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ABSTRACT:

In this paper, we investigate the use of machine-learning techniques in order to produce harmonised surface reflectances between
Sentinel-2 and Pleiades images, and reduce the impact of the differences in sensors, view conditions, and atmospheric correction
differences between them. We demonstrate that if a simple linear regression considering Sentinel-2 surface reflectances as the target
domain can overcome this problem when both images are calibrated to Top of Canopy reflectances, the non-linearity brought by
a simple Multi-Layer-Perceptron is already useful when Pleiades is corrected to Top of Atmosphere level and contributions of the
atmosphere need to be learned. We also demonstrate that learning a Convolution Neural Network instead of a plain MLP can learn
undesired spatial effects such as mis-registration or differences in spatial frequency content, that will affect the image quality of the
corrected Pleiades product. We overcome this issue by proposing an adhoc input convolutional layer that will capture those effects
and can later be unplugged during inference. Last, we also propose an architecture and loss function that is robust to unmasked
clouds and produces a confidence prediction during inference.

1. INTRODUCTION

1.1 Problem statement

The joint use of surface reflectances from different sensors can
be challenging because of differences in sensor characteristics,
ground segment algorithms and their parameters, and exoge-
nous data used for corrections. All those factors can affect the
coherency between surface reflectances and therefore create un-
wanted artefacts in operations leveraging direct comparison or
statistical learning. To tackle this issue, the standard physics-
based method includes careful modelling of effects induced by
sensor differences as well as the use of common algorithms and
parameters for both sensors, as demonstrated in (Claverie et
al., 2018) for the constitution of an harmonised Sentinel-2 and
Landsat 8 dataset.

When it comes to jointly using Pleiades and Sentinel-2, dif-
ferences in sensors characteristics include (i) a factor of 5 in
spatial resolution, (ii) different viewing angles for each ac-
quisition compared to fixed nadir view, which causes BRDF
variations, and (iii) differences in spectral sensitivities. Ad-
ditional differences exist in ground segment algorithms, espe-
cially when using L2A Sentinel-2 products, for which endoge-
nous atmospheric correction parameters are estimated from
dedicated spectral bands, unavailable on sensors like Pleiades.
This results in potentially non-linear reflectance discrepancies,
as shown in figure 1.

One could of course benefit from the parameters estimated dur-
ing Sentinel-2 atmospheric corrections, but many of those pa-
rameters vary rapidly in time, while Pleiades and Sentinel-2
pairs can be several days apart in time. Nonetheless, some
Pleiades data providers deliver images that have already been
processed for atmospheric corrections, with undisclosed algo-
rithms and parameters.
∗ Corresponding author

In our case, level 2A Sentinel-2 time series contain fairly ac-
curate estimations of surface reflectances with cloud and snow
screening (Lonjou et al., 2016). Instead of trying to get coher-
ent reflectances from Pleiades using traditional, model-based
corrections which will inevitably suffer from all the effects that
can not be modelled, we propose to use a model estimated by
means of machine learning.
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Figure 1. RGB composition of Top of Canopy surface
reflectances from Pleiades and Sentinel-2, on the same

acquisition date with same scaling.

1.2 Our contributions

In this work, we evaluate the ability of 3 different Neural Net-
work architectures to learn the mapping of Top of Canopy or
Top of Atmosphere reflectances from a Pleiades image to Top
of Canopy reflectances from a Sentinel-2 L2A contemporary
image. Most of the effects that we are trying to learn, for in-
stance Pleiades viewing angle or the aerosol content of the at-
mosphere during Pleiades acquisition, are specific to each pair
of acquisitions. We therefore seek for networks that train fast
and apply only to those data, without looking for broader gener-
alisation. Of course we still evaluate the performances on a set
of patches that is not used during training to prevent over-fitting.
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Site PHR Level S2 training testing
Aude 1 19.02.22 TOC +0d 8856 2213
Aude 2 19.08.22 TOA -6d 8204 2050

Bretagne 1 18.08.06 TOC -1d 2280 570
Bretagne 2 18.05.06 TOC +13d 2280 570

Table 1. Characteristics of the datasets used for the experiments.
Data downloaded from Dinamis portal (PHR, Aude), Kalideos
portal (PHR, Bretagne) and Theia portal (Sentinel-2, all sites).
All Pleiades images displayed in this paper are ©CNES (2018,

2019), Distribution AIRBUS DS, all rights reserved, commercial
use forbidden.

