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ABSTRACT:

This paper deals with the analysis and detection of wildfires by using PRISMA imagery. Precursore IperSpettrale della Mis-
sione Applicativa (Hyperspectral Precursor of the Application Mission, PRISMA) is a new hyperspectral mission by ASI (Agenzia
Spaziale Italiana, Italian Space Agency) launched in 2019. This mission provides hyperspectral images with a spectral range of
0.4-2.5 ym and an average spectral resolution less than 10 nm. In this work, we used the PRISMA hypercube acquired during the
Australian bushfires of December 2019 in New South Wales. The analysis of the image is presented considering the unique amount
of information contained in the continuous spectral signature of the hypercube. The Carbon dioxide Continuum-Interpolated Band
Ratio (CO2 CIBR), Hyperspectral Fire Detection Index (HFDI), and Normalized Burn Index (NBR) will be used to analyze the
informative content of the image, along with the analysis of some specific visible, near-infrared and shortwave-infrared bands. A
multiclass classification is presented by using a 1-dimensional convolutional neural network (CNN), and the results will be com-
pared with the ones given by a support vector machine classifier reported in literature. Finally, some preliminary results related to

wildfire temperature estimation are presented.

1. INTRODUCTION

Detection and accurate monitoring of risk areas is becoming in-
creasingly important to counteract severe and destructive wild-
fires. As reported in the survey paper (Barmpoutis et al., 2020),
satellite-based optical remote sensing (RS) represents a cost-
effective way to detect, map, and investigate wildfires. For in-
stance, in (Domenikiotis et al., 2002, Domenikiotis et al., 2003)
the assessment of the burned areas was investigated by using the
National Oceanic and Atmospheric Administration/Advanced
Very High Resolution Radiometer (NOAA/AVHRR) and Land-
sat TM. NASA is providing near real-time global fire monitor-
ing using data from MODIS and VIIRS (Davies et al., 2020).

Among the different remote sensing technologies, hyperspec-
tral (HS) imagery presents nonpareil features in support to fire
detection (Veraverbeke et al., 2018). Indeed, HS space-born
imagery provide the required information in the infrared
wavelengths to detect active fires and burnt areas, as discussed
in (Barducci et al., 2002, Barducci et al., 2004, Hua and Shao,
2017). Previous results based on EO-1 Hyperion have shown
the HS potentialities for RS applications (Waigl et al., 2019) for
fire detection and temperature retrieval over selected Alaskan
boreal forest fires. The problem of temperature estimation
by using HS data has been covered also in other works, such
as (Dennison et al., 2006, Barducci et al., 2004, Dennison
and Matheson, 2011, Matheson and Dennison, 2012). In
(Amici et al., 2011), a multi-resolution spectral analysis of
wildfire focused on the potassium emission signatures has been
performed by using laboratory, airborne and spaceborne hy-
perspectral remote sensing. The potassium emission signature
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has been used also in (Vodacek et al., 2002) for the detection
of burning biomass. In (Griffin et al., 2000), a characterization
and delineation of plumes, clouds and fires in hyperspectral
images has been discussed.

In this paper, HS images from the Italian satellite PRISMA
(PRecursore IperSpettrale della Missione Applicativa) will be
used. Many details on the PRISMA mission starting from the
initial design to the operative life can be found in literature
(Galeazzi et al., 2008, Ananasso et al., 2009, Lopinto et al.,
2012, Colini et al., 2013, Colini et al., 2014, Candela et al.,
2016, Loizzo et al., 2016, Guarini et al., 2018, Loizzo et al.,
2018, Loizzo et al., 2019, Coppo et al., 2019, Coppo et al.,
2020). PRISMA represents the first mission with a dedicated
HS camera of the recent years, and other similar mission are
planned in the future years (Carmona et al., 2017, Cawse-
Nicholson et al., 2021, Guanter et al., 2015, Nieke and Rast,
2018). The PRISMA satellite, launched on 22 March 2019,
holds a hyperspectral and panchromatic payload which is able
to acquire images with a worldwide coverage. The HS camera
works in the spectral range of 0.4-2.5 pm, with 66 and 173
channels in the VNIR (Visible and Near InfraRed) and SWIR
(Short-Wave InfraRed) regions, respectively. The average
spectral resolution is less than 10 nm on the entire range with
an accuracy of +0.1 nm, while the ground sampling distance of
PRISMA images is about 5 m and 30 m for panchromatic and
hyperspectral camera, respectively.

