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ABSTRACT:

In this work, we elaborate on the gained insights from various classification experiments towards detailed land cover mapping over
four representative regions of different environmental characteristics in Greece. In particular, the proposed methodology exploits
Sentinel-2 data at an annual basis, for the joint classification of 35 land cover and crop type classes. A number of pre-processing
steps were employed on the satellite data, in order to address atmospheric and geometric effects, as well as clouds and pertinent
shadows. Several classification set-ups were designed and performed using either time series of spectral features or temporal
features. The latter consisted of statistical metrics, derived from the spectral time series, and therefore were significantly reduced in
dimension. Experiments using the Random Forest algorithm were performed by building several per-tile models, as well as cross-
regional models based on training data from all considered regions/tiles. Overall classification accuracy rates exceeded 90% for most
experiments. Further analysis on the experimental results highlighted that crop types were classified more accurately when using the
spectral time series features, compared to the temporal ones. Classification accuracy for non-crop classes proved much less affected
by the type of employed features. The inclusion of auxiliary data layers was beneficial in all cases, both for overall and for per-class

accuracy metrics. Qualitative evaluation on the predicted maps further affirmed the efficiency of the developed methodology.

1. INTRODUCTION

Open availability of high spatial and temporal resolution multi-
spectral data, like Sentinel-2 and Landsat 8, has significantly
increased the capabilities for various mapping applications, by
using image time series. Many recent studies have exploited
successfully such data time series, along with machine learning
techniques, for land cover and crop type classification tasks
(Defourny et al., 2019; Inglada et al., 2017, 2016; Stoian et al.,
2019). Nevertheless, the high dimensionality of these multi-
temporal multispectral observations poses significant challenges
regarding the seamless exploitation and integration of numerous
images, but also the efficient management and computationally
demanding processing of these massive volumes of data.

In this regard, relevant studies (Pflugmacher et al., 2019;
Waldner et al, 2017; Zhang et al.,, 2020) have exploited
temporal metrics derived from the time series, as classification
features of reduced dimensions. The use of these features offers
also the advantage of independency from the temporal shifts,
observed in dynamic classes across extensive or different study
areas (e.g., discrepancies of crop calendars) and could tackle
possible redundancy issues for the non-dynamic stable classes,
too. Still, there is limited literature regarding the relative
contribution of these advantages, in comparison to the higher
frequency of observations in a time series, which is crucial in
order to capture the dynamic phenological patterns of crops
(Griffiths et al., 2019; Karakizi et al., 2020).

To this end, in this work we present experiments of joint land
cover and crop type mapping, using multi-temporal Sentinel-2
data, over four study areas in Greece, presenting various
environmental characteristics. We discuss the contribution of
spectral, temporal and auxiliary features, on the classification
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accuracy of 35 categories, including 18 crop types. In addition
we assess different stratification set-ups for training and testing
the models and we also perform a thorough qualitative
evaluation on the produced land cover and crop type maps.

2. MATERIALS AND METHODS
2.1 Study Areas

The experiments were applied on four different Sentinel-2 tiles:
35TLF, 34TEK, 34SEJ and 34SEG, with a total extent of about
47,000 km®. These tiles cover part of the three main climate
zones present in Greece, according to the climatic stratification
of the environment of Europe (Metzger, 2018; Metzger et al.,
2005) as presented in Figure 1. More specifically, tile 35TLF
covers a part of northern Greece, and a small part of
neighboring Bulgaria. Regarding its climatic stratification, it
belongs to the Mediterranean North zone. It is covered mainly
by broad-leaved forests in its northern part, while on the
southern part lays an agricultural plain, bordering the Aegean
Sea. Arable crops like maize, cotton, cereals, tobacco and
sunflowers are mostly cultivated in this area. A big water body,
i.e., Lake Vistonida, covering an area of about 50 km?, plays an
important role for the local climate and along with river Nestos
on the western part of the tile, creates a significant fresh-water
ecosystem in the area.