In order to evaluate the benefits of leveraging the Neural Net-
work learning mechanisms, we quantitatively evaluate the gain
in reflectance accuracy with respect to simple linear regression,
a simple method used in similar problems (Luo et al., 2020),
with four standard metrics. We also propose an additional pre-
diction error output that is driven by a dedicated loss and can
act as a simple cloud masking algorithm during inference.

2. EXPERIMENTAL SETUP

2.1 Datasets

For all the experiments, we use 4 pairs of Pleiades and Sentinel
2 L2A images, over two different sites in France. For each pair,
Pleiades images were first projected in the Sentinel-2 coordi-
nate reference system using phased re-sampling grids, on the
geographic overlap of the two images. We use the four spectral
bands of Pleiades and their closest match in Sentinel-2 images
(i.e. B2, B3, B4 and B8), which are available at 10m resolu-
tion. Corresponding non-overlapping patches of 32x32 pixels
at 10m resolutions were then extracted, and patches containing
no-data values in either images or clouds according to Sentinel-
2 cloud mask were discarded. Patches were then shuffled and
split into 10% testing and 90% training sets. Pleiades patches
are blurred with a Gaussian filter tuned to the Sentinel-2 modu-
lation transfer function (MTF) values and down-sampled from
2m to 10m, except for the third network which uses full resolu-
tion Pleiades patches as input. Complete characteristics can be
found in table 1.

2.2 Network architectures

The reference method consists in a separate linear-regression
model for each output band, with the 4 input bands as features.
It is trained using the exact same training set.

Its first competitor is the Multi-Layer Perceptron (MLP) net-
work, presented in figure 2(a), which consists in batch normal-
isation followed by two fully connected hidden layers with 320
units with a leaky-ReLU activation, and an output layer with
4 units and a hyperbolic tangent activation, followed by a skip
connection. In the remaining of the paper, this network is called
CalibNet.

The second investigated architecture is presented in figure 2(b)
and consists in a 2D batch normalisation, followed by two con-
volutional layers of 64 units with a kernel size of 3, and an
output layer of 4 units with same kernel size followed by hy-
perbolic tangent activation and a skip connection. We refer to
this network ConvCalibNet.

BatchNorm
Linear > LReLU

x2

10x4
Linear > Tanh Skip

10x410x320

(a) CalibNet architecture

BatchNorm
Conv3x3 > LReLU

x2

1x4x32x32
Conv3x3 > Tanh Skip

1x4x26x261x64x28x28

(b) ConvCalibNet architecture

Input 2m patches

Conv (stride=5)21x21

1x4x160x160

Downstream CalibNet
1x4x28x28

Learnable filters norm

4x1x21x21

(c) BCNet architecture

Figure 2. Architectures of the proposed networks. Skip block is
a residual connection that adds the input of the network. LReLU
is a Leaky ReLU activation function. Learnable filters in BCNet

are normalized so that each of them sums up to 1.

The last architecture is shown in figure 2(c). It is similar to the
MLP, except for an input module which accepts the full reso-
lution 2m Pleiades image, passes each of its bands through a
convolution with a dedicated trainable filter with stride 5, lead-
ing to 10m data. For each band, the filter weights are initialised
to the Gaussian approximation of the MTF of the corresponding
Sentinel-2 bands. To promote the learning of normalised filters,
each filter is passed through a 2D soft-max function before the
convolution. This network will be called BCNet in the follow-
ing sections. The rationale for introducing this last architecture
is explained in section 3.1.