The area of interest of this work is located in Australia, where
an high number of wildfires has been registered in these late
years. Indeed, the impact of climate change on the risk of forest
and grassland fires in Australia has been subject to studies, e.g.
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(Pitman et al., 2007, Deb et al., 2020), having important effects
both on the local communities (Weber et al., 2019) and the en-
vironment (Kumar et al., 2021).

The continuous spectral signature of PRISMA along with
neural network analysis can open new unexplored research
opportunities (Piscini and Amici, 2015, Amici and Piscini,
2021). The main contributions of this work to the state of the
art are the following:

1. Discussing the advantages of using PRISMA HS data over
using multi-spectral data by analysing the informative con-
tent of VNIR and SWIR channels and hyperspectral in-
dices such as the Carbon dioxide Continuum-Interpolated
Band Ratio (CO2 CIBR), the Hyperspectral Fire Detection
Index (HFDI), and the Normalized Burn Index (NBR).

2. Presenting the potentialities of deep learning methodolo-
gies based on 1D convolutional neural networks to catch
spectral dependencies. The results will be compared with
the ones obtained in (Amici and Piscini, 2021) where a
support vector machine (SVM) classifier was used.

3. Evaluating preliminary results for the wildfire temperature
estimation using a linear mixture model analysis.

4. Discussing the possibility and benefit to integrate HS-
based approach in future monitoring systems in case of
wildfire alerts and disasters.

The rest of the paper is organized as follows. Sec. 2 deals
with the description of the area of interest and the hyperspectral
datacube. In Sec. 3 the classification and temperature estim-
ation approaches are explained, while in Sec. 4 the results of
the proposed analyses are reported. A critical discussion of the
output of this study is reported in Sec. 5 and conclusions are
given in Sec. 6.

2. STUDY AREA DESCRIPTION AND ANALYSIS
2.1 Area of interest

The study area of this paper has been chosen in Australia spe-
cifically in New South Wales about 250 km north of Sydney in
the Ben Halls Gap National Park (BHGNP) which covers 2500
ha, and is situated 60 km south-east of Tamworth and 10 km
from the township of Nundle. The park is located at a com-
paratively high altitude that results in generally cool temperat-
ures and high rainfall. However, in late 2019, the simultaneous
occurrence of high temperatures and wind speeds, and low re-
lative humidity, produced the conditions for the development
of a high-intensity wildfire behavior. The RGB composite of
the study area is reported in Fig. 1. As can be seen, two act-
ive wildfires can be identified, a southern one around 151.2 °E,
31.59 °S, and a northern one around 151.3 °E, 31.46 °S. The
PRISMA image over this area of interest has been acquired on
December 27, 2019.

2.2 Analysis of the hyperspectral datacube

The PRISMA data are made available for free for research pur-
poses by the Italian Space Agency (ASI) (Guarini et al., 2018).
Hyperspectral and panchromatic data at 30 m and 5 m resolu-
tion, respectively, are delivered in HDF5 format with four op-
tions:

Figure 1. RGB composite of the ROI in Australia.

1. Level 1, radiometrically corrected and calibrated TOA (top
of atmosphere) data;

2. Level 2B, geolocated at-ground spectral radiance product;
3. Level 2C, geolocated at-surface reflectance product; and

4. Level 2D, geocoded version of the Level 2C product.

In this work, we used both Level 2B and Level 2D. Combining
the spectral bands of PRISMA, several spectral indices can
be evaluated to inspect and analyse the informative content
of the chosen scene. Here, we discuss the Hyperspectral Fire
Detection Index (HFDI), the Carbon Dioxide Continuum-
Interpolated Band Ratio (CO»-CIBR), the Normalized Burn
Ratio (NBR), and other information retrieved by VNIR and
SWIR bands. A much more detailed analysis of these spectral
indices applied to the same PRISMA scene are reported in
(Amici and Piscini, 2021).

2.2.1 False color composite The false color composite is
reported in Fig. 2. This image is obtained with an RGB triplet
given by the bands at 1700 nm, 1100 nm, and 660 nm, respect-
ively. Fire smoke is not captured in these wavelength, thus al-
lowing an inspection of the terrain where one can recognize
active fire pixels as the ones shown in red, whereas the burnt
area appears as dark green pixels and fresh vegetation as light
green pixels.

2.2.2 HFDI The authors of (Dennison and Matheson, 2011,
Waigl et al., 2019) suggest that a very accurate fire detection
analysis can be carried out by using the hyperspectral fire de-
tection index (HFDI), a normalized difference index defined as

HEDI — L2430 nm — L2060 nm

1
L2430 nm + L2060 nm M
where L243onm and Laosonm are the spectral radiances at two
SWIR bands around 2430 nm and 2060 nm, respectively.

