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ABSTRACT: Persistent Scatterer Interferometry (PSInSAR) exploits a time series of Synthetic Aperture Radar (SAR) images to 

estimate the mean velocity with which the surface of the earth is deforming. However, most PSInSAR algorithms estimate the mean 

velocities using a linear regression model. Since some deformation phenomena can exhibit a more complex behavior over time, using 

a linear regression model leads to potentially wrong estimations for the mean velocity. For example, the velocity of a landslide moving 

down a steep slope can change depending on the water content of the material of the landslide, or an inactive landslide can reactivate 

due to an earthquake. Both scenarios would not result in a time series with a constant linear slope but in a piecewise linear time series.  

This paper presents a Matlab-based tool to analyze an individual Persistent Scatterer (PS) time series. The Persistent Scatterer 

Deformation Pattern Analysis Tool (PSDefoPAT) aims to build a mathematical model that sufficiently describes the time series trend 

and seasonal and noise components. The trend component is estimated using polynomial regression and piecewise linear models, while 

a sine function approximates the seasonal component. The goal is to identify the best fitting model for the displacement time series of 

a PS. PSDefoPAT is introduced by examine the time series of three different PS located in the region surrounding Patras, Greece. 

Based on the derived models, we discuss the nature of their deformation patterns.  

 

1. INTRODUCTION 

Persistent Scatterer Interferometry (PSInSAR) is a method 

widely used to monitor the deformation of the surface of the 

earth. In contrast to Synthetic Aperture Radar Interferometry 

(InSAR), PSInSAR uses a time series of repeat-pass SAR images 

instead of only two images to overcome the limitations of InSAR, 

such as the atmospheric phase delay and the spatial and temporal 

decorrelation (Ferretti et al., 2001; Hooper et al., 2004). The main 

product of this method is a set of estimated rates for the mean 

deformation velocity over a specific observation period. Studies 

have shown that these estimates are very accurate (Adam et al., 

2009). In recent years, studies such as Tomás et al. (2019) have 

used these estimates to, for example, distinguish active persistent 

scatterers (PS) from non-active ones and then define areas of 

active deformation. Afterward, they use the displacement time 

series of those areas to associate them with different deformation 

patterns. However, most PSInSAR algorithms estimate the mean 

velocities using a linear regression model. Figure 2a provides an 

example of a linear time series. Since some deformation 

phenomena can exhibit a more complex behavior over time, 

using a linear regression model leads to potentially wrong 

estimations for the mean velocity.  

An example of a mean velocity map is given in Figure 1. The 

map shows the mean velocities of the city of Patras in southern 

Greece and its surrounding region, estimated for the observation 

period from January 2019 to January 2021. Based on this map, 

many red or blue PS clusters would be regarded as actively 

deforming areas. This conclusion is possibly a fallacy, because, 

for example, the velocity of a landslide can change over time, 

resulting in a piecewise linear time series. An example of a 

piecewise linear time series is shown in Figure 2b. Estimating the 

mean velocity over the entire observation period with a linear 

regression model would not provide the information that the 

deformation process is slowing down. Faults can switch from 

being active to being dormant and vice versa, meaning the mean 

velocity of that area is underestimated or overestimated.  
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Further, a periodic shift between subsidence and uplift due to 

changing soil-water content results in a periodic signal. An 

example of a periodic time series is presented in Figure 2c. In this 

case, the linear regression slope estimate, i.e., the mean velocity, 

would be zero. An algorithm that identifies actively deforming 

areas based on the mean velocity would not identify this area as 

active. 

Additionally, several deformation patterns may overlap, as 

shown in Figure 2d. The time series has a linear trend and a 

seasonal component. An example of such a deformation is the 

deformation of a newly built dam. The dam body experiences 

subsidence due to the settlement of its building materials and the 

dead load of the reservoir water. The water level of the reservoir 

can vary over time due to variations in the water intake of the 

reservoir and water consumption due to irrigation, freshwater 

usage, or power generation. The varying water level can result in 

a periodic shift between subsidence and uplift. 

 

 
 

Figure 1. Estimated mean velocities of the region surrounding 

Patras, Greece (Jan. 2019 to Jan. 2021). 
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Figure 2.  Exemplary time series plots of a time series with linear trend (a), piecewise linear trend (b), seasonal component (c), and 

linear trend and seasonal component (d). 