2.3 Training

Training is performed on a machine with a NVidia Tesla T4
GPU using Pytorch, with batches of 100x32x32 samples for the
MLP (for which patches are linearised and samples re-shuffled)
and 100 patches for the other two networks. The number of
epochs is chosen according to the available number of train-
ing samples to perform approximately 5000 iterations. The op-
timised loss function is the average of the relative error (see
equation 1, epsilon being a small quantity to avoid division by
zero). The optimiser is Adam with a learning rate of 0.0002 and
standard parameters. Training samples are reshuffled for each
epoch.

L(t, r) =
|t− r|1
ε+ r

(1)

3. RESULTS

3.1 Radiometric Top of Canopy mapping

For the Aude1 dataset, surface reflectances are already very
consistent between Pleiades and Sentinel-2, as one can see in
the performances chart of all methods in figure 3: visible bands
have a RMSE of 0.01, whereas NIR band has a RMSE of 0.07.
Nevertheless, we can see on scatter plots (figure 4) that re-
flectances are over-estimated in Pleiades image for the NIR
band, and that for the green band a slight under-estimation of
low reflectances and over-estimation of high reflectances exist.
This is expected since the spectral bandwidths of Pleiades bands
are larger than those of Sentinel-2. Even in this case, where
level of radiometric calibration is equivalent and differences are
small, the estimation of more consistent values between sensors
is important.
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Figure 3. Comparisons of four standard metrics for the initial
refletances and the four proposed methods measured on Aude1

dataset.

Linear Regression alone already enhances greatly the consis-
tency of reflectance values in that case, as one can see in scatter
plots (figure 4), and in performances charts (figure 3). It greatly
enhances the RMSE of NIR bands and fixes over and under-
estimations, and brings the NIR band RMSE down to 0.025, at
the expense of slightly increasing the maximum error.

During training, CalibNet succeeds in bringing down the rel-
ative error loss below the value achieved by linear regression,
as shown in figure 5. Training took a little less than 8 minutes
in our environment. But the metrics on figure 3 show slightly
worse performances with respect to linear regression, and the
scatter plots on figure 4 do not show any visible improvement.

Figure 6 shows that ConvCalibNet training succeeds in improv-
ing over CalibNet loss, in only 2m30s. Scatter plots on figure 4
show a better, narrower fit, which is also visible in performance
metrics (figure 3).

However, if we look at the difference in prediction between lin-
ear regression and ConvCalibNet as presented in figure 7, we
can see that the prediction error from ConvCalibNet exhibits far
less high spatial frequency content. This is due to the convolu-
tional nature of this network, which allows to learn spatial dis-
crepancies such as MTF differences and mis-registration, which
is not desired in our case. Indeed, we would like to be able
to apply our model at full Pleiades resolution, without altering
its spatial content, which is impossible with ConvCalibNet, as
shown in figure 8, which shows how our correction affects the
input Pleiades image at 2m resolution. We can see that applying
CalibNet results in filtering out high spatial frequencies, which
is not desired.

The proposed BCNet architecture allows to overcome this prob-
lem, by learning a single convolution layer with a single filter
for each band before entering the CalibNet MLP architecture.
The filter is initialised with a Gaussian kernel mimicking the
Sentinel-2 Point Spread Function of the corresponding band,
and the kernels are normalised before convolution so as to avoid
modifying bands dynamic range at the filter outputs. This first
layer concentrates the learning of the spatial discrepancies with-
out altering reflectances, for which the mapping can be learned
by the downstream CalibNet architecture. At inference time,
the input convolution layer is skipped so as to only apply pixel-
wise reflectance mapping.

Figure 4. Scatter plot between Pleiades and Sentinel-2 surface
reflectance for the Aude1 dataset, for all methods for Green and
NIR bands (in this dataset both reflectances are Top of Canopy

reflectances)
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Figure 5. Evolution of training and validation losses during
CalibNet network training on dataset Aude1. Green line

indicates loss achieved by linear regression. Red lines indicate
best loss and iterations.
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Figure 6. Evolution of training and validation losses during
ConvCalibNet network training on datasets Aude1. Green line

indicates loss achieved by linear regression, and purple line
indicates loss achieved by CalibNet. Red lines indicate best loss

and iterations.
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Figure 7. Prediction and prediction error for Linear Regression
and ConvCalibNet at 10m resolution.
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Figure 8. Prediction and alteration of Pleiades image for
ConvCalibNet and BCNet at 2m resolution.
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Figure 9. Evolution of training and validation losses during
BCNet network training on datasets Aude1. Green line indicates

loss achieved by linear regression, purple line indicates loss
achieved by CalibNet, and brown line loss achieved by