The HFDI index is reported in Fig. 3 and one can appreciate the
different intensity of pixels belonging to active fire with respect
to neighbouring pixels.
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Figure 3. HFDI index.
Figure 2. False color image for visual inspection of active fires.
2.2.3 CO3-CIBR The Carbon Dioxide Continuum- 1.6
Interpolated Band Ratio (CO2-CIBR) (Dennison et al., 2006)
can be used to separate the dominantly emitted radiance from
the dominantly reflected radiance and is described by 14
CO,-CIBR = L2010 nm ) 12
0.666 L1990 nm + 0.334 L2040 nm
The CO2-CIBR index is shown in Fig. 4 considering the inter- -
val [0.6,1.8] for a better visualization. )
2.24 NBR The Normalized Burn Ration (NBR) index com- 0.8

bines atmospherically-corrected bands at 1088 nm and 2020 nm
in a normalized difference ratio, i.e.

3\ g2 o - o "
L — L AN A % o AN
1088 Nm 2020 NM (3) \5'\ »\6’\' \5\, '\5\. '\6'\'

<

NBR =
L1oss nm + L2020 nm

The NBR index is shown in Fig. 5. Also in this case, active fire Figure 4. CO2-CIBR index with pixels in the interval [0.6,1.8].

pixels are easily distinguished from the other pixels. 1.0
Burn severity can also be estimated using the differenced Nor- o i
malized Burn Ratio or dNBR, which is used by land managers ,5\7591
in the USA to assess landscape-level burn severity (Key and e
Benson, 2006). The dNBR is computed from pre-fire NBR . :
minus post-fire NBR. However, only the NBR index is used N 58" e 04
for the purposes of this study. N i
0.2

2.2.5 Active fire pixels detection in the far SWIR domain \gﬁ &
The Level 2D band at 2490 nm is reported in Fig. 6. As can be ° 00
seen, saturated pixels with reflectance equal to 1 are associated
to the active fire pixels already detected with the previous ana- & s
lyses. With the proper threshold, the active fire pixel map can 2 BN
be obtained as it is reported in Fig. 7. 2 04

bfe
2.2.6 Smoke detection in the VNIR domain Smoke can '5’\'66 we &< s 3 e 06
be quite easily detected by looking at the VNIR bands. For AGY o\ N o7 ABY
instance, the 41 1nm band is reported in Fig. 8. One can appre-
ciate how the smoke pixels are separated from the neighbouring Figure 5. NBR index.

pixels. Similarly to the previous SWIR case, also here a smoke
map can be developed by using the proper threshold.
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Figure 6. Level 2D SWIR band at 2490 nm.

Figure 7. Level 2D SWIR band at 2490 nm with saturated pixels
highlighted in red.

S\ ."‘\%
n

Figure 8. Level 2D SWIR band at 411 nm.

3. METHODS AND ANALYSIS
3.1 Manual classification based on spectral analysis

For the implementation of the automatic segmentation based on
an artificial intelligence approach, the labelling of some refer-
ence pixels for the training and validation operations is needed.
To this aim, the reference pixels already determined in (Amici
and Piscini, 2021) have been used. For the sake of clarity, we re-
port here a summary of the manual classification procedure that
has been exploited to determine the reference pixels. Exploring
the false color composite in Fig. 2 and looking at the PRISMA
spectral profile, which was comparable with the corresponding
classes that can be found in the literature (Waigl et al., 2019),
the following number of labelled pixels has been selected from
the southern wildfire:

e 48 pixels for active fires (class 0),
e 48 pixels representing smoke (class 1),
e 12 pixels for freshly burned areas (class 2),

e 36 pixels for vegetation (high vegetation, bushes and low
vegetation, class 3), and

e 48 pixels for the bare soil class (bare soil/road/anthropic,
class 4).

The training set represents 83% of the labelled data, while the
remaining 17% was selected for the classification validation. It
is noteworthy that the amount of labelled data is quite small and
can only be used to run a simple CNN model for a preliminary
validation of the classification approach.

