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ABSTRACT: 

 

Although dams are very useful engineering structures, they can have extremely harmful consequences if they fail. One example of 

these failures occurred in Sardoba Reservoir (Uzbekistan). On May 1, 2020, a part of an earthfill dam failed along the Sardoba 

Reservoir, and a large region with settlements and agricultural areas in Uzbekistan and Kazakhstan was flooded. Accurate mapping 

and monitoring of the flooded areas are crucial for the damage assessment and the mitigation efforts. Satellite Earth Observation 

datasets can serve for these purposes due to their greater availability with high spatial and temporal resolutions. However, the optical 

sensors have limitations for data acquisition due to the atmospheric conditions, particularly the cloud cover, which often severely 

affects the image usability when floods occur. The synthetic aperture radar sensors provide valuable information under all weather 

conditions, but their interpretation is relatively difficult. Therefore, a data fusion methodology is proposed here for the integrated use 

of Sentinel-1 and Sentinel-2 datasets using a set of features obtained from both. Four different feature combinations were evaluated 

using the random forest classifier. The pre-processing steps for the feature extraction are explained in detail and the results are 

discussed here. The proposed algorithm exhibits very high classification accuracy for the flooded areas and flooded vegetation 

classes. The method can be employed for the flash flood mapping at regional scale. In addition, the damage assessment especially for 

agricultural areas in the region is very important for accounting the economic losses and the resilience purposes. 
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1. INTRODUCTION 

 

Dams are one of the major infrastructures, and they are 

constructed for various purposes such as energy production, 

flood control, irrigation, industrial and domestic water supply 

etc. However, the consequences of dam failures can be severe 

for downstream communities due to sudden flash flood. In 

addition to losses of human lives, agricultural areas, natural 

flora and fauna, and various infrastructures can be damaged by 

floods occur after a dam failure. Project and construction faults, 

unsuitable site selection, extreme or differential settlements, 

unexpected heavy rainfalls and landslides, earthquakes and fault 

movements can be the causes of dam failures. After a dam 

failure, the rapid determination of flooded areas is extremely 

important for emergency aid and identification of damaged 

areas since the floods caused by a dam failure develop very 

rapidly and affect very large areas. On May 1, 2020, a part of an 

earthfill dam failed along the Sardoba Reservoir in Uzbekistan, 

and a large area in Uzbekistan and Kazakhstan was flooded. Six 

person died and thousands were evacuated as flood water 

spilled across the region and into neighbouring Kazakhstan 

(Putz, 2020). In this study, it was aimed to determine the areas 

affected by the flood after the dam failure by using Sentinel-1 

synthetic aperture radar (SAR) and Sentinel-2 optical datasets. 

 

The SAR sensors, which have all weather conditions and all-

time provide data, have an important value in flood mapping 

(Tong et al., 2018). SAR data are processed using different 

methods in the literature to determine water surfaces that have 

different reflections from other surfaces (Ouled Sghaier et al., 

2018). However, information extraction from SAR data is 

typically considered to be more difficult than multispectral 

sensors (Amitrano et al., 2018). Due to various advantages of 

SAR and optical data, many studies in the literature have 

employed these two data types in a complementary fashion via 

data fusion methods (Notti et al., 2018; Vanama et al., 2021; 

Anusha and Bharathi, 2020; Tavus et al., 2019; Tavus et al., 

2020).  

 

Here, a feature-level fusion method employing the Sentinel-1 

and Sentinel-2 datasets was proposed to determine flooded 

areas using Random Forest (RF) supervised classification 

method. For this purpose, three Sentinel-1 and four Sentinel-2 

datasets provided freely by the Copernicus Open Access Center 

(Copernicus, 2020) were used. Initially, the Sentinel-1 and 

Sentinel-2 images were geometrically and radiometrically 

corrected for the feature level fusion with high accuracy. The 

pre-processing steps include spatial resampling to 10 m and 

mosaicking of five Sentinel-2 bands, radiometric correction, 

speckle filtering, and terrain correction of the Sentinel-1 SAR 

images. Finally, the RF was performed to map the flooded areas 
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with different features. All processing steps were performed 

using the SNAP Tool provided by ESA. 