 

Hence, different deformation models need to be considered, and 

their significance needs to be evaluated to determine the best 

fitting model. A corresponding approach was implemented by 

Berti et al. (2013). The study considers linear, quadratic, and 

piecewise linear models to approximate the trend component of 

the time series. However, the study does not take into account 

that the time series may have a seasonal component as well. 

In this paper, we present a Matlab-based tool to analyze the 

individual Persistent Scatterer time series. The Persistent 

Scatterer Deformation Pattern Analysis Tool (PSDefoPAT) aims 

to build a mathematical model that sufficiently describes the time 

series trend, seasonal and noise components. The trend 

component is estimated using polynomial regression and 

piecewise linear models, while the model for the seasonal 

component is a sine function. The best-fitting model for the 

displacement time series is determined using the Schwarz 

Bayesian Information Criterion (BIC) and tests for the 

significance of the regression models. Based on these models, we 

will discuss, which deformation patterns can be identified solely 

using the information gathered from the displacement time series 

and which may need further information. 

The paper is structured into five sections. The area of interest 

(AOI) and the data set are presented in Section 2. PSDefoPAT 

and the statistical methods it uses are described in Section 3. In 

Section 4, we present the time series of three PS located in Areas 

A, B, and C marked in Figure 1. The time series are decomposed 

into their trend, seasonal, and noise components. Based on the 

resulting model, we discuss what deformation phenomena may 

be their cause. Our conclusions are presented in Section 5. 

 

2. DATASET AND DATA PROCESSING 

2.1 Dataset 

The AOI is located in southern Greece on the Peloponnese 

Peninsula. The Gulf of Patras frames the AOI in the North, the 

Hellenic subduction zone to the West, and the Erymanthos and 

Panachaiko mountains in the East and the South. Expected 

deformation patterns are vertical and horizontal displacements 

due to landslides and numerous active faults (Sakkas et al., 2018; 

Chalkias et al., 2014). The dataset used to analyze the surface 

deformation of the area over time consists of 122 Sentinel-1 A 

and B  SAR images. The images were acquired with a descending 

acquisition geometry and Interferometric Wide-Swath (IW) 

acquisition mode. The dataset covers the period from January 

2019 to January 2021 with a repeat time of 6 days. The master 

scene is the image recorded on January 7, 2020. 

 

2.2 Persistent Scatterer Interferometry Processing 

PSInSAR exploits a time series of SAR images instead of only 

two images to address decorrelation and atmospheric phase 

delay. The main idea is to identify PS pixels. A PS pixel 

distinguishes itself from other pixels by having a low noise level 

(Ferretti et al., 2001; Hooper et al., 2004). PSInSAR algorithms 

such as the Standford Method for Persistent Scatters (StaMPS) 

only use the PS pixels to estimate the deformation occurring 

during the observation period (Hooper et al., 2004). The main 

products of each PSInSAR analysis are the estimated mean 

velocities of the observation period and the corresponding 

displacement time series for each PS. Figure 1 shows the 

estimated mean velocity in the direction of line of sight (LOS) 

for the area surrounding the city of Patras. The mean velocity in 

Figure 1 ranges from -12 mm/a (blue) to -10 mm/a (red). The 

negative velocity represents a movement away from the sensor, 

and the positive velocity a movement towards the sensor. Figure 

1 shows many actively deforming areas in the region surrounding 

Patras and in the city itself. However, in this paper, we will 

concentrate on three areas marked with black rectangles in Figure 

1. Area A includes the south and central part of Patras, while Area 

B contains a mainly mountainous region, and the main feature of 

Area C is a newly built and filled dam. 

 

3. METHODS FOR PS DISPLACEMENT ANALYSIS 

In general, a time series is defined as a chronologic sequence of 

observations made on a specific variable, in this case, the 

displacement of a PS. Time series analysis aims to characterize 

the time series and develop a mathematical model that describes 

the evolution of the variable over time (Neusser, 2016; 

Montgomery et al., 2015). 

