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ABSTRACT: 
 
Ecosystems must now cope with climate change such as rising sea levels. These major changes have a direct impact on the coastal 
fringe. However, in recent years, coastal ecosystems such as saltmarshes have proven their adaptive capacity. Unmanned Aerial 
Vehicles (UAV) are an inexpensive and easily deployable alternative which offer us the possibility to monitor these 
geomorphological and ecological systems, have been perfected over the years, making it possible to achieve high or even very high 
(VH) spectral and spatial resolution. Detection of changes at VH temporal and spatial resolution such as coastline evolution or 
seasonal monitoring of plant communities is facilitated. The red-green-blue (RGB) camera is the basic equipment of low-cost UAVs. 
Many studies have demonstrated the interest of infrared sensors for vegetation or water detection. In this original study, a 
pansharpening method has been developed to generate a red-edge (RE) and near infrared channel based on the VH resolution of 
RGB. Out of the three different pansharpening algorithms tested, Gram-Schmidt showed correlation (0.61 and 0.63 for RE and NIR 
channels respectively), followed by nearest neighbor diffusion and finally, principal component spectral pansharpening. The 
maximum likelihood, support vector machine and convolutional neural network classifiers were used to discriminate the main 
objects of the study area. The classification results revealed that at the classifier scale the ML outperforms the others with an overall 
accuracy of 80.75%. At the spectral band scale, the RE obtains the best performances with 80.04% of OA with ML and 78.34% of 
OA with SVM. 
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1. INTRODUCTION 

1.1 Global Change 

Coastal habitats are increasingly facing global sea level rise, 
storm intensification and changes in land cover and local land 
use (IPCC, 2009). The increasing anthropization of coastal 
fringe makes our societies vulnerable to constantly rising seas. 
Facing this threat, human societies can rely on coastal 
ecosystems, such as seagrasses, saltmarshes and mangroves, 
which constitute an important biodiversity reserve. They also 
play a major role in the adaptation of territories to the effects of 
climate change, through their capacity to trap atmospheric CO2 
(Pendleton et al., 2012) but also to capture sediments (French et 
al., 1993). This protective service (Reef et al., 2018) contributes 
to the elevation of the foreshore. 
A better understanding of their evolution requires habitat 
mapping at the process spatial scale (submeter resolution). 
Although satellite (James et al., 2020) and manned aerial 
sensors (Collin et al., 2018) provide very high (VH) spatial 
resolution optical imagery, their temporal resolution remains too 
coarse to monitor subtle variations in eco-geomorphological 
dynamics. An alternative platform leveraging both VH spatial 
and temporal resolution should be found to rigorously capture 
the seamless coastal fringe. 
 
1.2 Unmanned Aerial Vehicle for Coastal Management 

Unmanned aerial vehicles (UAV) have been successful to 
investigate the coastline evolution (Green et al., 2015) and 
habitat mapping (Collin et al., 2019) at very high spatio-

temporal resolution. In the temporal and spatial monitoring of 
coastal habitats, UAV have the potential to be quickly 
operational thanks to their easy deployment and implementation 
(Mury et al., 2019). Data collection allows the monitoring of 
different habitats and species threatened by the erosion of the 
foot of the dune. Specific monitoring data of the environment 
helps territory managers to set up adapted management 
programs. 
However, most low-cost UAV sensors only deploy red-green-
blue (RGB) camera, which limit their spectral capabilities to 
correctly discriminate key features such as vegetation or water. 
The combination of infrared (IR) with RGB information has yet 
improved coastal geomorphological monitoring (Aubry et al., 
2012) and ecological characterization (Collin et al., 2018). 
However, such IR information requires an UAV-dedicated 
sensor whose spatial resolution usually does not reach the RGB 
basic sensor’s. 
 