 

2. STUDY AREA AND DATASETS 

2.1 Description of the Event 

The Sardoba Dam, constructed between 2010-2017 on the Syr 

Darya River, has a reservoir with a volume of ~922 million m3, 

which mainly supply for the irrigation of agricultural lands of 

Sirdaryo and Jizzakh regions (Simonow, 2020). Figure 1 shows 

the study area location and a zoomed view of the dam on one 

Sentinel-2 RGB image. 

 

 

Figure 1. Location of the study area on Sentinel-2 image 

 

The dam breach followed seven days of heavy rainfall and high 

winds in the Sirdaryo and Jizzakh regions, at 5.55 am on May 1 

2020, caused a Sardoba dam wall to collapse partially, flooding 

a large land area (Figure 2). The flooding affected more than 

35,000 hectares of land in Uzbekistan and Kazakhstan. Six 

people died and at least 111,000 were evacuated from the Syr 

Darya river basin (Simonow, 2020). The agricultural areas were 

severely damaged as well. 

 

 
 

Figure 2. Views from the failure and the damages of caused by 

the Sardoba Dam break (photo credits: Fergana News, 2020) 

 

2.2 Datasets 

Sentinel-1 is constellation of two SAR satellites, Sentinel-1A   

and   Sentinel-1B, with ⁓5.7 cm wavelength. The satellites are 

operated by the Copernicus Program of European Space 

Agency (ESA); have a revisit time of twelve days for each (six 

days for the constellation) (Nagler et al., 2016). The Sentinel-2 

optical sensors are twins (2A/2B) and take images with ground 

sampling distances (GSDs) ranging between 10 m - 60 m 

(Drusch et al., 2012). The sensors have a total of thirteen 

spectral channels with diverse wavelengths (e.g. visible, near-

infrared (NIR), short-wave-infrared (SWIR)) with a swath-

width of 290 km and five day temporal resolution (Gascon et 

al., 2017).    

 

In this study, Sentinel-1A C-band Interferometric Wide (IW) 

swath mode and Level 1 ground range detected (GRD) products 

were used. Each product is dual polarization (VV+VH) at a 

spatial resolution of 5 m × 20 m and has a swath coverage of 

250 km. In addition, Sentinel-2B MSI data with Level-2A from 

five spectral bands, i.e., blue (B1), green (B2), red (B3), NIR 

(B8) and SWIR (B11) were employed here. Both datasets were 

obtained from the ESA Copernicus Programme (Copernicus, 

2020). The main properties of the utilized datasets, such as the 

surface state with respect to the event, the date, and the dataset 

(DS) ID number are summarized in Table 1.  

 

Sensor Surface State Date DS ID 

Sentinel-1A Pre-event 2020/04/29 DS1 

Sentinel-1A 
Post-event 2020/05/05 

DS2 

Sentinel-1A DS3 

Sentinel-2B 
Pre-event 2020/04/24 

DS4 

Sentinel-2B DS5 

Sentinel-2B 
Post-event 2020/05/04 

DS6 

Sentinel-2B DS7 

Table 1. The main features of the datasets employed here. 

 

The Sentinel-1 and Sentinel-2 data were selected at the most 

suitable dates to represent the pre- and post-flood conditions. 

The Sentinel-1A pre-event data has the relative orbit number 71 

and ascending pass direction, while the post-event dataset has 

relative orbit number 152 and descending pass direction. 

Similarly, Sentinel-2B pre- and post-event datasets have the 

relative orbit number of 34 and descending pass direction. As 

can be seen from Table 1, two Sentinel-2 pre-event and two 

post-event images cover the study area. On the other hand, the 

post-event Sentinel-1 datasets were employed to ensure the full-

coverage of the study area extent. The datasets were merged in 

the pre-processing steps. 

 

3. METHODOLOGY 

 

The methodological workflow of the study can be evaluated in 

three main stages, i.e., data pre-processing, classification, and 

evaluation of the results (Figure 3). First, a set of pre-processing 

algorithms for the Sentinel-1 and Sentinel-2 data was carried 

out; and the data obtained were stacked in different 

combinations. In the second stage, each stack was classified 

using the training samples, which were manually delineated 

from the Sentinel-2 datasets. Seven land use land cover (LULC) 

classes were identified (i.e., permanent water, flooded area, 

flooded vegetation, urban, bare land, and two types of 

agricultural areas such as vegetation-1, vegetation-2) prior to 

the selection of the training data. Representative image parts 

were selected from the pre- and post-event Sentinel-2 mosaics 

for each class in the form of polygons (Figure 4). Finally, the 

classification was carried out by using the RF algorithm. The 

evaluation of the results was performed by visual assessments 
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and using the overall accuracy values obtained from the RF 

method. 