PSDefoPAT, presented in this paper, was designed to analyze the 

individual displacement time series of each PS. The tool is 

Matlab-based and uses mainly the following three toolboxes:  

 

 Statistics and Machine Learning  

 Curve Fitting  

 Econometrics 

 

The user interface of PSDefoPAT is shown in Figure 3. It is 

structured into three areas. The estimated mean velocities of the 

PS are plotted in Area I. Area II provides general functions such 

as selecting a specific PS to analyze or loading another data set. 

Area III is dedicated to examining the displacement time series 

of a selected PS. We divided the analysis into four steps:  

 

1) Exploratory Data Analysis (EDA) 

2) Data Preparation 

3) Estimation of the Trend 

4) Seasonal Component 

 

Each step is represented by one tab. The components of the 

decomposed time series are plotted in the last tab of Area III. 

(a) (b) (c) (d)
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Figure 3.  The user interface of PSDefoPAT is structured into Areas I, II, and III. 

 

Part of EDA is to use basic statistical concepts such as the mean 

𝜇, the median 𝑀𝑑, the variance 𝜎2, or the standard deviation 

𝜎𝑠𝑡𝑑𝑣 to characterize the time series. The mean and the median 

are both measures of central tendency. While the mean is also 

commonly referred to as the average value of a time series, the 

median is the middle value of the time series, if all data points are 

sorted from the lowest to the highest value. Comparing both 

parameters provides information on the distribution of the data 

points. For example, the median and the mean are identical, if the 

data distribution is symmetric and mound-shaped with a single 

peak. If the data distribution is asymmetric, meaning one tail of 

the data distribution is longer than the other, it is referred to as 

skewed. In that case, the mean and the median differ. The mean 

is shifted towards the elongated tail of the data distribution. 

 

Positively skewed: 𝜇 > 𝑀𝑑 

Symmetrical: 𝜇 = 𝑀𝑑 

Negatively skewed: 𝜇 < 𝑀𝑑 

 

The skewness is a measure of how much the symmetry of the data 

distribution differs from the symmetry of a normal distribution 

(Ott et al., 2015).  

Another measure parameter that expresses the deviation of the 

data distribution from a normal distribution is kurtosis. It 

compares the likelihood of extreme values to be present in the 

data distribution to the one for normally distributed data. The 

kurtosis of a normal distribution is three. A value above three 

indicates that extreme values are more likely to be present in the 

data, and a value below three that they are less likely to occur 

(Shumway et al., 2017).  

The variance and the standard deviation are measures of 

dispersion. Both parameters indicate how spread out the data is. 

The variance is the average squared difference between the mean 

and the data points, while the standard deviation is simply the 

root square of the variance (Ott et al., 2015).  

Outliers in the time series have an impact on the regression model 

used to estimate the trend and seasonal component of the time 

series. Hence, outliers need to be identified and replaced. The 

detection of outliers is influenced by the data distribution of the 

time series. Therefore, the type of data distribution needs to be 

known to choose the appropriate approach to identify outliers. 

Graphical methods such as histograms and box plots visualize the 

data distribution. The histogram of the time series of a selected 

PS is shown in the first tab of Area III in Figure 3, while the box 

plot is displayed in the second tab. Both graphical methods 

support the detection of outliers in the time series. For the outlier 

detection, we implemented a manual and a semi-automatic 

approach. In the case of a manual outlier selection, the user can 

declare data points as outliers after examining the time series 

plot, the box plot, and the histogram. 

An exemplary box plot can be seen in Figure 4. The method 

employs the first and third quartile and the median to visualize 

the symmetry and variability of the data. The first or lower 

quartile marks the 25 % percentile, and the third or upper quartile 

the 75% percentile of data points, if the data points are arranged 

from the lowest to the highest value. The interquartile range 

(IQR) is the difference between both. In this context, the median 

is sometimes referred to as the second quartile (Ott et al., 2015).  

 

 
 

Figure 4.  Example of a box plot. 

I

II

III
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Figure 5.  Examples of an F-distribution (a) and a student’s t-distribution (b). 