1.3 Pansharpening for Hyperspatial Monitoring 

Many satellite constellations that have emerged in recent years 
are capable of tracking environmental changes at VH spatial 
resolution. In addition, satellites such as hyperspectral 
Worldview3 satellite have, most of the time, sensors in invisible 
spectrum (Collin et al., 2021). Multispectral (MS) sensors have 
a coarser resolution than the panchromatic sensors that are fitted 
to satellites. For example, Pleiades-1 images are delivered with 
a panchromatic band at 0.50m and four spectral bands 
RGB+near-IR (NIR) with a 2 m × 2 m spatial resolution. 
To preserve MS information at high spatial resolution, 
pansharpening methods have been developed, allowing to 
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increase MS images’ pixel size by merging panchromatic 
images (Meng et al., 2019).  
Pansharpening methods allow to add spectral bands to images 
that are devoid of them and thus, increase the invisible 
spectrum. 
Often used for satellite images, pansharpening is increasingly 
used for the fusion of manned aerial and satellite images (Siok 
et al., 2020). Fusion at centimetric scale can also be applied 
between satellite or manned aerial and UAV images 
(Jenerowicz et al., 2017). 
UAVs are mostly fitted with increasingly resolute RGB basic 
cameras. Nevertheless, MS UAV are expanding in coastal 
environment research. However, MS image resolution problems 
are identical to those encountered in satellite and aerial imaging. 
 
In this study, an original UAV pansharpening methodology has 
been therefore developed to produce red-edge (RE) and NIR 
wavebands at RGB higher resolution. Three pansharpening 
method have been evaluated: Gram-Schmidt (GS), nearest 
neighbor diffusion (NND) and principal component (PC). Three 
machine learning supervised classifiers have been used: 
Maximum likelihood (ML), support vector machine (SVM) and 
a convolutional neural network (CNN). Two issues have been 
addressed: (1) what is the best UAV pansharpening method? (2) 
What is the added value of the pansharpened RE and NIR data 
into traditional RGB habitat mapping? 
  

2. MATERIALS AND METHODS 

2.1 Study Site 

The study site, named Guimorais’ tombolo, links Besnard’s 
rocky island to Meinga’s cliff (48°41’34.17’’N, 1°56’49.32’’W; 
Figure 1). It offers a wide diversity of landscapes (beach, dune, 
saltmarsh) shaped by the meteo-marine forcings. The dominant 
marine currents have contributed to the creation of the tombolo 
by carrying with them sediments which, over the years, have 
been fixed between the two rocky tips (Mahmoud, 2015). The 
saltmarsh is located at the bottom of Rothéneuf’s habor. The 
protection offered by the tombolo’s dune to the north, allows it 
to develop. The main plants such as Halimione portulacoides 
grows on the upper saltmarsh, whereas Sueda maritima grows 
on the lower part. The dune is colonized by endemic plant 
species of the temperate region: Ammophila arenaria (yellow 
dune) and by mosses (grey dune). 
 

 
Figure 1. Guimorais’ study site. 

2.2 Ground-truth Acquisition 

Ground-truth data collection took place on October 16, 2020. A 
range of 13 targets and 30 photoquadrats were placed according 
to a predefined grid and geolocated accurately in the French 
national RGF93 datum, Lambert 93 projection with a DGNSS 
Topcon hiper V receiver (yellow and red points respectively in 
Figure 1). Each target and photoquadrat geographics 
coordinates (XYZ) were post-processed with the open-source 
software RTKlib (Takasu and Yasuda, 2009). 
Photoquadrats (0.5 × 0.5m) were collected with an Olympus 
TG4 camera (4 608 × 3 456 pixels). 
Seven ground-truth classes representatives of the study site have 
been extracted from photoquadrats: upper and lower saltmarsh 
vegetation, grey and yellow dune plant, road, dry and wet sand 
(Table 1). 
 

Class name Description Image 
sample 

Upper saltmarsh 
vegetation 

Halimione 
portulacoides 

 

Lower saltmarsh 
vegetation Sueda maritima 

 

Grey dune plant Bryophyta 

 

Yellow dune plant Ammophila arenaria 

 

Road Asphalted area 

 

Dry sand Dry sand of grain 
size of 0.06-2mm 

 

Wet sand Wet sand of grain 
size of 0.06-2mm 

 
Table 1. Description of the seven ground-truth classes. 

