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ABSTRACT: 

 

Hyperspectral imaging is crucial for a variety of land-cover mapping and analyzing tasks. The available large number of reflected 

light measurements along a wide range of wavelengths allows for distinguishing between different materials under various 

conditions. Though, several effects bear an undesired variability within hyperspectral images and increase the complexity of 

interpreting such data. Two of the most significant effects in this regard are the BRDF and the spectral mixture. Due to the first, the 

acquisitions geometrical and viewing conditions influences the measured spectral signature of a surface to a large extent. On the 

other hand, because of the typical low spatial resolution of remotely sensed images, each pixel can contain more than one material. 

Despite much research addressing either the BRDF effect and ways to correct it or the spectral unmixing, too few works considered 

these two effects' mutual influence. In this work, we study the BRDF of mixed pixels and present preliminary insights of testing a 

strategy to correct its undesired impact on the data by incorporating the EMs fractions within an unmixing-based semi-empirical 

correction model. Experimental results using real laboratory data acquired under controlled conditions clearly show the significant 

improvement of the corrected reflectance results through the proposed model. 

 

 

1. INTRODUCTION 

Spectral data allows for distinguishing between distinct 

materials based on their measured reflectance (Landgrebe, 

2002; Shaw and Burke, 2003). However, besides a natural 

spectral variability among pixels, an undesired variation of 

these pixels' reflectance exists due to several influences. The 

Bidirectional Reflectance Distribution Function (BRDF) and the 

spectral mixture are two of the main effects bearing a challenge 

in analyzing spectral data. Due to the BRDF, the surface's 

measured spectral signature depends on the acquisition's 

geometrical and viewing conditions. On the other hand, because 

of the typical low spatial resolution of remotely sensed images, 

pixels containing more than one material. Regarding the BRDF 

effect, given an image acquired under a particular geometrical 

configuration (Roy et al., 2016), a pixel's reflectance still 

depends on its spatial location within the scene. This 

dependency negatively affects the results of essential remote 

sensing tasks, e.g., classification (Faran et al., 2019; Melgani 

and Bruzzone, 2004), spectral unmixing (Kizel and 

Benediktsson, 2020) (Keshava and Mustard, 2002), and change 

detection (Eismann et al., 2008).  

Reducing this dependency is critical; therefore, a BRDF 

correction is usually applied to modulate the undesired trend on 

the data that occurs due to this effect and then subtract it from 

the measurements. For this purpose, three main approaches are 

usually adopted based on physical, empirical, and semi-

empirical models: 

 

a) Physical BRDF models describe the interactions of the 

incident radiation with a specific target considering 

biophysical parameters (Walthall, 1997), (Roberts, 2001). 

These models are more complex and have many parameters, 

relatively to empirical or semi-empirical models. 

b) Empirical models are not focused on explaining 

biophysical processes that affect BRDF but rather explain 

mathematically the observed bidirectional reflectance 

derived from multi-angular data sets (Roberts, 2009).  

c) A semi-empirical model combines simplicity and ease of 

inversion of a linear empirical model using a combination of 

weighted kernels and retaining some physical meaning in its 

parameters (Disney and Lewis, 1998). Models of this type 

are often referred to as linear semi-empirical kernel-based 

(LiSK) BRDF models (Jiao et al., 2018; Roujean et al., 

1992). 

Many research works addressed the BRDF effect while 

proposing methodologies for reducing its negative influence on 

the data. Besides, plenty of research tackled the spectral mixture 

analysis and proposed algorithms for estimating the abundance 

fraction of each different material (landcover type), so-called 

endmember (EM), within the pixel. Nevertheless, too few works 

addressed the mutual influence of these two effects. On the one 

hand, the advantage of these BRDF correction models is 

evident. However, all the existing models do not take mixed 

pixels into account. Ignoring the existence of mixed pixels 

while correcting the BRDF effect leads to undesired results. 

Thus, in this study, we address the influence of mixed pixels 

and propose an unmixing-based semi-empirical model for the 

BRDF correction while integrating the EMs' fraction within the 

process to estimate the weights of the BRDF kernels.  

Experiments under controlled laboratory conditions clearly 

show that the proposed methodology outperforms the traditional 

semi-empirical correction model in terms of generality and 

accuracy of the mixed pixels corrected signatures. 

