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ABSTRACT:

With the rapid development of remote sensing technology in the last decade, different modalities of remote sensing data recorded via
a variety of sensors are now easily accessible. Different sensors often provide complementary information and thus a more detailed
and accurate Earth observation is possible by integrating their joint information. While change detection methods have been tradi-
tionally proposed for homogeneous data, combining multi-sensor multi-temporal data with different characteristics and resolution
may provide a more robust interpretation of spatio-temporal evolution. However, integration of multi-temporal information from
disparate sensory sources is challenging. Moreover, research in this direction is often hindered by a lack of available multi-modal
data sets. To resolve these current shortcomings we curate a novel data set for multi-modal change detection. We further propose
a novel Siamese architecture for fusion of SAR and optical observations for multi-modal change detection, which underlines the
value of our newly gathered data. An experimental validation on the aforementioned data set demonstrates the potentials of the
proposed model, which outperforms common mono-modal methods compared against.

1. INTRODUCTION

In a time of rapidly evolving urban landscapes and nature mod-
ified due to climate change our planet faces a rapid transform-
ation of its surface area. This transformation is being continu-
ously monitored by modern satellite systems like Copernicus’
Sentinel mission. The automated recognition of changes ob-
served by these repeated observations is the task of change de-
tection (CD). CD is a prominent and long-standing challenge
in remote sensing (Malila, 1980); on one hand because of the
Earth’s dynamic nature and the need to quantify change, on the
other due to the variety of land cover and the persistent chal-
lenge of the task. Recent progress in deep learning greatly be-
nefited previous application to change detection in satellite data
(Ball et al., 2017) (Zhu et al., 2017), which is the approach fol-
lowed as well in our work. However, most preceding publica-
tions do not consider the fusion of multiple sensors and thereby
misses on the opportunity to utilize the variety of Earth ob-
servation data available. Our work specifically addresses the
challenge of multi-modal bi-temporal change detection, where
(multi-spectral) optical as well as ground range detected syn-
thetic aperture radar (SAR) measurements are available at both
considered time points. Fusing these two modalities poses a
difficult problem, as both domains are very different from one
another: First, in terms of viewpoint geometry—while our op-
tical data is orthorectified, the SAR measurements are sideway-
looking. Second, multi-spectral optical data provides a view
on the surface characteristics of the target, whereas SAR obser-
vations provide information on its physical properties. Finally,
SAR data is challenging to work with and contains speckle ef-
fects that a change detector must learn to interpret as noise and
not raise any false alarms about. On the other hand, SAR as
an active sensor does not suffer from drawbacks of optical im-
agery, such as sensitivity to light conditions or bad weather due
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as in e.g. the presence of clouds. Exemplary full-scene obser-
vations for one ROI are portrayed in Fig. 1.

Figure 1. Multi-modal observations and change map for
exemplary ROI ’Paris’. Rows: Sentinel-2 data (RGB channels).
Sentinel-1 data (VV-polarized). Change maps. Columns: Time

point 1. Time point 2. The images highlight the differences
between both modalities and the potential complementary
information they may provide to benefit change detection.
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The central research question addressed in this work is whether
and to which extent information from multiple sources bene-
fits the detection of changes in remote sensing data. For this
sake we build on preceding work in change detection (Daudt
et al., 2018b)(Saha et al., 2019). We design a novel convolu-
tional encoder-decoder architecture that fuses the multi-modal
information and processes them in a supervised Siamese fash-
ion. Furthermore, we collect a data set for multi-modal change
detection and propose an experimental design to investigate the
research question.

In sum, the contributions of our work are given by: First, we
design a novel architecture that ingests both optical and SAR
data and processes the multi-modal information through a Sia-
mese network. Second, we collected SAR observations to com-
plement an established data set of optical images, providing a
multi-modal change detection data set. Third, we experiment-
ally evaluate the proposed architecture, train it on the curated
data set and test it to highlight the benefits of multi-modal data
for change detection in remote sensing.

The remainder of the paper is organized as follows: The context
of related work is provided in section 1.1. The methodology
and the novel network architecture are introduced in section 2.
The experimental design and results are reported in section 3.
Finally, sections 4 and 5 close our work with a discussion and
conclusion, respectively.