 

The upper and lower line of the blue box, displayed in Figure 4, 

represent the upper and lower quartile, while the red middle line 

of the box marks the median. Additionally, the points situated at 

1.5 IQR above and below the upper and lower quartile are marked 

with black whiskers. Any point situated outside these limits is 

represented by a red cross and is considered as an outlier. In the 

case of the semi-automatic outlier detection, the user can choose 

between three different approaches. A data point is considered as 

an outlier if:  

 

 it deviates more than three times the scaled median 

absolute deviation from the median, 

 it deviates more than three times the standard deviation 

from the mean, or 

 it is situated more than 1.5 interquartile ranges above 

the upper quartile or below the lower quartile.  

 

The first two options are both applied over a moving window. In 

our tool, the size of the moving window is set to 5 % of the time 

series length. Extreme measurements influence the median less 

than the mean. Therefore, using the median as a reference value 

is more robust towards outliers than using the mean. The third 

approach, which uses the upper and lower quartile, and the 

interquartile range to identify outliers, performs better for non-

normally distributed data than the first two approaches (Ott et al., 

2015). After identifying data points as outliers, they are replaced 

by linear interpolation using the non-outlier neighbors.  

The alternative to outlier detection is smoothing the time series. 

We included five different methods to smooth the time series:  

 

 Moving Average 

 Moving Median 

 Gaussian Filter 

 Local Linear Regression (LLR) 

 Robust LLR 

 

All methods are applied locally over a moving window. The 

window size is set to 10% of the time series length. Both LLR 

approaches use the concept of weighted least squares. However, 

the robust LLR method assigns a weight of zero to possible 

outliers and is more robust to very noisy data. 

After removing the outliers from the time series or eliminating 

part of the noise by smoothing the time series, the trend and 

periodic component become more apparent. The next step in time 

series analysis is to develop a mathematical model that describes 

the evolution of the variable of interest over time. Therefore, the 

time series needs to be decomposed into its trend, periodic, and 

noise component (Neusser, 2016). In our tool, estimating the 

trend and seasonal component are two separate steps.  

We test first-, second-, and third-degree polynomial models and 

a piecewise linear regression model for the trend component. 

Estimating the first-, second-, and third-degree polynomial 

regression models is based on the concept of ordinary least 

squares (OLS). A k-degree polynomial regression model can be 

written as follows: 

 

�̂�𝑖 =  𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 +⋯+ 𝛽𝑘𝑡

𝑘  .  (1) 

 

Here 𝛽𝑗  represents the regression coefficients, 𝑡 the predictor 

variable, and �̂�𝑖  the predicted data points. In the case of a linear 

model, the number of regression coefficients would reduce to 

two, and the equation can be written as follows: 

 
 �̂�𝑖 = 𝛽0 + 𝛽1𝑡  .    (2) 

 

The OLS approach minimizes the squared difference between the 

collected data points 𝑦𝑖 and the data points �̂�𝑖 predicted by the 

regression model (Ott et al., 2015). 

 

∑ (𝑦𝑖 − �̂�𝑖)
2 = 𝑁

𝑖 ∑ (𝑦𝑖 − (𝛽0 + 𝛽1𝑡))
2 𝑁

𝑖  (3) 

 

Instead of a polynomial regression model, the time series can also 

be approximated by a piecewise linear regression model, 

representing the time series as a sequence of linear segments. The 

connecting data points between these segments are referred to as 

change points (CP). If only one CP exists, the regression model 

can be described as follows (Malash et al., 2010): 

 
 

𝑦𝑖 = 𝛽𝑜 + 𝛽1𝑡 + 𝛽2(𝑡 − 𝑐𝑝1)𝛼 (4) 
 

with 𝛼 = {
0, 𝑡 < 𝑐𝑝1
1, 𝑡 ≥ 𝑐𝑝1

 . 

 

In our tool, the regression coefficients 𝛽𝑖  and the CP 𝑐𝑝1 are 

determined using the concept of non-linear least squares. 

However, to solve the non-linear least squares problem, an initial 

value for the CP 𝑐𝑝1 needs to be approximated. For that reason, 

we included a semi-automatic change point detection (CPD) and  

p-Value  area under curve

 0  𝑡𝑗  𝑡𝑗 

p-Value  sum of
areas under curve

(a) (b)
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Figure 6.  EDA (a) and outlier detection (b) of the time series of PS 1.

the option to select a CP manually. The semi-automatic CPD 

detects changes in the mean, root-mean-square level, standard 

deviation, or the estimated linear slope. 