Tile 34TEK corresponds to an inland region in the north-
western part of the country, mostly belonging to the
Mediterranean Mountains zone, as high altitude (~2000m)
masses and multiple smaller hills are scattered across the region.
Covers of natural vegetation like broad-leaved and coniferous
forests, natural grasslands, sclerophyllous vegetation and
barelands are dominant in the mountainous areas. Agriculture is
practiced in small plateaus, with the main crops being cereals,
maize, grass fodders but also stone fruit and nut trees. Two of
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the largest lignite mines of the country, covering about 100 km?
are also located near Ptolemaida city. Two vast water bodies
can also be found in this tile, the Orestiada lake and the
Polyfytos artificial lake, a result of damming the Aliakmonas
river, the longest watercourse in the country.

Tile 34SEJ is located in central Greece and presents a
combination of all three Mediterranean zones of the climatic
stratification. This tile consists of highly heterogeneous
landscapes with varying terrain relief, including plains but also
several mountain masses. The Pindus mountain range crosses
the study area from north-west to south-east, presenting covers
of natural vegetation like coniferous and broad-leaved forests,
sclerophyllous vegetation and barelands. On the eastern part of
the tile, lies a significant part of the Thessalian Plain, the largest
agricultural zone of the country. Agricultural land consists
mainly of cotton, maize, cereals, and grass fodders. The study
area also includes several vast water bodies, like the man-made
lakes Plastira and Kremaston, and part of the Amvrakikos Gulf.

Tile 34SEG covers the biggest part of western Peloponnese and
belongs for most of its extent to the Mediterranean South zone,
while bordering the sea to the west and south. Thermo-
Mediterranean brushes and sclerophyllous shrubs cover an
extensive part of this region from lower to higher altitudes.
Mount Taygetos and mount Mainalo can be found on the
castern part of the tile, covered mostly by coniferous forests and
sclerophyllous vegetation. Regarding agriculture, olive groves
are dominant and vastly cultivated in this area. In addition,
grape vines, citrus trees, potatoes, and vegetables, many of
which under cover (greenhouses), are crop types that can be
also found in this region. The large lignite mine of Megalopolis
is located in the eastern part of the tile, too.
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Figure 1. The selected Sentinel-2 tiles overlaid on the
Environmental Stratification of Europe map (Metzger, 2018;
Metzger et al., 2005).

For all studied tiles, urban regions cover relatively small areas
with most cities recording extents of less than 100 km®, except
for cities of Alexandroupolis (650 km?) in tile 35TLF, Trikala
(600 km?) in tile 34SEJ and Kalamata (450 km?) in 34SEG.

Sparse urban fabric regions, corresponding to small villages are
scattered across all study areas.

2.2 Classification Nomenclature and Reference Data

One of the main contributions of this work is the high thematic
analysis of the classes” nomenclature. We aim at a detailed land
cover and crop type product with 35 classes, including 18 crop
types. In order to design the land cover classes nomenclature,
we took into consideration the nomenclatures of related land
cover and/or crop type products and classification systems, such
as CORINE Land Cover (CLC), Greek land cover databases
(Ilots and Subilots), the FAO Land Cover Classification System
(LCCS), the land parcel information system (LPIS), the LUCAS
survey, the Eagle framework and other national land cover
products (Inglada et al., 2017). Nevertheless, we based the
formation of the classification nomenclature on the definition of
spectrally and contextually homogeneous classes at the
respective spatial resolution of target (10m). Further parameters
taken into account were class representativeness, relative extent,
and importance for the area of study. Crops’ nomenclature in
particular, was designed by also taking into consideration
agronomical and spectral distinctness or similarity (grouping of
classes, e.g. cereals) between different types, but also the
cultivation extent and importance in the agricultural economy of
Greece.

In this context, the classification nomenclature included the
following land cover categories: Dense urban fabric (DUF),
Sparse urban fabric (SUF), Industrial/Commercial units (ICU),
Road/Asphalt networks (RAN), Photovoltaic units (PHV),
Broad-leaved (BLF) and Coniferous (CNF) forests, Natural
grasslands (NGR), Dense (DSV) and Sparse sclerophyllous
vegetation (SSV), Sparsely vegetated areas (SVA),
Beaches/Dunes/Mines (BDM), Bare rocks (RCK), Wetlands
(WTL), Water courses (WCR), Water bodies (WBD) and
Coastal water (CWT). Crop-type classes included: Olive groves
(OLG), Grape vineyards (VNY), Citrus trees (CTR), Pome trees
(POM), Stone fruit trees (STN), Nut Trees (NUT), Rice (RIC),
Cereals (CRL), Cotton (CTN), Maize (MAI), Tobacco (TBC),
Sunflowers (SUN), Legumes (LEG), Potatoes (POT),
Vegetables (VEG), Grass fodders (FDR), Greenhouses (GRH)
and Fallow (FLW).