1.1 Related work

Change detection is a longstanding challenge in remote sens-
ing and original methods date back accordingly into the past,
constituting a long and rich body of literature on the problem.
A classical approach, post-classification comparison, first se-
mantically segments pre- and post-change images individually
and then computes the change map as the difference of the
labels. In comparison, direct-multidate classification follows
a single-step approach via decision tree change detection on
stacked features integrating across both spectral & temporal
properties (Singh, 1989). A third classical technique is com-
pound classification, which maximizes the posterior distribu-
tion of change and non-change assignments (Bruzzone et al.,
1999)(Bruzzone et al., 2004) in the predicted change map.

With the advent of deep learning and its adoption by the remote
sensing community (Ball et al., 2017) (Zhu et al., 2017), change
detection in Earth observation took a paradigm shift from the
classical methods described above and the application of deep
neural networks became the leading approach. The seminal
work of (Daudt et al., 2018b) collects data of Sentinel-2 obser-
vations and considers well-established neural network architec-
tures for CD trained supervisedly on hand-annotated data. Our
work builds upon this study by extending the the collected data
with novel SAR observations and advances the methodology
by proposing a novel data fusion neural network architecture
for multi-modal change detection.

In terms of prior work on multi-modal change detection the fol-
lowing publications are of relevance. (Orsomando et al., 2007)
detects change on a stack of SAR images and one multispectral
observation. (Jiang et al., 2020) performs a transformation sep-
arating semantics and style to project SAR and optical images
into a shared feature space. (Zhang et al., 2018) uses a Siamese
architecture to detect building and tree changes between point
cloud data and aerial observations (Chen et al., 2019) proposes a
recurrent Siamese network for detecting change on multi-sensor

very high resolution images of the same modality, and thus with
relatively smaller domain differences.

Furthermore, the related work of (Liu et al., 2016), (Zhang et
al., 2016), (Zhan et al., 2018) (Saha et al., 2019), (Ferraris
et al., 2020) and (Saha et al., 2021) consider the challenging
case where the pre-change observation may be captured by a
sensor different from the one recording the post-change im-
age. Whereas the first five consider an unsupervised training
paradigm, (Saha et al., 2021) extends the prior work and pro-
poses a method for self-supervised change detection between
pairs of Sentinel-1 and Sentinel-2 imagery. Moreover, these
methods have in common that representations of change are
learned in scenarios where no sufficient amount of labeled train-
ing data is available, with potential effects on the quality of the
learned features. While we also consider very heterogeneous
pairings of SAR and optical data, our work differs in the sense
that data is curated for our study to allow for a supervised train-
ing procedure. In addition, we focus on the data fusion case
where both modalities are available as pre- and post-change in-
puts to the model.

These earlier contributions constitute fusion of multi-modal re-
mote sensing data as a well-established research area in change
detection and provides a vital starting point for our own con-
tributions. To sum up, our work extends on the existing re-
search by acknowledging the existence of very heterogeneous
and more complex scenes, in which change may not be con-
strained to an individual class of land cover or objects in par-
ticular. Specifically, we build on the efforts of (Daudt et al.,
2018b) and their hand-annotated data set of optical satellite ob-
servations to combine it with progress in data fusion for change
detection. For this purpose, we curate co-registered and tem-
porally aligned SAR observations for each of the bi-temporal
change images, and demonstrate their purpose by introducing a
novel Siamese network architecture for data fusion. The pres-
ence of a sufficiently large and hand-annotated data set allows
for supervised training for bi-modal change detection—which
is in contrast to most of the preceding work that, due to lack
of training data, focuses on unsupervised methods. Taken to-
gether, these are the key characteristics that differentiate our
contribution from prior work.

2. METHOD

We build on recent work in change detection for remote sensing
and propose a deep neural network that is capable of integrating
data from multiple sources. Specifically, we consider a Siamese
network (Chicco, 2021) with a U-net architecture (Ronneber-
ger et al., 2015). In Section 2.1 we introduce the Siamese net-
work. Section 2.2 briefly outlines the usage of Siamese network
in homogeneous (single-sensor) change detection. Finally the
network for multi-sensor change detection is detailed in Section
2.3. Triplet loss is also used (Dong and Shen, 2018).

