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ABSTRACT:

Mapping the exact extent of urban areas is a critical prerequisite in many remote sensing applications, such as hazard evaluation and
change detection. The usage of Synthetical Aperture Radar (SAR) data has gained popularity due to the unique characteristics of the
backscattered radio signal from human-made targets. The Sentinel-1 (S1) constellation, with a global revisit time of 6-12 days in
Interferometric Wide Swath (IW) mode and free and open access to the data, allows the development of new applications to monitor
urban sites. However, S1 is rarely considered when fine resolution is required due to the large pixel size and the need for spatial
averaging to obtain robust estimators. We propose a method to improve Sentinel-1 urban classification performance by exploiting one
Multi-Spectral (MS) image acquired by Sentinel-2 (S2). MS data is used for tracing the precise natural boundaries in a scene through
superpixels segmentation. A machine learning approach is then applied to interpret the thematic context of each segment from short
temporal stacks of coregistered SAR data. We use a short sensing period (around two months), so rapid changes can be traces. The
proposed fusion of S1 and S2 data was tested in the area of Milan (Italy), with a total accuracy of about 90%. The ability to follow
high-resolution details in a mixed environment is demonstrated, opening the possibility of efficiently tracing the human footprint.

1. INTRODUCTION

In recent decades, mapping urban areas and change have been
vital in facing numerous environmental and cadastral challenges.
Many coarse resolution solutions were developed (Bartholomé
and Belward, 2005, Chen et al., 2015), providing insight into
large-scale trends. Deriving urban maps with a fine level of de-
tail (< 20m) is usually well performed by high resolution MS
remote sensing instruments (Thomas et al., 2003, Malarvizhi et
al., 2016).
SAR data holds great potential in urban mapping because of the
sensed signal’s nature, which is very much different between ur-
ban and natural areas. While overcast weather limits the possibil-
ity of processing continuous time-series using MS data, radio sig-
nal penetrates clouds, allowing regular sampling worldwide. The
launch of several high-resolution missions made SAR a strong
candidate for the task (Esch et al., 2017), especially where cloud
coverage prevents regular time sampling by optical means.
Sentinel-1, a C-band constellation with nominal 5-by-20 meter
resolution (in the standard Interferometric Wide mode), is rarely
considered for fine resolution applications because of the coarse
pixel size. However, some advancement has been accomplished
recently (Chini et al., 2018, Sun et al., 2019), motivated by open
data availability and regular worldwide acquisitions. Tradition-
ally, resolution enhancement is obtained by replacing spatial av-
eraging with temporal one, requiring a long time series. While
effective, it reduces the sensitivity to fast changes.
Fusion of SAR and MS was shown to improve classification per-
formance and increase resolution (Ban et al., 2010, Clerici et al.,
2017). The work presented here explores the possibility of com-
bining the unique SAR capabilities of detecting stable targets,
i.e., urban structures, with the fine resolution of optical surveys.
First, segmentation of an optical image is performed, such that
the final product follows the visible borders between land covers.
A Machine Learning (ML) model is then trained to identify ur-
ban segments by features retrieved from a SAR stack of the same
area. The classification products are given as the percent of urban
pixels in a segment, and the value is finally thresholded to achieve
binary classification.

∗Corresponding author.

The remainder of this paper is organized as follows. SAR fea-
ture extraction is presented in Section 2. MS image segmentation
approach is given in Section 3. A description of the method is
presented in Section 4. The dataset used for testing and the final
results are reported in section 5. Finally, conclusions and further
discussions are summarized in Section 6.

2. SENTINEL-1 DATA FOR URBAN CLASSIFICATION

Given a set of homogeneous SAR pixels, numerous features can
be extracted for their characterization. In the field of urban map-
ping some possible solutions are: backscatter intensity (Strozzi
and Wegmuller, 1998), backscatter temporal variability and long
term coherence (Bruzzone et al., 2004), entropy of the polari-
metric coherence matrix (Cloude and Pottier, 1997) and texture
analysis (Nyoungui et al., 2002). This section covers the set of
features we use for classification. The features were selected to
match the data characteristics of S1, and the possibility for a ro-
bust estimation over a short multi-temporal stack.