 

2. METHODOLOGY 

One efficient correction of the BRDF effect relies on a semi-

empirical model that combines a sum of kernels to reconstruct 

an analytical function that describes the expected reflectance in 

each viewing direction. Two of these kernels represent 

geometric and volumetric scattering, while the third one 
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characterizes isotropic reflectance. Current strategies rely on 

modulating the directional reflectance and correct the BRDF 

effect for each landcover type separately. Thus, we compute the 

modeled reflectance 
m
ρ′  for a specific landcover type in each 

spectral band as follows: 
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Where 
i
θ  and 

r
θ  are the solar and viewing zenith angles, 

respectively, and ϕ∆ is the phase angle. The superscript j  

denotes the j-th class among several classes, i.e., landcover 

types, within the image. The notations 
vol
k , 

geo
k , 

vol
f , and 

geo
f  

indicate the volumetric and geometric kernels and their weight 

coefficients, respectively, and 
iso
f  is a scalar represents the 

isotropic reflectance. To create a semi-empirical model that fits 

for cases with high solar and(/or) view angles (Jia et al., 2020), 

we use the hotspot-revised Ross-Thick-Maignan (RTM) 

(Maignan et al., 2004) volumetric kernel and Li-Transit-

Reciprocal (LTR) geometric kernel (Li et al., 1999; Zhang et 

al., 2018). The computation of the RTM and LTR kernels is 

given by: 
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Given the sun's and sensor's location, relative to the image pixel 

locations, the kernels' values are fixed for each pixel and 

calculated as presented in equations (2) and (3). Using pixels of 

the same landcover type but in different places over the images, 

i.e., with varying geometrical parameters, we can build the 

following system of linear equations: 
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A least-squares solution of this equation system provides an 

estimate of the coefficients , ,
iso vol geo
f f f . We use these 

coefficients to calculate the anisotropy factor (Jia et al., 2020) 

for each measurement. The anisotropic factor describes the ratio 

between the directional reflectance and a reference reflectance. 

Usually, we correct the measurements to the nadir view, and the 

anisotropic factor for each pixel is then given by:   
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where, 
_i ref
θ , 

_r ref
θ , and 

_r ref
ϕ∆  usually represent a nadir 

view reference direction, i.e., 
_

0
i ref
θ = . Then we correct the 

measured reflectance to reduce the BRDF effect as follows:  

 

 ( ) ( ), , , , /
i r i r

ρ θ θ ϕ ρ θ θ ϕ η′ ′∆ = ∆ , (6) 

 

where ρ , ρ′  and η′  are measured and corrected 

reflectance values, and the anisotropy factor according to 
the traditional semi-empirical model, respectively.  
 

2.1 An improved unmixing-based semi-empirical model for 

BRDF correction 

The semi-empirical approach for correcting the BRDF effect 

reduces the reflectance variability due to measuring from 

different directions. Although, two main drawbacks of the 

traditional BRDF correction models still existing: 1) the need 

for classifying the image into different landcover types, and 2) 

the nonconsideration of mixed pixels that contain more than one 

kind of material. Mixed pixels contain more than one material 

in different variations and different fraction compositions. Thus, 

it is highly probable that none of the estimated semi-empirical 

models for each material fits for correcting the BRDF of mixed 

pixels. Therefore, there is a need for an approach that takes 

these pixels into account. Here, we present a new modified 

semi-empirical model that considers the probable mixture 

within the pixel and does not require classifying the image into 

landcover types. Mainly, we propose an unmixing-based semi-

empirical model that allows for incorporating the EMs' fraction 

while estimating the model's kernel weights. Similar to the 

traditional model, we use the RTM and LTR kernels to compute 

vol
k , and 

geo
k . Whereas, we apply the unmixing process to the 

data to estimate the EMs' fraction in each pixel    

 

2.2 Spectral Unmixing 

Assuming a linear mixture model, we represent the pixel's 

reflectance as a linear combination of the set of EMs as follows: 

 

 = +r Ea w  (7) 