2.1 Siamese network

Siamese networks were first proposed in context of image match-
ing (Bromley et al., 1993). A Siamese network consists of twin
networks (or parts thereof) that generally share weight yet ac-
cept different inputs of the same dimensionality. Weight sharing
ensures that two similar inputs are mapped to alike represent-
ations in the feature space since they are processed through a
shared set of non-linear functions. The outputs of the twin net-
works are processed through an energy function that computes
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Figure 2. Proposed multi-modal Siamese architecture for CD. The network consists of two encoder branches for each sensore and a
decoder part integrating the features from earlier layers. Each encoder branch processes its corresponding modality’s bi-temporal
samples, SAR and multispectral optical, in two passes. The extracted features get forwarded via skip connections in a U-Net like

fashion and then concatenated. Figure style adopted from (Daudt et al., 2018a).

a similarity metric between the highest level feature representa-
tions for each of the inputs propagated through the model. Con-
trastive loss is generally used owing to its ability to increase
the distance between dissimilar pairs and decrease the distance
between similar pairs (Koch et al., 2015). In sum, Siamese net-
works are an appealing architecture for tasks that benefit from
similarity of discrepancy-sensitive feature learning when com-
paring two or more input types.

2.2 Siamese network for homogeneous CD

The Siamese models used in the context of homogeneous CD
benefit of the principles described above. Two weight-sharing
networks (or components of a single network) are used for high-
level feature extraction from the pre-change and post-change
images. After, the inferred high-level features are processed
through a decision network. The decision network segregates
the changed pixels from the unchanged ones. Rather than just
processing the highest-level feature from the last weight-sharing
layer, multi-level features from multiple layers are often con-
catenated to obtain a multi-scale representation of the change
information (Rahman et al., 2018). Considering the related-
ness of the pixelwise change detection problem to semantic seg-
mentation, U-net (Ronneberger et al., 2015) is generally used

as backbone architecture for Siamese CD. U-net is appealing
for both tasks as the architecture is composed of processing in-
formation across two distinct pathways, one that preserve res-
olution while being relatively shallow (processing information
about the where of content) and the other being deep and wide
but with less spatial resolution (focusing on the what of con-
tent). The Fully Convolutional Siamese - Concatenation (Sia-
mese (S2 only)) architecture of (Daudt et al., 2018b) uses U-net
as backbone with a 10 layer encoder to process the pre-change
and post-change observations via two passes of one Siamese
branch. Skip connections in the network’s decoder compon-
ent concatenate multi-scale information coming from the two
encoding streams of the pre- and post change images. Our pro-
posed method builds on and extends the Siamese (S2 only) net-
work to a multi-modal model, as detailed next.

2.3 Multi-sensor Siamese architecture

The Siamese network architecture proposed in this work (abbre-
viated as: ours) consists of two encoder branches, one per con-
sidered sensor type, and a decoder part integrating the features
from the preceding layers on a multi-scale basis. Each encoder
branch processes its modality’s bi-temporal samples, SAR and
multispectral optical, in two passes. The extracted features get
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forwarded via skip connections in a U-Net like fashion and then
concatenated at the individual levels of depth. Fig. 2 depicts the
proposed Siamese neural network architecture.

Similar to the Siamese (S2 only) baseline, the encoder part con-
sists of 10 convolutional layers (of 3×3px2 kernel size, a stride
of 1 px and a padding of 1 px), each followed by operators of
batch normalisation, rectified linear units (ReLU) and dropout
(p = 0.2). In the encoder, every convolution blocks indicated
in Fig. 2 is followed by a layer of max pooling (of 2 × 2 px2

kernel size and a stride of 2 px). interleaved max pooling oper-
ations. The network’s decoder component consists of 14 trans-
posed convolution layers (of 3 × 3 px2 kernel size, a stride of
2 px, a padding of 1 px and an padding of 1 px), followed by
operators of batch normalisation, ReLU and dropout (p = 0.2).
At the end of each of each differentiable upsampling block fol-
lows a layer of replication padding as well as a concatenation
layer stacking earlier decoder features in a U-Net manner.

The described encoder-decoder architecture follows a conven-
tional hourglass style with the bottleneck being the widest part
and fewer kernels at the start as well as the end of the network.
The last decoding layer reduces the features into a change map
of only two bands representing changed and unchanged pixels
accordingly, with a log softmax nonlinearity appplied. The pre-
dicted class, i.e. whether change or non-change, is then given
by taking the maximum value across both bands in the output.