2.1 Differential Entropy

The stability of targets in SAR images over time is a feature of in-
terest when studying the difference between urban areas and natu-
ral surfaces, since human-made targets tend to show little change
over time.
We propose an innovative quantification of temporal stability, in
the form of an entropy measure, which is both robust and easy to
compute.
Differential entropy (Cover, 1999) is an information theory quan-
tity, describing the level of uncertainty for continuous random
variables. When a target is very stable, i.e., the pixels are highly
correlated over time, the entropy is expected to be low, since the
knowledge of one outcome, infers on the others.
For a continuous random variable S with density f(x), the differ-
ential entropy is defined by:

H(x) = −
∫
f(x) ln f(x)dx (1)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-273-2021 | © Author(s) 2021. CC BY 4.0 License.

 
273



The definition can be extended to a set of random variables. The
vector of complex SAR measurements S = [S1, S2, .., SN ]T has
a multivariate circular normal distribution with covariance matrix
Γ:

f(S) =
1

πN |Γ|e
−SHΓ−1S (2)

To observe the phase stability of the series, it is useful to normal-
ize Γ with respect to the amplitude variations, i.e., obtaining the
coherence matrix C.
For a set of random variables described by the distribution in
Equation 2, the differential entropy holds a closed form solution:

H(S) = H(CN (0, C)) =
1

2
ln(|(2πe)C|). (3)

Figure 1 shows the effectiveness of the differential entropy to
highlight urban constructions. We use it for classification pur-
poses, as it captures the coherence deterioration process without
model fitting, which is sensitive to noise. The feature is compu-
tationally efficient, as it requires merely a matrix inversion.

2.2 Coherence Between Co-Pol and Cross-Pol Polarizations

Polarization is a property defining the alignment of the Electro-
Magnetic (EM) field in reference to a plane perpendicular to the
direction of propagation. The response of a target to an EM sig-
nal can be decomposed to its horizontal and vertical polarization
components (Freeman et al., 1992):
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(4)
where ER and ET are the received and transmitted signals, re-
spectively, and S is the complex scattering matrix.
Urban areas are characterized by a high concentration of Perma-
nent Scatterers (PS) (Ferretti et al., 2001), i.e., strong reflection
in the direction of the antenna, as coming from a single point.
Such targets were shown to have a unique signature in the differ-
ent polarization channels (Atwood and Thirion-Lefevre, 2018).
The effect can be measured by the coherence between the co-pol
and cross-pol channels:

γV V/V H(P ) =

∣∣∣∣∣ E[SV V (P )S∗
V H(P )]√

E[|SV V (P )|2]E[|SV H(P )|2]

∣∣∣∣∣ , (5)

where SV V and SV H are the complex SAR signals, for the two
polarization channels. E[.] denotes the expected value.
γV V/V H(P ) was shown to be higher with respect to natural tar-
gets (Prati et al., 2018), as can be seen in Figure 1.
The feature helps to emphasizes dihedral and trihedral structures
(PS), and was selected due to the availability of VV and VH po-
larizations in S1 data. Note that the effect described above de-
pends on the incidence angle, which explaines the distribution of
γV V/V H values in Figure 1.

2.3 Backscatter Intensity

PS targets are known to result in a high-intensity response due
to the specular reflection. Most resolution cells in a SAR image
are not dominated by a stable and strong scatterer (PS), but by a
superposition of many independent targets. In this case we are in
presence of the so-called Distributed Scatterer (DS). The received
complex signal (i.e. a pixel) can be statistically described as a re-
alization of a random variable with complex normal distribution:

SR ∼ CN (0, σ2), (6)

(a)

(b)

(c)

(d)

Figure 1: SAR features, Lainate (Italy). Estimation is performed
over a rectangular window of 25x5, with a descending stack of
10 images. (a) Sentinel-2 RGB Image (b) Differential entropy (c)
Polarimetric coherence (d) Calibrated backscatter.