 
2.3 Unmanned Aerial Vehicle Survey 

The planned aerial survey was run between 12:30 and 1:00 pm 
(UTC+1) on October 16, 2020 with a DJI Phantom 4 Pro V2 
(P4V2), provided with an embedded 20M-pixel RGB camera 
(4864 × 3648 pixels), and enhanced with a 1.2 M-pixel two-
channel (RE and NIR in this study) multispectral Parrot 
Sequoia+ (1 280 × 960 pixels for each camera). Both sensors’ 
invisible spectrum are focused on the RE (735 nm) and NIR 
(790 nm) wavelengths. 
The acquisition flight was carried out in 30 minutes. The UAV 
flew over the study area at 50m above local terrain. Each image 
was covered by 80% front overlapping and 70% side 
overlapping. 
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2.4 Photogrammetry Reconstruction 

The photogrammetric reconstruction was computed with 
Pix4Dmapper® using the structure for motion photogrammetry 
process. Three very high resolution (VHR) geolocated 
orthomosaics have been created: one from the P4V2 530 RGB 
images (0.01 m pixel size), two from the Parrot Sequoia+ 1 542 
RE and NIR MS images (0.06 m pixel size). 
 
2.5 Pansharpening Algorithms 

Three pansharpening algorithms have been evaluated to 
increase low-resolution multispectral Parrot Sequoia+ imagery 
(Figure 2) from a computed P4V2 panchromatic imagery with 
ENVI® software: nearest neighbor diffusion (NND) 
pansharpening, principal component (PC) spectral sharpening, 
and Gram-Schmidt (GS) pansharpening.  
From the RGB geolocated photogrammetry reconstruction, a 
panchromatic (PAN) image was generated for the needs of 
pansharpening which requires a single VHR band input (Figure 
2). The following formula has been applied: 
 
 PAN=fix(C1)+fix(C2)+fix(C3)     (1) 

 
where  fix = converts floating pixels value into integer pixels 

value 
 C1 = Red channel, 
 C2 = Green channel, 
 C3 = Blue channel. 

 
 

 
Figure 2. Work chart of the UAV imagery multispectral 

orthomosaic pansharpening. 
 

2.5.1 Gram-Schmidt Pansharpening: The initial use of GS 
pansharpening assumes that the panchromatic band is of higher 
resolution than the bands to be fused (Laben et al., 2000). This 
method allows to retain both a spatial VHR offered by the 
panchromatic band and a spectral VHR from the MS datasets. 
GS algorithm starts by simulating a PAN MS. GS 
transformation is then applied to the simulated PAN image and 
MS dataset. The simulating PAN image at 0.06m is replaced by 
the PAN image at 0.01m. A GS reverse transformation is 
performed to obtain an MS dataset to spatial VHR. 
 
2.5.2 Nearest Neighbor Diffusion Pansharpening: The 
NND pansharpening algorithm is based on the statistical 
contribution of nearby MS pixels in order to preserve spectral 
integrity while accumulating spatial quality based on PAN VHR 
pixels (Sun et al., 2014). 
 
2.5.3 Principal Component Spectral Sharpening: Images 
geolocation and perfect overlay are the prerequisites. In this 
pansharpening method, a first principal component analysis 
(PCA) is performed on the MS image. The PC1 axis which 
contains the principal spectral information according to the 
results of the PCA, is replaced by the resampled PAN channel. 
An inverse transformation of the PCA is computed and then 
resampled by a bilinear interpolation to obtain spectral bands at 
the resolution of the VHR PAN image (Welsh et al., 1987). 
 
2.5.4 Pansharpening Assessment: Root mean square error 
(RMSE) and correlation coefficient were calculated to quantify 
the pansharpening methods’ accuracy with 1 000 sample points 
(Sarp, 2014). 
 

 RMSE=   (2) 
 

where  P = Sequoia pixel value low resolution, 
 O = Sequoia pixel value high resolution, 
 n = number of observations. 
 
