. The TCD between fern class 0 and fern class 3 is 

comparable for the northern location with 90% for fern class 3 

and 90.75% TCD for fern class 0. Similarly, the first southern 

location exhibits comparable TCD values between 84.75% and 

85.25% TCD. The second southern location however shows an 

increased difference between TCD with 81.5% tree cover density 

at fern class 3 and 90% TCD at fern class 0.  

Figure 5 compares the mean backscatter of locations with no fern 

present (class 0) (a, c) and areas with dense fern (class 3) present 

(b, d) for the averaged time series of the bounding box (top) as 

well as for the single pixel analysis (bottom). 

The backscatter difference between the spatial average and the 

single pixel analysis ranges from -0.02 dB (VV_Asc.) to 0.02 dB 

(VH_Asc) at fern class 0 and from -0.18 dB (VH_Asc) to 0.13 

dB (VV_Desc) for fern class 3 respectively (Tab. 3, first column). 

To establish the temporal stability of the data, the time series 

resolution was reduced two- and fourfold. The results show 

similar results to the original time series, with backscatter 

differences between the spatially averaged classes and the single 

pixels at half temporal resolution of -0.08 (VV_Desc) and 

0.04 dB (VH_Asc) for the fern class 0 and -0.20 (VH_Asc) and 

0.15 dB (VH_Desc) for fern class 3. At just 25% of the temporal 

 
Figure 5: Spatially averaged backscatter time series of the Sentinel-1 C-band signal for the pine forest with no fern present (fern 

density 0) (a) and pine forest with strong fern undergrowth vegetation (fern density 3) (b) of the 20m patches (top). Single pixel 

equivalent of the same locations below (c, d). Gray and yellow lines represent daily sum of precipitation and daily average of air 

temperature from a meteo-station nearby. 

Table 3: Comparison of multi-pixel and single-pixel 

backscatter analysis and simultaneous reduction of temporal 

resolution to determine spatial and temporal stability, 

calculated for each single measurement location and then 

averaged over all sites. 

 

Polarization/ 

Orbit

Fern Density 

Class 0

Fern Density 

Class 3

Fern Density 

Class 0

Fern Density 

Class 3

Fern Density 

Class 0

Fern Density 

Class 3

VH/Ascending 0.018 -0.182 0.044 -0.197 -0.051 -0.201

VH/Descending -0.006 0.116 0.039 0.154 0.007 0.072

VV/Ascending -0.018 0.022 -0.067 0.077 -0.109 0.049

VV/Descending 0.007 0.125 -0.081 0.143 0.196 0.103

20m Patch vs. Single 

Pixel Backscatter 

Difference (dB)

20m Patch vs. Single 

Pixel Backscatter 

Difference (dB)  (Half 

temporal resolution)

20m Patch vs. Single 

Pixel Backscatter 

Difference (dB) (Quarter 

temporal resolution)
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resolution, a result of -0.11 (VV_Asc) to 0.20 dB (VV_Desc) for 

fern class 0 and -0.2 dB (VH_Asc) to 0.1 dB (VV_Desc) 

difference for fern class 3 was established (Tab. 3).  

Compared to Figure 6, the temporal and spatial differences are 

small enough to only exhibit small influence on the overall 

analysis. The values in Table 3 could be seen as the spatial and 

temporal resolution limits of the applied method. 

 

4.2  Visibility of fern 

A seasonal backscatter signal is observable for all acquisition 

scenarios and all fern classes (Fig. 5), with a consistently higher 

backscatter for ascending pass direction compared to descending 

in fern class 0. The seasonality in the signal is visually stronger 

observable in the time series of fern class 3 compared to fern 

class 0. 

As the growing season of fern starts in April, stronger changes 

are expected for the meteorological summer and autumn seasons, 

where the fern undergrowth is present. Seasonal analyses show 

the strongest backscatter difference between winter-spring (fern 

off) and summer-autumn (fern on) seasons due to the 

phenological cycle of fern (Fig. 6). 