where σ is the backscatter coefficient.
The estimate of backscatter per given area is useful for the char-
acterization of scatterers (Sica et al., 2019). The combination of
smooth surfaces and PS targets in urban zones causes the mea-
sured backscatter to be high, with respect to agriculture fields or
forests. Incidence angle affects backscatter, and may lead to mis-
classification in mountain regions (Chini et al., 2018). Thus, we
use σ0 (Small, 2011), i.e., the backscatter per area on the ground,
calibrated with respect to the local incidence angle:

σ̂0 =
1

N

N∑
n=1

În sin(θin), (7)
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whereN is the number of images in the stack, In is the amplitude
in image n, θin is the local incidence angle.
Values of σ0 in Figure 1 are shown to be high for urban regions.
Note that some areas show significantly high values, possibly due
to the orientation of buildings, which causes increased specular
response.

3. GEOMETRY EXTRACTION FROM A SENTINEL-2
IMAGE

A segmentation algorithm aims to divide an image into non-
overlapping regions which exhibit certain properties, such as spec-
tral homogeneity or compacity. The identified groups of pix-
els are treated as objects, from which characteristics can be ex-
tracted. Consequently, the volume of data to be studied is reduced
in terms of the number of elements to inspect. Segmentation al-
gorithms enable the so-called object based processing (Blaschke,
2010) (as opposed to the traditional pixels based analysis), and
are increasingly used for remote sensing applications (Jacob et
al., 2020).
In this work we use the SLIC superpixels algorithm (Achanta et
al., 2012) for the definition of geometrical features. Pixels be-
longing to similar land cover types are grouped according to their
MS signature. As opposed to other segmentation methods, su-
perpixels do not try to capture the entire object; rather, they al-
most always result in an over-segmentation of the surfaces in the
image. The obtained clusters adhere to the natural borders of
the scene, i.e., the shape of edges is well represented in the seg-
mented image.
Superpixels fit well this application due to their ability to accu-
rately describe shapes in the image, with a set of segments that
are similar by size. The latter guarantees that a sufficient num-
ber of pixels are used to compute SAR-based features, avoiding,
for example, estimation of coherence of single pixels. The pro-
cess of grouping pixels into a unique cluster allows for significant
dimensionality reduction, without substantial deterioration in res-
olution.
In Figure 2, a 2.5Km X 1.5Km area around Lainate (Italy) is used
to demonstrate the segmentation algorithm’s effectiveness. The
processing is performed in the S2 native resolution (10m) to max-
imize the retrieved detail level.

(a) (b)

Figure 2: SLIC superpixels segmentation (a) Sentinel-2 RGB Im-
age. (b) Segmented image, RGB values are averaged over each
segment.

4. PROPOSED METHOD

SAR features are powerful in highlighting urban areas. However,
due to the relatively large estimation window, the level of detail
is coarse. This section demonstrates how the features discussed
in section 2. can be used efficiently in object-based processing,
improving the obtained resolution. The method requires two S1
stacks of at least eight images each, from ascending and descend-
ing orbits, and one S2 image with low cloud coverage from the

same period.
First, we segment the S2 image using SLIC superpixels. The
output of the segmentation process is a segment index for each
pixel. To use the geometrical knowledge with S1 data, we project
the indexes into the SAR coordinate system (i.e., range-azimuth),
defined by the master acquisition. This allows analyzing SAR co-
herence and intensity without prior resampling and multi-looking.
SAR multi-temporal features are then computed over the seg-
ments since pixels labeled by the same segment are assumed to
belong to a similar land cover. Replacing the boxcar filter with a
data-driven local window has a twofold benefit: better homogene-
ity in the estimation process and adhering to the visible borders
in the image.
The orientation of urban structures is distributed randomly, which
affects the characteristics of the returned signal. To enhance accu-
racy, we use two stacks with different orbits (i.e., ascending and
descending). Distortions induced by the geometry of the SAR ac-
quisition appear differently for the two orbits, improving the fea-
sibility of detecting urban structures. Figure 3 shows the result of
feature extraction over the segments. Note the large difference in
γV V/V H for the two stacks, due to the difference in the double
bounce effect, as it is experienced from different incidence an-