3. EXPERIMENTS AND ANALYSIS

3.1 Data

To conduct experiments we collect and process a multi-modal
data set and acquire SAR observations as follows: The geo-
spatial locations of each ROI and the acquisition dates of their
original observations Sentinel-2 multi-spectral observations are
read from the meta information of the ONERA CD data set
(Daudt et al., 2018b). The (ascending orbit) Sentinel-1 SAR
observations are downloaded via Google Earth Engine (Gorel-
ick et al., 2017) and coordinate-transformed via GDAL (Warm-
erdam, 2008) to match the coordinate system of the original
optical data. Exemplary full-scene observations for one ROI
are illustrated in Fig. 1. Finally, all full-scene images are sliced
online into patches of sizes 96 pixels × 96 pixels with a stride
of 1 pixel between spatially adjacent patches. The train and
test splits of the data set are as defined in (Daudt et al., 2018b).
The SAR and multi-spectral optical patches are value-clipped
in the intervals [-25, 0] and [0, 1000], respectively. Finally,
patches are normalized to the unit range for input to the net-
works. For the baselines this is done via z-standardizing each
patch individually (such that the extreme values are guaranteed
to be taken per patch) as suggested in (Daudt et al., 2018a).
For our proposed Siamese fusion network we experimentally
observed that standardizing in absolute terms outperforms z-
scoring, so patches are rescaled according to their modality’s
theoretically obtainable range rather than z-scoring, preserving
band-wise information in absolute terms across observations.

To facilitate future research in remote sensing on bi-temporal
change detection of multi-modal satellite observations we wish
to share our data with the scientific community. Our SAR ob-
servations specifically collected and preprocessed for this study
can be found online on https://github.com/PatrickTUM/

multimodalCD_ISPRS21.

3.2 Experiments & Results

To address the research question stated in section 1 we train
the neural network proposed in section 2 on the data set intro-
duced in section 3.1 and compare it against baseline models
utilizing just a single sensor as well as networks utilizing both
sensors but exercising less guidance on the fusion process. The
baselines compared against are given as follows:

1. Siamese (S2 only) that corresponds to the FC-Siam-conc
setup from (Daudt et al., 2018a) as detailed in Section 2.2
and relies on S2 inputs only.

2. Siamese (S1+S2) that follows the Siamese (S2 only) archi-
tecture but with stacked S1 and S2 observations combined
into a singly input tensor and processed jointly. That is,
other than our model, no explicitly separate processing of
modalities is taking place.

3. U-Net (S2 only) that stacks the channels from pre-change
and post-change images into a single image and then pro-
cesses it through a U-Net treating change detection as a
semantic segmentation task.

4. U-Net (S1+S2 only) that works similarly as U-Net (S2
only) but in addition to stacking pre- and post-change S2
images it also combines S1 and S2 cross-modality into a
singly input tensor and handles everything jointly without
imposing further constraints on the structure of informa-
tion processing.

All networks considered are trained in a supervised manner via
the ADAM optimizer (Kingma and Ba, 2014) with a weight
decay of 1e−4 and an exponential decay learning rate scheduler
on a cross-entropy loss on the collected data set. The cross-
entropy cost function is weighted according to

2× λFP × npositive

ntotal
, 2× (ntotal − npositive)

ntotal

for the respective classes, where we set λFP = 10 as a para-
meter and ntotal and npositive denote the number of total and
positively labeled pixels in the training split, respectively. The
networks are trained on batches of 32 samples. Random rota-
tions (in steps of 90 degrees) or mirroring (on the vertical axis)
are applied as data augmentation steps at equally distributed
chances to synthetically increase the training set size.

The goodness of predictions are evaluated in terms of the well-
established metrics of precision, recall and F1 score, given by

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 score =
2× precision× recall

precision+ recall
,

where TP , FP and FN denote true positives, false positives
and false negatives, respectively. The F1 score is the harmonic
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model precision recall F1 score
ours 0.602 0.561 0.581
Siamese (S2 only) 0.680 0.494 0.573
Siamese (S1+S2) 0.699 0.412 0.519
U-Net (S2 only) 0.762 0.394 0.519
U-Net (S1+S2) 0.562 0.255 0.351

Table 1. Performance of the evaluated change detection models
on the ONERA test split. The proposed multi-modal network

outperforms the considered baseline and is strongest in terms of
both recall and F1 score.

mean of both precision as well as recall and provides a summary
statistics of a considered method’s overall accuracy.