ConvCalibNet (those two last lines are superimposed in the
graph). Red lines indicate best loss and iterations.
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Figure 10. Learned filters in the MTF module of the BCNet
architecture, Aude1 case. The module learns both

mis-registration and MTF residual, cancelling them for the
downstream MLP. Kernels are sampled at 2m resolution.
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Figure 9 shows that BCNet reaches the same loss minimum as
ConvCalibNet, in 2min36s of training, and those performances
are confirmed by looking at scatter plots (figure 4) and metrics
(figure 3). Figure 10 shows the filters learning by the first layer
of BCNet. We can see that those filters can be interpreted as
learning the correct Point Spread Function for each band as well
as correcting their spatial registration with the reference data,
as we can observe the kernel shifting from their initial centered
position. The corrections captured by this layer are not relevant
to the radiometric cross-calibration task, and can therefore be
skipped during inference.

Indeed, figure 8 shows that by skipping those corrections during
inference, spatial details of Pleiades remains unaltered when
applying the model at full resolution.

3.2 Radiometric Top of Atmosphere mapping
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Figure 11. Comparisons of four standard metrics for the initial
refletances and the four proposed methods measured on Aude2

dataset.

In this section, we will investigate the performance of the pro-
posed method on Aude2 dataset, for which Pleiades image con-
tains Top of Atmosphere reflectances.

The initial scatter plots presented in figure 12 obviously
show increased discrepancies between the Top of Atmosphere
Pleiades reflectances and the Top of Canopy Sentinel-2 re-
flectances, due to the presence of atmospheric contributions in
Pleiades reflectances.

In this conditions, we can see in figure 11 that linear regression
is not sufficient to obtain a good mapping, which highlights the
non-linearity of atmospheric contributions. The MLP CalibNet
architecture allows to capture those non-linearities and to im-
prove RMSE by 15% to 30% depending on the spectral band,
which is fairly visible in figure 13. It is important to note that
this improvement comes at the expense of increasing the max-
imum error, which may suggest that the network might be too
complex for the task and its supervision. The convolution layer
trick brought by BCNet allows to benefit from the same perfor-
mances without altering the spatial details of the full resolution
Pleiades image.

3.3 Dealing with unmasked clouds

Sentinel-2 L2A products distributed by Theia come with handy
cloud masking, which allows to only rely on cloud-free pix-
els during training. Pleiades data on the other hand come with

Figure 12. Scatter plot between Pleiades and Sentinel-2 surface
reflectance for the Aude2 dataset, for all methods for Green and

NIR bands (in this datasets Pleiades image contains Top of
Atmosphere reflectances)
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Figure 13. Prediction error of Linear Regression and CalibNet
on Aude2 dataset.
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Figure 14. Comparisons of four standard metrics for the initial
refletances and the four proposed methods measured on

Bretagne2 dataset, where the Pleiades image is contaminated by
unmasked clouds.

a rather coarse mask, that we chose not to use in our experi-
ments. Yet, Pleiades image from the Bretagne2 dataset exhibits
high cloud contamination, which prevents all methods to suc-
cessfully estimate the mapping between Pleiades and Sentinel-
2 surface reflectance, as shown in the scatter plots in figure 15.
Metrics presented in figure 14 show that none of the methods is
able to predict better reflectances than the initial ones.

In order to overcome this problem, we modify all architectures
as described in figure 19 to produce a second output which will
act as the prediction variance for each band. This will be done
by forking the last layer of each architecture, yielding two sim-
ilar (but different) output layers in parallel. The variance path
ends with an Exponential Linear Unit (ELU).

Following (Nix and Weigend, 1994), the loss function is revised
as equation 2.