2.6 Classification Algorithms 

Three machine learning pixel-based classifiers have been 
assessed on the best pansharpened spectral dataset using 
ENVI® software: maximum likelihood (ML), support vector 
machine (SVM), and convolutional neural network (CNN).  
1 000 training pixels and 1 000 validation pixels per class were 
randomly extracted. The spectral predictors have been tested: 
RGB, RGB+RE, RGB+NIR, RGB+RE+NIR. 
The overall accuracy was reckoned to estimate the classification 
accuracy via a confusion matrix.  
 
2.6.1 Maximum Likelihood Classifier: ML is a very 
common classifier in remote sensing because it is inexpensive 
in terms of processing time. This algorithm is based on the 
probability that a pixel is assigned to a predefined class in a 
normal distribution. Pixels assigned to a class have a high 
probability of belonging to that class (Table 2). 
 

Function Parameter 
Probability Threshold Single value 
Data scale factor  1.00 

Table 2. Description of the parameters with the Maximum 
Likelihood (ML) classifier. 
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2.6.2 Support Vector Machine: SVM is a powerful non-
probabilistic classifier that depends on two parameters: the 
kernel and the maximum margin of the pixels sample (Table 3). 
 

Function Parameter 
Kernel type Radial basis function 
Gamma kernel 0.20 
Penalty parameter 100.0 
Pyramid levels 0 
Classification 
probability threshold 

 
0 

Table 3. Description of the applied parameters with the Support 
Vector Machine (SVM) classifier. 

 
2.6.3 Convolutional Neural Network: CNNs are a part of 
the growing artificial neural networks in remote sensing. 
ENVI® software CNN algorithm is based on “U-net” 
architecture (Ronneberger et al., 2015). A series of linear 
combinations is applied to the input raster. The multiplication of 
convolutions and deconvolutions allow the model to extract 
features from the data and label the pixels depending on them. 
The final dense layer outputs a class activation map, that is then 
used to compute the final classification by assigning to each 
pixel the feature class with the highest value above a given 
threshold. (Figure 3). A densified layer is created at the output 
of the process. The model was trained with 25 epochs for each 
spectral predictor (RGB, RGB+RE, RGB+NIR and 
RGB+RE+NIR). 
 

 
 

Figure 3. Convolutional neural network diagram. 
 

3. RESULTS AND DISCUSSION 

The best pansharpening algorithm has been highlighted between 
GS, PC, NND to perform the classifications. Then, the best 
classifier has been evaluated by comparing the overall accuracy 
(OA) of ML, SVM and CNN classifiers. 
 
3.1 Best Pansharpening Method 

The pansharpening results showed that the GS pansharpening 
outperformed the other pansharpenings (NND and PC) for this 
dataset (Figure 4).  
 

 
Figure 4. Barplot of the root mean square error and lineplot of 

the correlation coefficient of the three pansharpening algorithms 
for the red-edge (RE) and the near-infrared (NIR) channels. 

 
Respectively, the correlation coefficients are 0.61, -0.01, 0.09 
for RE channel (Figure 4), and 0.63, 0.24, 0.02 for the NIR 
channel.  
The RMSE results corroborate the first correlation coefficient 
results. Respectively, the GS RMSE is lower than NND and PC 
RMSE: 6 719-, 16 016- and 11 372-pixel values for RE channel, 
6 018-, 15 333- and 9 980-pixel values for NIR channel.  
 
The pansharpening results demonstrate that using GS 
pansharpening significantly increases the spatial resolution of 
both bands without degraded spectral characteristics (Figure 5). 
Data fusion adds information from the IR spectrum and 
provides a complete spatial and spectral VHR dataset for the 
detection and characterization of geomorphological and 
ecological objects in coastal management (Ibarrola-Ulzurrun et 
al., 2017). 
 

 
Figure 5. Red-edge (RE) unpansharpened (A); RE Gram-

Schmidt pansharpened (B). 
 

A B 
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3.2 Classification of Coastal Systems 

3.2.1 Scene-scale Classification Accuracy: ML constitutes 
the first classification tested from the GS pansharpening (Table 
4 and Figure 7). From the RGB overall accuracy (OA), the 
classification performances increased by 4.33% with the NIR 
channel, by 5.49% with the RE, and by 6.2% with their 
combination. 