 

where 1b×∈r ℝ  is the pixel's reflectance, b d×∈E ℝ is a matrix 

of the EM spectra, 
1 2
, , ,

d
α α α

Τ
 =   

a ⋯  is the fraction vector, 

and 1b×∈w ℝ  represents the system noise and is assumed to be 

zero-mean Gaussian, while b  and d  are the number of spectral 

bands and number of EMs, respectively. To estimate the 

fraction vector, we solve an optimization problem to minimize 

an objective function that measures the spectral dissimilarity 

between the pixel's reflectance and the reconstructed reflectance 

by the EMs and their estimated fractions. Among various 

objective functions for the unmixing problem, the Euclidian 
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Minimum Distance (EMD) is common. However, other 

measures, e.g., the Spectral Angle Mapper (SAM) (Kizel and 

Shoshany, 2018; Shoshany et al., 2011), are preferred for 

specific purposes, for example, reducing the varying 

illumination effect (Kizel et al., 2017). In addition, the 

unmixing problem is usually solved under constraints of 

positivity and additive sum-to-one over the pixel's fraction to 

ensure the physical feasibility of the results.   

 

2.3 A fraction-based estimation of BRDF coefficients      

Given the EM fraction in each pixel and assuming a linear 

mixture model, we represent the modeled reflectance as 

follows:   

 

 1 2

1 2 2

d

m m m m
ρ α ρ α ρ α ρ′′ ′ ′ ′= + + +⋯  (8) 

 

Using the kernel-based formulation of the modeled reflectance 

of each landcover type, we can write the following 
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Where d is the number of different landcover types within the 

pixel and 
1 2
, , ,

d
α α α⋯  are their abundance fractions, which we 

estimate through an unmixing process (Kizel et al., 2017; Kizel 

and Shoshany, 2018). Similar to the case of the traditional semi-

empirical model, each pixel measurement provides one equation 

as follows: 
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Like in the classic model, solving this linear equation system, 

we estimate the coefficients , ,
iso vol geo
f f f  for each landcover 

type, but simultaneously and without classifying the image. 

Once we estimate the model's coefficients, we then compute the 

corrected reflectance as  

 

 ( ) ( ), , , , /
i r i r

ρ θ θ ϕ ρ θ θ ϕ η′′ ′′∆ = ∆ . (11) 

 

Where ρ′′  and η′′  are the corrected measurement and the 

computed anisotropy factor using the unmixing-based semi-

empirical model, respectively.  

 

3. EXPERIMENTS AND RESULTS 

To evaluate the proposed methodology, we experimented with 

real image data acquired under controlled conditions. We 

created BRDF scenarios using hand-crafted pixels with a 

microtopography by placing cubes made of one material on top 

of a homogenous background, made of another material (see 

Figure 1). Then, we acquired images of each scene from seven 

different camera locations while the light source was at a zenith 

angle 30
i
θ = � and azimuth 180

i
ϕ = � . Precisely, we located 

the camera at three solid angles: 0 ,30 ,60
r
θ = � � �  and three 

azimuth angles: 0 ,90 ,270
r
ϕ = � � �  (see Figure 1). We used 

the Specim IQ hyperspectral camera for image 

acquisition, which provides images with a size of 512 512×  

pixels and 204 spectral bands between 400-1000nm. As a light 

source, we used the C12 silent halogen lamp provided by 

Hedler (https://www.hedler.com). We placed a barium sulfate 

calibration panel within the acquired frame, then retrieved the 

reflectance values in each image by dividing the spectral 

signature in each pixel by the calibration panel's mean 

signature. Then, to create mixed pixels, we aggregate each 

image into a single pixel.  Once we have seven mixed pixels 

representing the same area but measured from different viewing 

locations, we apply the following steps to evaluate the new 

model:   

   
1) Estimating the EM fractions in each pixel.  

2) Estimating , ,
iso vol geo
f f f for each EM (landcover type) 

according to the new model. 

3) Correcting the reflectance value in each pixel using the 

estimated coefficients in step 2.  

4) Calculate the coefficient of variation (CV) in each band 

over the different pixels.  