L =
( µ− t)2

2 ∗ σ2
+ ln(σ), (2)

which, up to a constant, corresponds to the negative log-
likelihood under a Gaussian error model. Minimising this loss
function is equivalent to maximising the log-likelihood of the
estimation given the input to the network.

Empirically, this creates a second path for high outlier gradients
back-propagation, which can raise the variance output instead
of altering the main output. The logarithmic term of the loss
ensures that the optimisation does not converge to the trivial
infinite variance solution.

Learning with this configuration allows to achieve the same
level of performance than cloud-free configurations, as shown
in scatter plots (figure 17) and metrics (figure 16).

The new variance output can also be used as a confidence in-
dex during inference, as shown in figure 18. This can be used
as a cloud mask that is predicted from Pleiades reflectances
only, and can be predicted at full resolution. In addition to
clouds, this confidence index will denote outlier discrepancies
that could not be resolved during learning phase.

Figure 15. Scatter plot between Pleiades and Sentinel-2 surface
reflectance for the Bretagne2 dataset, where the Pleiades image
is contaminated by unmasked clouds, for all methods for Green

and NIR bands.
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Figure 16. Comparisons of four standard metrics for the initial
refletances and the four proposed methods using variance

prediction, measured on Bretagne2 dataset, where the Pleiades
image is contaminated by unmasked clouds.
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Figure 17. Scatter plot between Pleiades and Sentinel-2 surface
reflectance for the Bretagne2 dataset, where the Pleiades image

is contaminated by unmasked clouds, for all methods, using
variance prediction, for Green and NIR bands.
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Figure 18. Pleiades input, Sentinel-2 reference, BCNet
confidence and prediction for a patch of the Bretagne2 dataset.
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(a) CalibNet architecture
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(b) ConvCalibNet architecture

Figure 19. Modifications of the proposed network to include a
second output corresponding to the variance of the prediction.

4. CONCLUSIONS

In this paper, we address the problem of obtaining consis-
tent surface reflectance values between Sentinel-2 images and
Pleiades images acquired with varying angular conditions and
at different times. We saw that physical differences such as
BRDF effects or spectral bandwidth, but also differences in ra-
diometric calibration processing chains, can yield significant
radiometric differences and impair high level information ex-
traction methods using both sensors.

Instead of trying to model and correct all those differences, we
propose to learn harmonised reflectances by means of machine
learning techniques, using Sentinel-2 as a reference. In ad-
dition to linear regression which has been selected as a base-
line method, we compared four different architectures based on
Neural Networks. We evaluated those methods on four different
datasets over two different sites in France, learning one model
for each dataset, since we do no seek for generalisation.

We saw that using a MLP based architecture does not bring
much improvement with respect to linear regression if Pleiades
products are already calibrated at Top of Canopy level. Both
can yield significant improvements especially in the NIR band,
where the RMSE error is more than twice smaller. However,
when using Top of Atmosphere Pleiades products as input, us-
ing a MLP based architecture brings 10% to 25% of improve-
ment to all bands with respect to linear regression. We can as-
sume that the correction to learn is more non-linear in that case,
since it contains the removal of the contribution of the atmo-
sphere.

At first sight, using a convolutional architecture seemed to yield
even better results but this is mostly due to the learning of spa-
tial discrepancies such as mis-registration or incomplete MTF
knowledge, and such a model will alter the high spatial fre-
quency of the Pleiades image when applied at full resolution.
To overcome this issue, we proposed a different architecture,
with a single input convolution layer as input to the MLP ar-
chitecture, tailored to learn the spatial discrepancies. This layer
can be skipped during inference to fully preserve the high res-
olution spatial content. Filters learned by this removable layer
indeed show MTF and registration residuals.

Last, the process of learning the reflectance mapping can also
be altered by unmasked clouds in the input Pleiades image. We
therefore propose to add a second output to our networks in or-
der to infer variance of prediction as a proxy for confidence.
This new output is trained with a dedicated statistical loss. We
shown that this yields stable result in presence of cloud in the
input samples, and can also serve as a simple cloud and confi-
dence mask that can be inferred from Pleiades pixels alone, at
full resolution.
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