 
 

RGB RGB+ 
RE 

RGB+ 
NIR 

RGB+ 
RE+NIR 

ML 74.55 80.04 78.88 80.75 
SVM 73.21 78.34 75.51 75.85 
CNN 45.95 27.16 18.64 18.51 

Table 4. Overall accuracy performance of contribution of 
spectral predictors (RGB, RGB+RE, RGB+NIR, 

RGB+RE+NIR) with maximum likelihood (ML), support vector 
machine (SVM) and convolutional neural network (CNN) 

classifiers. 

 

 

 

Figure 7. Maximum likelihood classification from the Gram-
Schmidt pansharpening. 

 
For the SVM classification, the contribution of spectral bands 
has been evaluated (Table 4 and Figure 8). Similarly, from an 
RGB basis, classification accuracies increase with the addition 
of spectral information: so that respectively, the RE and NIR 
channels increase the accuracy by 5.13% and 2.3%, and by 
2.64% for the full combination. 
 

 

 

Figure 8. Support vector machine classification from the Gram-
Schmidt pansharpening. 

 
The CNN classification results calculated with the confusion 
matrix do not offer a significant contribution from the predictors 
(Table 4 and Figure 9). The OA of the RGB is 45.95%. Adding 
the predictors RE and NIR to the already low base RGB 
decreases the OA by 18.79% and 27.31% respectively. 
The complete combination of spectral bands does not provide 
additional information to discriminate the habitats of the study 
site because the OA is 18.51%. 
 

 

 

Figure 9. Convolutional neural network classification from the 
Gram-Schmidt pansharpening. 

 
The redundancy of information in the IR spectrum confuses 
classification results with the SVM classifier when the 4 
spectral predictors are tested at the same time (Belluco et al., 
2006). 
At the scale of the spectral band, the RE provides information in 
the wavelength at about 735 nm. Its positive contribution is 
unanimous for the ML and SVM classifiers. 
The results of the classification with CNN are unsatisfactory 
and make the results unusable. The architecture of ENVI's CNN 
“U-net” algorithm was designed to detect objects within images 
through segmentation rather than to perform continuous 
classifications. However, it appears that deep learning 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-257-2021 | © Author(s) 2021. CC BY 4.0 License.

 
261



 

classification performs best when performed on objects rather 
than pixels (Letard et al., 2021).  
These CNN results can also be explained by the lack of training 
data that are ultimately essential to achieve good results. The 
amount of training pixels chosen was performing well for the 
ML and SVM classifiers but insufficient for the CNN 
(Längkvist et al., 2016). 
 
3.2.2 Habitat Scale Classification Accuracy: The 
contributions of the RE and NIR channels were examined at 
habitat scale using the three classifiers (ML, SVM and CNN). 
 
For the ML classification algorithm, the producer accuracy (PA) 
calculated with the confusion matrix shows that the set of 
combinations (RGB+RE+NIR) increased the accuracies by 
+13.74% (dry sand), +11.42% (upper saltmarsh vegetation), 
+10.14% (wet sand), +8.45% (grey dune plant) and +0.45% 
(lower saltmarsh vegetation). A decrease PA of -1.58% (road) 
and -3.28% (yellow dune) is observed, compared to the basic 
RGB (Figure 10). 
 

 
Figure 10. Barplot of producer accuracy of infrared predictors 
contributions on the basis RGB at class level (upper and lower 
saltmarsh, grey and yellow dune plant, road, dry and wet sand) 

computed with maximum likelihood (ML) classifier. 

 
The SVM algorithm yielded slightly less satisfactory PA results 
than the ML classifier (Figure 11). Starting from the highest 
accuracy to the lowest: +11.90% (wet sand), +8.30% (grey dune 
plant), +3.90% (upper saltmarsh vegetation), +2.90% (yellow 
dune plant), +0% (road), -1.70% (lower saltmarsh vegetation) 
and -6.80% (dry sand). 
According to the classes and by separately analyzing the IR 
bands (RE and NIR respectively) in addition with the RGB 
basic spectrum, the following scores were obtained for ML and 
SVM classifiers respectively: +9.32, +10.62%, +10.10%, 
+3.70% for the upper saltmarsh vegetation class; +10.24%, 
+7.44%, +12.90% and +11.80% for the wet sand. 