The next step is to determine the goodness of the fit for each 

model. Commonly used criteria are the Schwarz Bayesian 

Information Criterion (BIC), the Akaike Information Criterion 

(AIC), and R². Another option is to perform a significance test 

for the regression models as a whole or their individual terms 

(Montgomery et al., 2015). All four options rely on knowing the 

following parameters:  

 

 total sum of squares (SST), 

 sum of squares due to the regression model (SSR), 

 sum of squares due to the residual or error (SSE), 

 number of samples N, 

 number of predictor variables 𝑝 , 

 degree 𝑘 of the polynomial regression model. 

 

The relationship between SST, SSR, and SSE can be written as 

follows: 

 

𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝜇)²𝑁
𝑖 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 = ∑ (�̂�𝑖 − 𝜇)2 + ∑ 𝜀²𝑁

𝑖
𝑁
𝑖  . (5) 

 

The criterion 𝑅2 is calculated using SSE and SST. 

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
     (6) 

 

The model that maximizes the criterion R² is considered the best-

fitting model. Since SST is independent of the regression model 

and SSE tends to minimize with higher degree polynomial 

regression models, R² tends to favor higher degree polynomial 

regression models. The AIC and BIC criteria both penalize SSE 

for adding more terms to the regression model. 

 

𝐴𝐼𝐶 =  ln [
𝑆𝑆𝐸

𝑁
] + 

2𝑝

𝑁
  (7) 

 

𝐵𝐼𝐶 =  ln [
𝑆𝐸𝐸

𝑁
] +  

𝑝 ln𝑁

𝑁
  (8) 

 

However, the BIC uses a more severe penalty term than the AIC. 

Therefore, relying on R² or the AIC to select the best fitting 

model is more likely to result in overfitting than using the BIC 

(Montgomery et al., 2015). A significance test for a regression 

model determines whether or not the null hypothesis 𝐻0 is 

rejected. The null hypothesis assumes that the regression model 

does not sufficiently explain the evolution of the collected data 

points 𝑦𝑖 over time. 

 

𝐻0: 𝛽0 = 𝛽1 = ⋯ = 𝛽𝑘 = 0  (9) 

𝐻1: at least one 𝛽𝑗 ≠ 0 

 

If the null hypothesis is true, the test statistic  0 is calculated as 

follows: 

 0 = 
𝑆𝑆𝑅

𝑘⁄

𝑆𝑆𝐸
(𝑁−𝑝)⁄

  .   (10) 

 

The null hypothesis is rejected if the corresponding p-Value of 

the  0 test statistic is less than the threshold 𝛼. The p-Value is 

defined as the area under the curve of the F-distribution between 

 0 and infinity (Montgomery et al., 2015). An example of an F-

distribution is presented in Figure 5a. 

If the significance test is applied to the individual terms of the 

regression model, the test hypothesis is:  

 

𝐻0: 𝛽𝑗 = 0           (11) 

𝐻1: 𝛽𝑗 ≠ 0. 

 

The term in question can be deleted from the model, if 𝐻0 is 

accepted. The test statistic, in this case, is the t-statistic. 

 

𝑡𝑗 =  
𝛽𝑗

√𝐶𝑗𝑗
   (12) 

(a) (b)
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Figure 7.  EDA (a) and outlier detection (b) of the time series of PS 1. 

 

The parameter 𝐶𝑗𝑗  is a diagonal element of the variance-

covariance matrix of the estimated regression coefficient 𝛽𝑗 . The 

null hypothesis is again rejected, if the corresponding p-Value of 

the 𝑡𝑗 test statistic is less than the threshold 𝛼. In this case, the p-

Value is defined as the sum of the area under the curve of the t-

distribution between  𝑡𝑗  and infinity and between − 𝑡𝑗  and 

negative infinity (Montgomery et al., 2015). An example of a t-

distribution is presented in Figure 5b. We decided to use the BIC 

value, a significance test for the model as a whole, and its 

individual terms as the criteria to select the best-fitting model. 

The threshold α for the p-Value is usually set to 0.1, 0.05, or 0.01. 

We use α = 0.05, i.e., if the p-Value is smaller than 0.05, the 

probability that the null hypothesis is accepted is less than 5%.  