Overall, there is a bigger backscatter difference apparent between 

the fern classes in the ascending pass direction compared to 

descending for all seasons (Fig. 6 and Fig. 7). The mean absolute 

backscatter difference between fern class 0 and fern class 3 in 

ascending pass direction ranges from 0.67 dB (VH_Asc) to 0.79 

dB (VV_Asc), while the backscatter difference in descending 

pass direction through all seasons ranges from 0.31 dB 

(VH_Desc) to 0.21 dB (VV_Desc). Those values are higher than 

the detected spatial and temporal variabilities of the signal due to 

different sampling sizes. 

With that in mind, the relative difference in backscatter between 

the seasons should provide insight on the actual influence of fern 

vegetation. As we compare the same datasets at different 

locations, this difference is not due to the inherent sensor noise 

level but on physical differences of the observed area.  

While the backscatter difference for VH_Asc remains stable in 

spring and winter, a significant decrease of backscatter difference 

of 0.20 dB is observed in summer and autumn (Fig. 6a). With co-

polarized acquisition and ascending pass direction (VV_Asc) 

there is a significant difference of median backscatter between 

autumn and the remaining seasons (increase by 0.20 dB), while 

there is no significant difference between summer and other 

seasons (Fig. 6b). VH_Desc shows significant backscatter 

differences between summer and the other three seasons. The 

increase of backscatter difference in summer amounts to 0.15 dB 

compared to the three remaining seasons (Fig. 6d). 

As summer is the season with the strongest change as well as 

biologically the most active, a direct comparison of the 

backscatter of this season is shown in Figure 7. Whilst the 

backscatter decreases from no fern (class 0) to maximum amount 

of fern (class 3) present for ascending pass directions, it increases 

slightly for the descending pass direction (Fig. 7). In VH_Asc 

configuration, there is a significant difference between fern class 

0 and 3 with a median backscatter decrease of 0.67 dB (Fig. 7a). 

In the descending pass direction and co-polarized time series, the  

backscatter increases significantly by 0.45 dB (Fig 7b). For 

VV_Asc the backscatter in summer decreases significantly from 

a median of -8.21 dB in fern class 0 to a median of -8.82 dB in 

fern class 3, while there is no significant difference observed at 

VV_Desc (Fig 7c, d). These results indicate that the presence of 

fern and undergrowth has an influence on the backscatter signal. 

 

5. DISCUSSION 

In the following, the potential further influences on the 

backscatter time series, such as moisture content or TCD are 

 
Figure 6: Comparison of absolute backscatter difference 

between seasons and different acquisition scenarios, asterisk 

represents statistical significance (p < 0.05). 

 
Figure 7: Backscatter difference between Fern class 0 and 3 

during summer for all acquisition scenarios. 
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discussed, as well as their observed seasonal differences. 

Furthermore, the influence of the acquisition system parameters 

is discussed, and results are brought into context with related 

literature. 

The results suggest the existence of an influence by fern 

undergrowth vegetation on the C-band Sentinel-1 SAR signal in 

our temperate coniferous forest test site. While the absolute 

difference between forest without fern undergrowth and forest 

with strong fern vegetation only ranges from 0.4 to 0.8 dB in 

summer, the relative difference between seasons allows the 

detection of systematic seasonal changes indicating the influence 

of fern vegetation. Dense time series can be used to identify small 

changes in backscatter over time to establish a stable pattern of 

difference between areas with no fern and areas with strong fern 

presence in the undergrowth vegetation. As an evergreen forest, 

the influence of seasonally-induced structural changes in the tree 

canopy should be minimal with predictable temporal radar 

signatures (Dostálová et al. 2021). This also allows the extraction 

of inter-seasonal differences for further analysis using 

phenological information. The spatial and temporal analyses also 

show a stable signal over long time periods of multiple years, 

with maximum variations 0.2 dB between the different spatial 

and temporal samples. 

It is important to consider the relative radiometric accuracy of 

Sentinel-1 when analyzing small backscatter changes between 

areas (Schmidt et al. 2018). The temporal and spatial accuracy 

analysis was performed to estimate the general accuracy limits of 

this approach. Since we use temporally averaged data over long 

time series, resulting in backscatter differences above the stated 

accuracy limits (~0.1 dB) (Schmidt et al., 2018; El Hajj et al., 

2019), we assumed, that the resulting backscatter difference can 

be traced back to a natural cause and not to a system effect. 