 

 

Figure 11. Barplot of producer accuracy of infrared predictors 
contributions on the basis RGB at class level (upper and lower 
saltmarsh, grey and yellow dune plant, road, dry and wet sand) 

computed with support vector machine (SVM) classifier. 

 
This high contribution in the RE and NIR register is explained 
by the absorption of electromagnetic waves by wet sand in this 
range. 
The classification performances in the IR can be explained by 
the absorptance and reflectance of vegetal leaves’ 
chlorophyllian pigments. Species present in high saltmarsh, 
such as Halimione portulacoides which is characterized by 
abundant leaves, play a large role on this classification (Carter 
et al., 2001).  
The discrimination of plant species present between high and 
low saltmarsh shows that there is a significant seasonal 
character. The UAV survey carried out in Autumn 2020 marks 
the beginning of plant deflowering. Low saltmarsh vegetation is 
less well extracted whatever the classifier. 
The classification performance results for the RE and NIR 
channels of the classes lower saltmarsh vegetation, grey dune 
plant and yellow dune plant are less significant than for the 
previously discussed classes. Respectively, the PA scores are: -
0.85%, -1.05%; +5.65%, +6.25%; -1.48%, -3.48% for ML 
classification, and for SVM classification, +0.20%, +4.40%; 
+2.10%, +4.40%; +1.60%, +1.40%. 
Siliceous and calcareous sediment mixtures with vegetation 
negatively impact the contribution of the RE and NIR bands. 

 

Considering that the CNN classification at the OA scale is 
unsatisfactory, the PA results in Figure 12 corroborate the OA 
and show that not all classes are represented. However, each 
class have been extracted in the RGB basic with, in increasing 
order of high PA: 88.9% (lower saltmarsh vegetation), 78.3% 
(road), 73.1% (dry sand), 67.9% (grey plant dune), 34.3% (wet 
sand), 23.7% (yellow plant dune), 18.9% (upper saltmarsh 
vegetation). In the three other combinations, classes are less 
represented. 
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Figure 12. Barplot of the producer accuracy of e infrared 
predictors contributions on the basis RGB at class level (upper 
and lower saltmarsh, grey and yellow dune plant, road, dry and 
wet sand) computed with each class with convolutional neural 

network (CNN) classifier. 

 
4. CONCLUSION 

This new study shows that UAV-mounted cameras with IR 
sensors are essential for characterizing coastal ecosystems at 
VH temporal and spatial resolution in the context of rapid 
evolution imposed by climate change. Following 
photogrammetric reconstructions, pansharpening algorithms 
(GS, NND, PC spectral sharpening) enabled the use of RE and 
NIR low spatial resolution bands of Sequoia+ (1 280 × 960 
pixels for each camera) orthomosaics via the RGB VHR spatial 
bands of the Phantom 4 pro V2 UAV mounted camera (4 864 × 
3 648 pixels). 
The pansharpening results showed that GS pansharpening 
performed best in this study with correlation coefficients of 0.61 
and 0.63 for the RE and NIR bands respectively outperforming 
the other 2 methods. 
Three classifications were applied on the pansharpened dataset 
corresponding to RGB+RE+NIR at spectral level and 0.01m 
spatial resolution. 
ML, SVM and CNN classifiers were tested on the dataset from 
7 classes identified by the ground-truth acquisition: upper and 
lower saltmarsh vegetation, grey and yellow dune plant, road, 
dry and wet sand. 
The ML classifier stands out from the others with an OA of 
80.75% for the complete combination of predictors. At band 
scale, the RE outperforms the other ML and SVM predictors 
combined. The CNN did not provide good classification results 
due to the lack of training data. In future studies, a segmentation 
could be applied before the classification for better 
discrimination of coastal ecosystems (Collin et al., 2021). 
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