3.2 Automatic classification with a 1D CNN

The classification model used in this work is inspired by the
one described in (Hu et al., 2015) and is represented in Fig.
9. The input is the pixel spectrum comprising the SWIR and
the VNIR channels for the PRISMA data. Thus, it is an array
with C' = 234 elements (after removal of some useless original
data in the input hyper-cube). The first hidden layer is a one-
dimensional (1D) convolutional layer with kernel equal to 3,
n1 =112 filters, same padding, relu activation function, and (2
kernel regularizer. After the convolutional layer, there is a max
pooling layer with pool size of 2 and stride of 2 (with respect
to Fig. 9, note that no = m1). The result of this max pooling is

Input 4 Output
spectrum classification
« Class 0
O
Class 1
N -_ Class 2
‘g ) Class 3
% e Class 4
"= & )
2
c& [}
Max . Dense
Convolution Flattening

Pooling connection

Figure 9. Architecture of the CNN model for the multi-class
classification.
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then passed into a flattening layer, and connected to a fully con-
nected layer of 128 units with ReLU activation. The last layer
is a dense unit for the multi-class classification with softmax
activation function. Note that the values of C; and C> in Fig.
9 depend on the architecture of the network and can be easily
evaluated. The model is trained using the Adam optimizer and
the categorical crossentropy loss function. The whole network
has been implemented using Python and Keras.

3.3 Temperature estimation

Temperature estimation can be attained by using the PRISMA
level 2B images (bottom of atmosphere - BOA - radiance) and
a linear mixture model, according to approach shown in (Waigl
etal., 2019). The pixel signal can be approximated by the linear
mixture signal Ly r s that is expressed as a weighted average
of n sources Ly (T;) (modeled as Planck black bodies) and m
background signals L; ;x4 (chosen as other pixels in the same
image), i.e.

n m
Lyom = Zpi,fireL)\(Ti) + Zpi,bkg[lj,bkgz 4
i=1 j=1
where the weight parameters p; and p; are defined such that
> Difire + Z;n:lpiybkg = 1. A least square method is
used to estimate the parameters p;, p; and the temperatures 75.

However, differently from (Waigl et al., 2019) where they use
at-sensor radiance, here we have used bottom-of-atmosphere ra-
diance in order to make it easier and more consistent to approx-
imate the hot sources with Planck black bodies. Moreover, the
background signal is chosen directly from the image, select-
ing some non-fire pixels from the other for classes previously
defined.

4. RESULTS
4.1 Classification results

The results of the training over the southern wildfire are sum-

Figure 10. Results of the classification prediction from the
proposed CNN model, southern wildfire.

Figure 11. Results of the classification prediction from the SVM
of (Amici and Piscini, 2021), southern wildfire.

marized in Table 1. The final overall accuracy of the model on [—1 Fire
the validation dataset is 97.83%, which is slightly higher than B Smoke
96.87% reported in (Amici and Piscini, 2021) where a SVM
was used. B Burned
Precision Recall FI-Score Support B Vegetation
0 - Fire 1.00 1.00 1.00 10 1 Baresoil
1 - Smoke 1.00 1.00 1.00 9 : :
2 - Burned 1.00 1.00 1.00 3
3 - Vegetation 0.92 1.00 0.96 12
4 - Bare soil 1.00 0.92 0.96 12
accuracy 0.98 46
macro avg 0.98 0.98 0.98 46
weighted avg 0.98 0.98 0.98 46

Table 1. Accuracy measures for the validation dataset.

The segmentation map for the southern wildfire is reported in
Fig. 10, and it can be compared with the one produced by the
SVM in (Amici and Piscini, 2021) and shown in Fig. 11. As
can be seen, the results are pretty similar apart from the western
part, where the SVM map returned a burned area which is not
captured by the 1D CNN model. Finally, the segmentation map
for the northern wildfire is reported in Fig. 12. The legend with
the colors of the five classes has been reported only once in Fig.
12.

Figure 12. Results of the classification prediction from the
proposed CNN model, northern fire.
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4.2 Temperature estimation results

For this numerical example, the southern wildfire has been
chosen to select the pixel to be analysed. One issue to be
considered when dealing with the approach described in Sec.
3.3 is that the wavelength interval between 1900 nm and 2450
nm is often affected by saturation when observing hot pixels.
Hence, we are not recording the entire signal, but only the one
that the sensor is able to record. This problem can be seen in
Fig. 13, where the behaviour of the fire curve is anomalous
after 1900 nm (the active fire pixel related to the fire spectral
curve is reported in the small plot in the bottom left of the
figure). Indeed, the fire curve is higher than the not-fire one in
the SWIR region, but after 1900 nm is decreasing instead of
increasing, as one should expect comparing with the Planck
curves reported for 600 K, 700 K, and 800 K (scaled by a factor
10 for visualization purposes). The saturation problems clearly
appears when looking at the reflectance product, level 2D,
which is reported in Fig. 14, where the saturation level equal to
1 is attained after 2000 nm. Accordingly, the fitting with the
Planck black body curve could be completely meaningless in
this region.