 

 

Figure 3. The methodological workflow of the study. 

 

 
 

Figure 4. Pre- and post-event Sentinel-2 mosaics in true colour 

combination and the training areas selected for different classes. 

 

The radiometric calibration and the speckle filtering are crucial 

steps in the pre-processing of SAR data. The calibration process 

is essential for the quantitative analysis for the multi-sensor and 

multi-temporal SAR images. As a result, radar backscatter can 

be represented. The σ0 bands were also produced in the 

calibration procedure. The variation in radar return within a 

pixel caused by multiple scattering sources causes a speckle 

effect in SAR data (Giustarini et al., 2015). The reduction of the 

speckle effect is important for obtaining accurate results in 

further processing (Clement et al., 2018; Carreño Conde et al., 

2019). For this purpose, SNAP software (SNAP, 2018) offers 

various filter types with different filter sizes such as Lee, Lee 

Sigma, Refined Lee, and Gamma Map. At this step, Lee Sigma 

speckle filter method was used to reduce the speckle, as the Lee 

Sigma speckle filter has been found to be useful in many studies 

(Lee and Pottier, 2009; Jaybhay and Shastri, 2015; Tavus et al., 

2018). 

 

The σ0 results were terrain-corrected and orthorectified using 

the Range Doppler Terrain Correction algorithm. As external 

topographic dataset, the SRTM (Shuttle Radar Topography 

Mission) with ca. 30 m spatial resolution was utilized; and the 

bilinear interpolation resampling technique was performed to 

obtain the geometrically corrected data. 

 

As shown in Figure 3, the SWIR band (B11) images of 

Sentinel-2 sensor was also downsampled to the resolution of the 

visible and the NIR band images (i.e. 10 m). By merging the 

data of the two acquisitions, mosaics representing the pre- and 

post-flood conditions were created and then cropped according 

to the study area extent.   

 

The NDVI (normalized difference vegetation index) and 

MNDWI (modified normalized difference water index) indices 

allowing the identification of flooded areas were generated from 

the pre- and post-event mosaics. These spectral indices provide 

useful information regarding the effects of floods on the soil 

even after the water is absorbed (Notti et al., 2018; Mohammadi 

et al., 2017).  

 

Finally, all features were collected in four different stacks with 

different feature set combinations. The stacks were designed for 

the purpose of investigating the success of classification by 

using different feature types as input; and thus evaluate the use 

of Sentinel-1 sensor for flood mapping as the sole data source. 

The stack combinations were as following: 

 

 Stack 1: Sentinel-1 flood and non-flood VV bands,  

 Stack 2: Sentinel-1 flood and non-flood VH bands,  

 Stack 3: Sentinel-1 flood and non-flood VV and VH 

bands,  

 Stack 4: Sentinel-1 flood and non-flood VV and VH 

bands, Sentinel-2 bands, NDVI and MNDWI indices.  

 

The RF algorithm was employed for the classification of the 

defined LULC classes with the help of the training data using 

the SNAP software. The RF belongs to the family of decision 

tree methods, and was proposed by Breiman (2001). In the RF, 

the decision tree is created randomly at the training stage; and 

the trees are evaluated for the best score. A total of 303.640 

training samples exists in the area, and 48.000 of them were 

used for testing. 3-fold cross validation was applied in the 

SNAP software using 300 as tree size value. The results of the 

classification were assessed in terms of overall accuracy for all 

classes. 

 

4. RESULTS AND DISCUSSIONS 

4.1 Pre-processing Results 

The pre- and post-event NDVI and MNDWI images, and their 

histograms are presented in Figures 5 and 6, respectively. The 

index values range between (-1:1) in both. The values were 

scaled to eight-bit images for visualisation purposes. As can be 

seen in Figure 5, flooded areas can be recognized in the NDVI 

feature, and the agricultural areas under the water also have 

high contrast. Figure 6 shows that the MNDWI reflect 

distinctive characteristics for the areas covered by water.  
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 (a)      (b) 
 

 
 (c)     (d) 

Figure 5. (a) Pre-event and (b) post-event NDVI indices; (c) 

pre-event and (d) post-event NDVI histograms. 