 

We compute the CV in each spectral band as the ratio of the 

standard deviation 
λ
σ  to the mean 

λ
µ of the seven pixels as 

follows 

 CV 100 λ
λ

λ

σ

µ
= ⋅  (12) 

 

where 
,

1

1 n

p

pn
λ λ
µ ρ

=

= ∑  and ( )
2

,
1

1 n

p
pn

λ λ λ
σ ρ µ

=

= −∑  are the 

mean and standard deviation over the n measured pixels at the 

spectral band denoted by λ , respectively, and 
,p λ
ρ  is the 

reflectance value at the p th−  pixel. For comparison, we use 

the uncorrected measurements and those that we correct using 

the traditional model. Figure 2, Figure 3, and Figure 4 present 

the results for patterns A, B, and C, respectively. In the original 

experiment, we tested six different patterns, but we present the 

results for only three patterns due to size limitations. The results 

clearly show that incorporating the EM fractions within a new 

semi-empirical model enhances the BRDF correction. 

The advantage of the proposed unmixing-based model over the 

traditional model is apparent in all three cases (patterns). The 

plots of the measured and modeled reflectance values at a 

particular wavelength (first row in Figures 2-4) show how the 

proposed model captures the measured reflectance trend more 

accurately. Thus, the obtained corrected values are more 

uniform under the different viewing zenith angles. Both the 

traditional and proposed correction models reduce the BRDF 

effect's influence on the retrieved spectral signatures. But the 

CV values of the obtained corrected reflectance by the proposed 

unmixing-based model are lower than those obtained by the 

traditional model over the entire spectral bands. To derive more 

insights regarding the tested models' performance, we observe 

the mean value of the CV in each BRDF scenario. Table I 

summarizes the results that clearly show that the proposed 

unmixing-based model outperforms the traditional one. 
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Figure 1. An illustration of the imaging configuration (righ bottom corner); the camera positions are marked on top of the 

hemisphere. Tiles A, B, and C show the repetitive patterns A, B, and C, respectively; the imaged area is marked with a square. This 

area is aggregated into a single pixel to create a spectral mixture. One of the real seven images for pattern A is shown in the right 

bottom corner of its corresponding tile. 

 

 
Figure 2. Evaluation of the BRDF correction models for the microstructure pattern A. Left and right columns, correction without 

considering and considering the spectral mixture, respectively. The second row presents the measured pixels' reflectance signatures 

before the BRDF correction (gray dashed lines) and after the correction (solid magenta lines). The third row shows the CV for each 

band before and after the correction. 
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Figure 3. Evaluation of the BRDF correction models for the microstructure pattern B. Left and right columns, correction without 

considering and considering the spectral mixture, respectively. The second row presents the measured pixels' reflectance signatures 

before the BRDF correction (gray dashed lines) and after the correction (solid magenta lines). The third row shows the CV for each 

band before and after the correction. 

 

 
Figure 4. Evaluation of the BRDF correction models for the microstructure pattern C. Left and right columns, correction without 

considering and considering the spectral mixture, respectively. The second row presents the measured pixels' reflectance signatures 

before the BRDF correction (gray dashed lines) and after the correction (solid magenta lines). The third row shows the CV for each 

band before and after the correction. 
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The performance of the unmixing-based model is advantageous 

regardless of the microtopography of the pattern. However, the 

comparison of the results for the different patterns is 

noteworthy. Despite using the same two EMs in all the cases, 

the CV of the corrected measurements varies from one pattern 

to another. This result shows the influence of the different 

shading portions due to the different microtopography and the 

variations of the cube facets orientation within the pattern. 

 

Pattern ρ  ρ′  ρ′′  

A 12.0 7.9 3.8 
B 15.0 4.7 2.4 
C 10.8 4.3 1.8 

Table I. Summary of evaluation metrics CV of the measured 

and BRDF-corrected reflectance. 

 

4. CONCLUSIONS  

We proposed an unmixing-based model for correcting the 

BRDF effect in spectral data. The proposed model relies mainly 

on incorporating the abundance fractions of EMs within the 

regression problem for estimating the weights of BRDF kernels. 

We conducted an experimental evaluation with a mixture of two 

EMs and three different sub-pixel microstructure variations. The 

results indicate the BRDF correction's significant improvement 

through the unmixing-based model compared to the traditional 

semi-empirical one. The CV of the corrected data through the 

proposed model is significantly lower for all the examined 

patterns. In the meantime, we test the proposed model on a 

mixture of only two EMs, but the results are encouraging as a 

first step towards developing a new general model for the 

BRDF correction.  
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