As a result of the saturation issue, when we try to fit the en-
tire SWIR region between 1400 nm and 2450 nm the results
are not satisfactory. Indeed, the least-square technique returns
a solution that fits the input curve, as shown in 15. The blue
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Figure 13. Comparison between spectra of fire and non-fire
pixels.
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Figure 14. Reflectance of the reference fire pixel.

line represents the spectral signal of the active fire pixel, while
the red line represents the linear mixture model. Two fitting
temperatures have been used, where the first one only fits the
interval 1440 nm - 1800 nm, while the second one only fits the
interval 1900 nm - 2450 nm. The result of this approach is the
following:

e In the interval 1440 nm - 1800 nm, a fitting temperature of
645.4 K has been found, with p1,fire = 39.4%.

o In the interval 1900 nm - 2450 nm, a fitting temperature of
1928.9 K has been found, with pa, fire = 0.02%.

The interpretation of these results is that the most relevant and
meaningful fitting temperature is the first one equal to 645.4
K. The second temperature is too high for a wildfire, and this
wrong estimation is due to the saturation of the sensor and the
wrong spectral curve registered in the far SWIR domain. How-
ever, this fitting approach is affected by the wrong spectral pro-
file after 1900 nm so that also the first temperature is not fully
reliable.

A better approach would be to focus only in the wavelength
interval between 1440 nm - 1800 nm. In this case, only one
temperature is used for the fitting procedure. The results are
shown in Fig. 16, and the fitting temperature is 717.8 K with
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—— Fire Signal
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Figure 15. Results of linear mixture analysis for temperature
retrieval in the entire SWIR interval.
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Figure 16. Results of linear mixture analysis for temperature
retrieval in the SWIR interval 1440 nm - 1800 nm.
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p1,fire = 13.5%. As can be seen, the previous estimate has
been slightly changed, but this result is more reliable as no sat-
uration is detected in the input curve for the new wavelength
interval.

5. DISCUSSION

The results of this paper demonstrate the potentialities of
PRISMA hyperspectral data with regard to wildfire analysis
and detection. The availability of a continuous and reliable
spectral signatures allows to analyse the image information
obtaining quite confident interpretations of the observed areas.
As a result, reference pixels can be identified and used to train
machine learning models. Even though the number of training
and validation pixels must be increased to thoroughly discuss
the generalization ability of the proposed 1D CNN model,
the prediction map attained for the northern wildfire looks
quite reliable and classes are well defined and distinguished.
Checking the results in Fig. 12 with all the figures from Fig.
1 to Fig. 8, one can appreciate that the classes are quite close
to what a visual inspection can provide. Future works will
focus on the possibility to exploit more PRISMA images with
wildfire in order to provide a more robust insight into the
classification task.

The training and validation datasets are not big enough to
perform a reliable comparative analysis between our predictive
model and the SVM one reported in (Amici and Piscini, 2021).
According to our understanding and experience, this result
is an indication that PRISMA spectral signatures allow to
distinguish quite easily the different classes and the 1D CNN
model is able to effectively learn from these information.

The possibility to use the far SWIR bands around 2400 nm
to detect candidate arcas of active fire is one of the bigger
advantages when talking about wildfire early-warning. Even
though such an operative scenario goes beyond the possibilities
of PRISMA, this is something that can be considered for future
missions dedicated to environmental analysis and natural
hazards, risks and disasters management. Future missions
embarking hyperspectral cameras could focus on detecting
hotspots and candidate active fires, also providing on-board
estimation of the pixel temperature with the approach described
in Sec. 3.3. Indeed, all these analyses do not require high
computational power, and could be easily deployed on-board
future spacecrafts.

Finally, it is worthy to say that, even though the temperature es-
timation proposed in this work is preliminary and needs further
analysis, the register temperature of 666.4 K is consistent with
the range of temperatures reported in other works (Kaufman
et al., 1998, Dennison et al., 2006), as active wildfires usually
present peak temperatures at around 1000 K for flaming and
around 600 K for the smoldering phase.

6. CONCLUSION

This paper has shown some analyses concerning a wildfire oc-
curred in Australia in December 2019 and recorded by the hy-
perspectral remote sensing satellite PRISMA. The results of
this paper demonstrate that the hyperspectral datacube provided
by PRISMA allows one to perform many different and com-
plementary analyses to study different aspects of the wildfire.
A preliminary descriptive analysis of the area of interest has

been carried out by looking at different spectral bands and spec-
tral indices. Then, an automatic classification based on a one-
dimensional convolutional neural network has been performed.
Finally, the temperature of the wildfire has been estimated by
using a least-square fitting technique and a reference black body
spectral profile. These preliminary analyses set the basis for
future investigations that can be extended to other images and
compared with other sensors.
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