Results are reported in Table 1 and show that the proposed
model outperforms the considered baselines. It is evident from
the reported numbers that our fusion-based method outperforms
the other S2-only models, accomplishing a considerably im-
proved recall score and an overall increase in terms of F1 metric
as well. Remarkably, solely feeding S1 and S2 combined inputs
to the standard Siamese and U-Net architectures does not guar-
antee any increase in performance but may even be detrimental.
This may indicate that fusing diverse modalities such as S1 and
S2 together necessitates more guidance (as provided by our pro-
posed architecture) than merely stacking them together. The
predictions of the proposed model and the second best method,
the Siamese (S2 only) baseline, on data of three exemplary ROI
are displayed in Fig. 3. The results show that both models
share many of the correctly predicted changes, indicating that
these pixels may exhibit change that is clearer to detect than
more ambiguous change in other parts of the scenes. Interest-
ingly, our proposed model has a tendency to correctly detect
more change, but it may also be more prone to false alarms—a
circumstance that is discussed further in section 4.

4. DISCUSSION

Change detection in remote sensing poses a challenging task as
the typical scenes considered by practitioners are very complex.
The images utilized for training and testing in this study are
constituted by spatial arrangements of many objects which are
themselves often not constrained or clearly defined in terms of
their land cover or object class. While complementary views on
the scene (as given by multi-modal observations) can ease this
uncertainty and be of benefit, bridging the difference between
two very heterogeneous domains and integrating sensor inform-
ation is all by itself a nontrivial task. One contribution of our
work is to provide the scientific community with the needed
data to collectively address this challenge, as well as propos-
ing a novel deep neural network architecture demonstrating the
benefits of multi-modal change detection.

Our work builds on the original data set of (Daudt et al., 2018a)
and its high-quality annotations hand-labeled by introspecting
Sentinel-2 data. While the presence of labels allows for su-
pervised training and competitive performances, it may as well
pose a limitation to our study as the provided supervision may
not always capture change perfectly. An example is given in
Fig. 4, where the upper right image quartile displays clear
change between the pre- and post-change Sentinel-1 observa-
tions but the subtle differences are barely visible in the RGB
plots of the Sentinel-2 data and consequently not annotated in
the labels. This may lead to predicted change where there is
none annotated, eventually raising the false positives (compared

Figure 3. Exemplary change predictions. Rows: Proposed
method and optical-only Siamese baseline model. Column:

Three different ROI. Chonqqing, Duba and Las Vegas. Labels:
White (true positive), green (false positive), violet (false

negative). The results show that the proposed model is more
sensitive to change, yet may also be more prone to false alarms,

as compared to the baseline.

to the optical-only baseline) as exemplified in Fig. 3. While this
point highlights the complementing nature of both modalities, it
may put SAR data at a disadvantage when evaluating on labels
driven by optical information, raising the more principal ques-
tion of what modification of pixel intensities in which modality
should actually count as a change in the ground truth.

Furthermore, the results presented in section 3.2 demonstrated
the benefits of multi-modal data in combination with our de-
signed architecture, but the relative improvement over the strong
second best method is not very large. This may reflect the or-
der of improvement provided by the proposed neural network.
Alternatively, a saturation effect of the F1 score just around
0.6 may be natural on the considered data set, the given train-
ing split size and the challenging test split scenes. Similarly
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Figure 4. Multi-modal observations and change map for
exemplary ROI ’Abu Dhabi’. Rows: Sentinel-2 data (RGB
channels). Sentinel-1 data (VV-polarized). Change maps.

Columns: Time point 1. Time point 2. The images indicate
discrepancies between SAR versus multispectral data and the

change labels, raising a question about the semantics of change.

(Daudt et al., 2018a) reported considerable gains in the range of
poorer performances, but the degree of improvements as well
decreased around the marks observed in our study. In sum,
we are positive that future research building on our data will
provide valuable insights with respect to this point and advance
the state of the art of multi-modal change detection.

5. CONCLUSION

This work addressed the challenge of multi-modal bi-temporal
change detection. We investigated the central research question
of whether multi-modal fusion approaches benefit bi-temporal
change detection. To evaluate this question on a substantially
large amount of train and test images, we extended an existing
and well-established single-sensor S2 data set by complement-
ing it with corresponding S1 images curated for this study. Fur-
thermore, we proposed a novel architecture for bi-modal fusion
based change detection that integrates information from both
SAR as well as optical sensors. The results show that bi-modal
fusion improves result over single-sensor approach. Though the
improvement is not large, further improvement in multi-modal
fusion architecture can potentially improve the result. We em-
phasize that the contribution of this work is not only limited
to devising a novel approach for multi-sensor change detection,

but further opens up the research towards this direction by mak-
ing available a novel data set and encouraging further research
in the direction. In addition to improving the proposed archi-
tecture, our future work will focus on extending the proposed
method for integrating more than two modalities. We will also
extend the proposed method for more challenging problem of
multi-class or semantic change detection.
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