Descending Ascending

Figure 3: SAR features estimation step, computed over segments,
using descending and ascending stacks. Values are normalised to
[0,1]. Top: differential entropy (H), Middle: Coherence Between
Co-Pol and Cross-Pol Polarizations (γV V/V H ), Bottom: Sigma
nought (σ0).

gles.
Despite the best efforts to define a precise segmentation proce-
dure, some segments will not contain only samples from one
class, as typical for roads, parks, etc. Using traditional binary
classification methods can bias the learning mechanism. We chose
a regression approach to overcome this issue. We aim to obtain
a model which is able to predict the percent of urban pixels per
segment.
The Random Forest (RF) regressor (Cutler et al., 2012) is an
ensemble learning method, which generates a set of Decicision
Trees (DT) from the training data. DTs are constructed such that
splits minimizes an impurity measure. The prediction of unseen
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cases is performed by aggregating results of multiple DTs. We
identified RF as a suitable solution, because of the ability to ef-
fectively make predictions without a prior assumption of a model.
Also, a low number of calibration parameters is required, reduc-
ing tuning sensitivity.
For each DT i, a training setDi is sampled with replacement (i.e.,
bootstrap) from the available set. The frequency in which a sam-
ple is chosen during training can be controlled via weighting. We
use the size of a segment as the weight, since larger estimation
windows are known to be more robust.
The set of SAR features are used as input to an RF calibrated
model. The prediction is done independently on ascending and
descending stacks as depicted in Figure 4.

Figure 4: Binary classifier block diagram.

The numerical predictions for segment i (PASC
i , PDESC

i ) are
combined to a binary label according to the following rule:

Pi =


1 if PASC

i > T1 and PDESC
i > T2

or PASC
i > T2 and PDESC

i > T1

0 otherwise
(8)

where 1 notes the urban class. T1 and T2 were empirically cali-
brated to maximize accuracy: T1 = 0.5;T2 = 0.2.
Note that urban pixels surrounded by a large number of not-urban
pixels will be misclassified. This is the disadvantage of using
object-based techniques in comparison to pixel-based ones. How-
ever, those are usually isolated targets or borders that are not of
great importance, and the added benefit surpasses the drawbacks.
We project the labeled segments back to the georeferenced do-
main, using the pixels-to-segment map generated during segmen-
tation. The output of the method is a binary map with a 10m pixel
size.
Figure 5 demonstrates the benefit of using two stacks. While clas-
sification results are similar for both stacks, some differences are
seen. The combination allows obtaining a map that closely fol-
lows the ground truth.

5. DATASET

The Spring of 2018 (April-June) was considered for the evalu-
ation of the classification procedure. Springtime was chosen to
enhance the difference between urban and natural land covers, as
vegetation coverage is high.
Two stacks of Single Look Complex (SLC) SAR images were
collected from ascending and descending orbits. Each stack was
coregistered to its unique master. We use a regular sampling pe-
riod of 6 days, which generally possible due to the regular acqui-
sitions of S1. One S2 image was retrieved from the same period
(April 2018). Low cloud coverage is needed to enable precise
segmentation. The chosen images showed 2.4% cloud coverage.
Training and testing require an accurate ground truth. We used
the DUSAF6 land use map provided by the Lombardy region

(a) (b)

(c) (d)

Figure 5: (a) Classification results for ascending stack (b) Classi-
fication results for descending stack (c) Combined classification
(d) Ground truth, based on DUSAF6.

(Italy), updated to 2018. DUSAF6 has a scale of 5m and is based
on aerial photogrammetry. Labels are organized into three prin-
cipal levels of detail, shown in Figure 6.
cover map was reclassified, following the DUSAF6 level-I labels.
Some adjustments were adopted so to consider the nature of the
SAR signal. For example, greenhouses, labeled as Agricultural
areas by DUSAF6, are regarded as urban here. The ground truth

(a)

(b)

Figure 6: Land cover of Lainate, Italy. (a) DUSAF6 level I label-
ing. (b) reclassification into urban/not-urban.

layer was aligned to the Sentinel-2 image, i.e., resampled and
clipped in the same 10mx10m grid.
Note that the test site was chosen to have a similar distribution of
urban and non-urban targets, so the accuracy is a reliable estima-
tor of performance.
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6. RESULTS