After selecting the best-fitting model for the trend, the original 

time series is detrended. The residual time series may still hold a 

seasonal component. Displacement time series that have a 

seasonal component are often linked to deformation phenomena 

induced by, for example, the varying water content or 

temperature of a material. Sine functions can describe both 

phenomena. Thus, a sine function is used to approximate the 

seasonal component.   

  

�̂� = 𝐴 ∗ sin (2𝜋𝑓(𝑡 − 𝑡offset))      (13) 

 

The amplitude 𝐴, the frequency 𝑓, and the time offset 𝑡offset are 

estimated by solving a non-linear least squares problem, which 

requires initial values. The initial value for 𝐴 is set to 𝐴 =
max 𝑦𝑖  and the one for 𝑡offset is set to zero. The initial value for 

𝑓 is estimated using the frequency spectrum of the collected data 

points 𝑦𝑖. The final step is to subtract the estimated seasonal 

component from the residual time series and display the trend, 

seasonal, and noise components separately.  

 

4. RESULTS & DISCUSSION 

In the following section, the displacement time series of three 

different PS, referred to as PS 1, 2, and 3, will be presented and 

discussed. The PS are located within Areas A, B, and C, marked 

in Figure 1. The first time series belongs to PS 1, which is located 

in Area C. Figure 6 shows the time series plot of PS 1, the 

corresponding histogram, and provides an overview of statistical 

parameters such as the mean, the median, and the standard 

deviation of the time series.  

 

 
 

Figure 8. The decomposed time series of PS 1. 

(a) (b)
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Figure 9.  The original and decomposed time series of PS 2 (a) and 3 (b). 

 

The time series is normally distributed, but comparing the values 

for the median, (𝑀𝑑 = −0.74mm a⁄  ) and the mean (𝜇 =
 −2.23mm a⁄ ), reveals that the distribution is negatively 

skewed. The initially estimated mean velocity for this PS is 

𝑣mean =  −13.0631mm a⁄ . The time series plot in Figure 6a 

indicates that the time series has a linear trend and that some data 

points might be outliers. Figure 6b illustrates the second step. The 

manually selected outliers are marked in red in the time series 

plot. Even though the box plot indicates that no outliers are 

present in the dataset, three data points were declared as outliers. 

The data points were marked as outliers, because the time series 

plot shows that they deviate significantly more from the trend of 

the time series than the other data points. The outliers are 

replaced, and the edited time series is shown in Figure 7a.  

The trend of the time series was estimated using the edited time 

series. Three polynomial regression models were tested: (1) 

linear, (2) quadratic, and (3) cubic. A piecewise linear regression 

model was not tested, because the semi-automatic CPD did not 

identify a significant change within the slope of the time series. 

The table in Figure 7a presents the significance test results and 

the calculated BIC value for each tested model. The p-Value for 

the overall significance of each model is smaller than 0.005, 

meaning all models describe the time series sufficiently. 

However, the p-Values for each term of the regression models 

(see column Coefficient p-Value in Figure 7a) indicate that the 

cubic model is overfitted, while the linear and quadratic models 

are not. The last parameter to consult is the BIC. The regression 

model with the smallest BIC explains the time series sufficiently 

and is the least overfitted. In this case, the BIC of the linear 

regression model is the smallest. Therefore, the linear regression 

model is selected as the best-fitting model. After choosing a 

model for the trend component, the time series is detrended. The 

residual time series, shown in Figure 7b, is inspected for 

periodicity. The power spectrum of the residual time series is 

presented in Figure 7b. It reveals which frequencies are present 

in the time series. The frequency with the highest significant peak 

is selected as an initial value to fit a sine function to the data 

points. The result is shown in Figure 7b as a red line. The blue 

dotted line is a fitted sine function with a period of 365 days. 

Comparing both fitted curves to the data points reveals that the 

time series has a seasonal component. The estimated period of 

the seasonal component is 373 days. All three components of the 

time series of PS 1 are plotted separately in Figure 8.  

PS 1 is located on top of the newly built Paraperios-Peiros Dam. 

The construction of the dam body was finished in early 2019, and 

the filling process started in September 2019 (Evers et al., 2020). 