One key finding of this study is the difference in backscatter 

change depending on the acquisition scenarios of the SAR data 

for this kind of analysis, with the ascending pass exhibiting 

considerably higher backscatter change than the descending pass 

direction. As the acquisition times for the ascending pass 

direction are late afternoon (after 5 pm) and the descending 

scenes are acquired in early morning (around 5:30 am), external 

factors such as evapotranspiration could play a role in the 

different behaviors (Mahdavi et al. 2019). To enable a detailed 

analysis, a more in-depth investigation of the soil and vegetation 

parameters, such as soil moisture and temperature or VWC and 

plant structure would be necessary. For the ascending pass 

direction and summer season, the backscatter is significantly 

lower for fern class 3 compared to fern class 0, while the opposite 

effect can be observed for VH_Desc. The authors still investigate 

these contradicting results because attenuation in VV 

polarization or incidence angle influences can be ruled out. 

Interestingly, the backscatter change between fern classes did not 

follow a fixed pattern when compared by polarization. The pass 

direction seems to dominate the change of backscatter difference 

between classes. 

The backscatter difference for VV_Desc stays under 0.4 dB for 

each season. This constellation also shows the least change 

between fern classes in summer with no significant difference 

between fern class 0 and fern class 3 in summer (Fig. 7d). For the 

remaining acquisition scenarios, the change in backscatter 

difference is sufficiently high to warrant an analysis and are thus 

likely a result of fern influence. 

With only three measurement sites for fern class 3, the 

significance and transferability of the results is limited. 

Furthermore, the field campaign was only carried out in 2020, so 

there is only one year of phenological fern data compared to 4.5 

years of SAR data. 

The heterogenous undergrowth vegetation occurring at areas 

with no fern present (see Fig. 2a) could also influence the 

backscatter signal, but they do not grow to equivalent heights as 

the eagle fern. Additionally, the areas of dense fern growth are 

limited to small patches of a few hundred square meters, making 

analysis with more than six to nine Sentinel-1 pixels per location 

impossible. As the spatial accuracy analysis has shown, the 

overall signal is stable over a wider area allowing for such 

analyses. Especially, the spatial analysis showed that the spatial 

signal is slightly more stable for fern class 0 than for fern class 3, 

suggesting that the areas considered covered with fern could 

contain mixed pixels. Garestier et al. (2008) shows that an open 

canopy is necessary for detailed undergrowth analyses using 

shorter wavelengths, like C- or X-band. The TCD dataset was 

used to compare the tree cover density for each measurement 

location. Vastly differing values could indicate lower 

comparability of canopy cover cases. Two of the three used in 

situ sites reveal TCD-values with a difference of one percent 

between fern class 0 and 3, while one location shows a difference 

of 8.5% between the fern classes. This could lead to additional 

signal variations that needs to be considered. 

Other external factors such as terrain should not influence the 

results, as the whole study site shows gentle terrain with no large 

local incidence angle changes for the different orbits (acquisition 

scenarios).  

 

6.  CONCLUSION AND OUTLOOK 

In this study, we analyzed dense Sentinel-1 backscatter time 

series to characterize influences of fern undergrowth vegetation 

in a coniferous forest on the C-band signal. A comprehensive 

investigation of seasonal effects and influences of different 

acquisition scenarios was performed. As the strongest signal was 

expected during the active growing season, the meteorological 

summer was investigated in detail and revealed a significant 

backscatter difference between areas without fern presence and 

areas with strong fern presence. An additional analysis of 

different spatial and temporal samplings showed that these 

finding holds true for different spatio-temporal inputs. 

We understood that the strength of this effect mainly depends on 

the acquisition scenarios of the SAR signal. These results suggest 

further influences by height, structure and density of the forest, 

through which the signal passes to the undergrowth medium.  

For a more in-depth analysis of these further signal influences, a 

follow-on study will isolate potentially influencing factors such 

as TCD, soil and vegetation moisture. Furthermore, the 

expansion of the number of measurement sites should strengthen 

the statistical significance of the presented findings. 
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