After image segmentation, the training of the RF model was per-
formed on 5% of the segments. The evaluation of accuracy con-
siders all pixels which were not used for training.
Figure 7 presents the results of the classification process. An
overall accuracy of 90.29% was achieved. Note the level of ob-
tained details, such as roads and complex clusters of buildings,
which is not feasible by using only S1 data. The benefits of using
two stacks are demonstrated in Table 1.
The overall agreement with the ground truth is evident from Fig-
ure 7. However, some differences are noticeable. We argue that
part of the discrepancy can be explained by inconsistensies of

Figure 7: Urban classification results. Green: urban pixels de-
tected both by the method and the ground truth, Red: urban pix-
els detected only by the proposed method, Blue: urban pixels
detected only by ground truth.

Parameter Value
Total segments 14861
Train segments 5%
Total pixels 697,841
Pixel size 10m x 10m
Accuracy descending stack 88.93%
Accuracy ascending stack 89.13%
Accuracy both stacks 90.29%

Table 1: Classification summary and performances

the ground truth, as illustrated in Figure 8. Pixels marked in red
are classified as urban while appear as non-urban in the ground
truth, maybe due to lack of update of the DUSAF6 dataset. Pix-
els marked in blue are the missed detections. It is clear that some
areas are labeled urban in DUSAF6 even though they are not cov-
ered by an urban structure (i.e., building, road, etc.). Green pixels
mark the correctly labeled urban pixels, which closely follow the
shapes of the buildings.

7. DISCUSSION AND CONCLUSION

This article suggests a method to map urban extents with 10m
resolution using only openly distributed data, i.e., Sentinel-1 and

(a) (b)

Figure 8: Classification error example. (a) Classification results,
using both stacks. (b) reference Google earth image.

Sentinel-2. The approach characterizes objects defined in the op-
tical domain, which are less prone to noise and are available in
higher resolution, with features from the SAR domain, which
are more robust in differentiating urban areas. The ability to ob-
serve a high level of detail, which is not possible with standard
SAR techniques, is demonstrated. Urban areas, which are usu-
ally defined by clusters of buildings over confined territory, can
be traced with an enhanced level of accuracy.
Efficiency is gained by selecting a set of computationally simple
features and the dimension reduction introduced by segmenta-
tion. Innovative utilization of the differential entropy allows for
the generation of a very powerful feature in terms of separating
natural and urban environments, with the low cost of computing
a determinant of an NxN matrix (being N the number of SAR im-
ages used for the processing).
The methodology was tested with S1 and S2 data over an area in
the north of Italy, showing an overall accuracy of about 90%. An
RF model was trained to estimate the thematic content of clusters
of pixels based on the DUSAF6 land cover map. Errors in classi-
fications of small features may be explained by the nature of the
segmentation procedure, limiting the minimal size of a segment.
Fine urban features with not-urban surroundings (or vice-versa)
are challenging to detect. Also, DUSAF6 is published in 5m res-
olution, while Sentinel data is provided with a coarser resolution.
DUSAF6 is considered a reliable representation of the ground
truth. However, in some cases, labels do not coincide with the ac-
tual land cover due to possible errors or undocumented changes.
The percent of wrongly labeled pixels is assumed to be low enough
to not significantly bias the learning procedure, allowing the model
to learn the main characteristics of an urban segment.
Joint usage of two orbit direction was shown to improve clas-
sification performance. The accuracy is relatively high also in
the case of one stack, if a second is not available. However, the
different looks provide complementary data due to features de-
pendence on incidence angle.
Combining the SAR and MS allows to overcome the S1 pixel size
limitation and makes it a viable candidate for precise monitoring
applications. Dependency on fair weather conditions is also re-
laxed, as just one S2 image is required, from any period where
boundaries between land covers are assumed to be stable.
Only two months of data were used for the result reported here,
a significant reduction in the required period compared to other
known solutions. The short sensing period allows for tracking
rapid scene changes; thus, it can be suitable for near real-time
applications. The technique can be well suited as a complemen-
tary tool for change detection tasks, where high-resolution urban
masks are often needed, to discriminate types of changes.
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