The dam body was expected to experience subsidence due to its 

dead load and the reservoir water’s dead load (Hunter et al., 

2003). The original time series plotted in Figure 8 has a level shift 

between October 2019 and January 2020. This level shift was not 

detected as a CP because the slope did not change significantly 

enough after the level shift. However, the level shift may coincide 

with an increase in the amount of water being impounded due to 

heavy rainfalls, because the west coast of Greece is known to 

have heavy rains beginning in September or October (Gofa et al., 

2019). Another possibility is the phenomenon called collapse 

compression. The building material of an embankment dam can 

experience additional short-term subsidence upon its first wetting 

(Hunter et al., 2003).  

Since, the estimated seasonal component of the time series of PS 

1 has a period of 373 days, which is close to a periodicity of one 

year. A seasonally varying water level might cause the 

seasonality in the displacement time series. 

Further, in order to confirm whether the level shift was caused by 

the amount of water being impounded or collapse compression, 

a time series of PS 1 would need to be compared to a time series 

of the reservoir water level and the time series of surrounding PS. 

The effect of collapse compression depends on material-specific 

parameters, and embankment dams are not homogenously built. 

Therefore, collapse compression would have only a local impact 

on the dam body. The dead load of the reservoir water, on the 

other hand, affects the entire dam body (Hunter et al., 2003). 

Also, a water level time series would be needed to confirm a 

correlation between the varying water level and the seasonal 

component in the time series of PS 1.  

(a) (b)
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The original displacement time series of PS 2 and 3 and their 

components are illustrated in Figure 9. PS 2 is located in Area A, 

which is a mainly urban area. The initially estimated mean 

velocity of PS 2 is 𝑣mean = − 2.0505mm a⁄ . Decomposing the 

time series revealed that in addition to a linear trend with a slope 

of 𝑣mean = −3.139mm a⁄ , the time series also has a seasonal 

component. The estimated period of the seasonal component is 

355 days. A periodicity of one year is typically linked to weather 

conditions. For example, a varying groundwater level could 

cause a shift between subsidence and uplift. To verify this, the 

displacement time series would need to be compared to a time 

series of groundwater levels or precipitation levels. Concerning 

the linear trend, additional information in the form of a digital 

elevation model would be needed to distinguish a landslide from 

an area of subsidence or uplift. 

PS 3 is located in Area B, which is a mountainous area west of 

Patras. The area is prone to landslides (Del Soldato et al., 2018). 

The mean velocity of PS 3 was initially estimated to be 𝑣mean =
− 7.197mm a⁄ . The time series analysis revealed that the time 

series is piecewise linear, meaning the slope changes over time. 

This change occurred 416 days after the beginning of the 

observation period in January 2019. The slope changed from 

− 12.045mm a⁄  to −1.679mm a⁄  implicating that the velocity 

with which the PS is displaced decreased. PS 3 belongs most 

likely to a landslide. However, without the information that the 

PS is located on a slope, it would not be possible to distinguish a 

landslide from an area of subsidence or uplift. 

Additionally, it needs to be stated that only displacement rates in 

LOS direction were analyzed. Therefore, displacement time 

series in an ascending and descending LOS direction would be 

necessary to distinguish between a vertical and a horizontal 

displacement. 

 

5. CONCLUSION 

In this paper, we presented a Matlab-based tool to analyze the 

displacement time series of the individual PS. Our PSDefoPAT 

aims to determine a mathematical model that sufficiently 

describes the time series. We demonstrated with three exemplary 

PS displacement time series, that additional relevant information 

is gained by decomposing the time series into its trend, seasonal 

and noise component. For example, the time series of PS 1 was 

decomposed into a linear trend component with a slope of 13.32 

𝑚𝑚 𝑎⁄  and a seasonal component with a period of 373 days. The 

information that the displacement time series of PS 1 has a 

seasonal component would not be available, if the deformation of 

the area was only analyzed using the mean velocity map. Since 

PS 1 is located on the Parapeiros-Peiros Dam, it is plausible to 

assume that the seasonal component of the deformation time 

series is linked to the water level in the reservoir. To make this 

conclusion with confidence, the seasonal component of PS 1 

would need to be compared to the seasonality of the reservoir 

water level. Therefore, we will include additional data sources 

and implement options to analyze the correlation between 

different time series in the future. 
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