 

   
 

 (a)      (b) 
 

    
 (c)     (d) 

Figure 6. (a) Pre-event and (b) post-event MNDWI indices; (c) 

pre-event and (d) post-event MNDWI histograms. 

 

4.2 Flood Extent Map 

Four different LULC maps obtained from four different stacks 

(feature sets) using the RF are presented in Figures 7, 8, 9 and 

10. The maps include the classes of permanent water, flooded 

area, flooded vegetation, urban, bare land, and two types of 

agricultural areas as Vegetation-1, Vegetation-2. The overall 

accuracies achieved from the Stacks 1, 2, 3 and 4 are 65%, 

62%, 87% and 99%, respectively. The overall accuracy values 

show that the integration of the Sentinel-1 and Sentinel-2 

feature sets provide highest prediction performance for the 

classification of the defined classes. The use of single 

polarizations of Sentinel-1 VV (Stack 1, Figure 7) or VH (Stack 

2, Figure 8) yielded to lower performances, and therefore is not 

recommended for flood mapping here. When the Sentinel-1 

VV&VH images were used together, although the flooded areas 

could be separated, the flooded vegetation could still not be 

extracted (Figure 9). On the other hand, one should consider 

that the training polygons were delineated on the optical 

images. Especially the flooded vegetation class is not visible in 

SAR images. Thus, this class is not separable in SAR data. 

Here, the first three stacks (SAR polarizations only) were 

evaluated to analyse the contribution of SAR features to the 

prediction success. In order to evaluate the prediction 

performance of SAR-only features accurately, the training data 

must also be selected from these images, although the ground 

truth (flooded areas) remain the same (unchanged). 

 

 

 
 

Figure 7. Results of the RF classification with the pre- and 

post-event Sentinel-1 VV images. 

 

After visual assessments of the flood map given in Figure 10, it 

was observed that the non-flooded vegetation and settlement 

areas could be clearly identified. These areas exhibited noisy 

pattern in Figures 7, 8 and 9. In Figure 9, flooded vegetation 

could also not be determined since Sentinel-2 data was not 

employed. These areas were rather muddy with mixed colours 

in as observed the optical images. These areas are especially 

visible in the MNDWI index image (Figure 6).  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-291-2021 | © Author(s) 2021. CC BY 4.0 License.

 
294



 

 

 
Figure 8. Results of the RF classification with the pre- and 

post-event Sentinel-1 VH image. 

 

 

 
Figure 9. Results of the RF classification with the pre- and 

post-event Sentinel-1 VV +VH images. 

 

 
Figure 10. Results of the RF classification with Stack-4 

containing all features extracted from the Sentinel-1 and 

Sentinel-2 datasets. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

In this study, a fusion methodology for the integrated use of 

Sentinel-1 SAR and Sentinel-2 datasets for a flooded region in 

Sirdaryo Region, Uzbekistan was proposed. A flash flood 

occurred on May 1st, 2020 in the area after the break of a dam 

constructed on Sardoba Reservoir; and caused losses of lives, 

evacuations from the settlements, and severe damages in 

agricultural areas. Accurate mapping of the flooded areas and 

the flooded vegetation has become thus crucial for the damage 

assessment and disaster mitigation. Thanks to the frequent data 

collection schedule of the Sentinel-1 and Sentinel-2 satellites of 

ESA globally, the maps could be produced in this study by 

using an ensemble machine learning method (random forest). 

Seven different LULC types (permanent water, flooded area, 

flooded vegetation, urban, bare land, and two types of 

agricultural areas such as vegetation-1, vegetation-2) were 

identified in the region and the training samples were manually 

delineated on the Sentinel-2 images and stored as vector data 

(polygons). 

 

Four different feature sets derived from the Sentinel-1 and 

Sentinel-2 datasets were evaluated in the proposed 

methodology. The combinations involved the use of Sentinel-1 

VV (Stack 1), VH (Stack-2), VV+VH (Stack 3) polarization 

images. The last stack was a combination of feature sets 

obtained from both the Sentinel-1 and Sentinel-2 datasets, 

including the NDVI and MDNWI indices. The results showed 

that the integration of both datasets yielded to high prediction 
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performance for these areas with an overall accuracy of 0.99. 

Stack 3 (Sentinel-1 VV+VH polarization images) resulted in 

0.87 overall accuracy. The future works of the study include the 

assessment of the potential causes of the dam break; and the 

development of further evaluations for producing the flood 

extent maps by using the SAR data only. 
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