Reference data for the classification categories were created
through an intensive image interpretation procedure, by photo-
interpretation experts. Digitization was performed on very high
resolution imagery, like Google Earth and Bing satellite data,
Planetscope data and orthophotos of the National Cadastre and
Mapping Agency. Various geospatial datasets were used as
ancillary information, e.g., geospatial data from field campaigns
conducted by our laboratory, national geospatial information
layers, Copernicus Global Land Service products and high-
resolution satellite datasets. Particularly for arable crop classes,
geospatial data from the Greek Paying Agency and LPIS were
used for the creation of reference data, following some
processing steps towards the exclusion of erroneous (“outliers™)
records. At the same time, adhering to good practice for the
creation of reference datasets, sample size per class was kept
relative to each class’s respective occurrence in the study area.

2.3 Sentinel-2 Data and Preprocessing

Sentinel-2 L1C data of less than 20% cloud coverage for the
year 2019 were acquired from ESA Sci-Hub for the four above
mentioned Sentinel-2 tiles. Several pre-processing steps were
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applied, towards the seamless exploitation of the studied time
series of multispectral images. The initial step was atmospheric
correction, using the Sen2Cor processor, followed by a BRDF
(Bi-directional Reflectance Distribution Function) correction
using a semi-empirical kernel-based as described in Su et al.
(2009). Furthermore, cloud and shadow screening was
performed, applying the F-mask algorithm (Zhu and Woodcock,
2012) and interpolated values were produced for gap-filling,
using the median function. Following that, multi-temporal mis-
registration errors, which are often present in Sentinel-2 scenes
(Yan et al, 2018), were addressed applying the AROP
(Automated Registration Orthorectification Package) method
(Gao et al., 2009). As a final step, the medium (20m) resolution
bands of Sentinel-2 were sharpened from the, spectrally nearest,
high (10m) spatial resolution band, based on the High-Pass
Filter (HPF) fusion algorithm.

2.4 Classification Algorithm, Features and Set-Ups

Recent literature has demonstrated the efficiency of shallow
machine learning  frameworks, compared to deeper
architectures, in terms of a Dbetter trade-off between
computational cost and accuracy, especially in the case of
operational mapping applications (Karakizi et al., 2018; Stoian
et al., 2019). For this study we implemented a Random Forest
(RF) classifier with Python 3.7.8, using scikit-learn and 100
trees. All experiments were executed on a server running
Ubuntu 20.04, with an Intel(R) Core(TM) i7-5820K CPU at
3.30GHz and 48 GBs of RAM.

We adopted two approaches regarding the applied classification
features, i.e., one based on time series of spectral features and
one based on temporal features, i.e., statistical derivations
extracted from the spectral time series per pixel. The selection
of the specific spectral and temporal features was based on our
previous research efforts (Karakizi et al., 2020, 2018) and on
the related literature as analyzed in the Introduction section.
The time series (TS) sets were formed for each tile by stacking
seven spectral bands, i.e., Blue (Band 2), Green (Band 3), Red
(Band 4), Red-Edge (Band 5), NIR (Band 8), SWIR 1 (Band
11), SWIR 2 (Band 12) and three spectral indices, i.e., NDVI,
NDWI and NDBI. The TS datacubes consisted of: 290 layers
for tile 35TLF, 310 for 34SEJ and 350 for 34SEG and 34TEK,
based on the available acquisitions, adhering to less than 20%
cloud coverage for each tile. The temporal features (TF) sets
were formed for each tile by stacking nine temporal metrics i.e.,
the 10, 25" 50 75t 9ot percentiles, minimum, maximum,
mean values, and standard deviation for all ten spectral bands
and indices. For each tile, the TF datacubes had the same
number of features, i.e., 90.

Additionally, the contribution of three auxiliary features was
assessed for both sets (TS & TF). Recent studies using multi-
temporal satellite data towards land cover mapping, have
documented on the enhancement of the classification result,
when appending ancillary data like elevation, textural,
geographic, bioclimatic and thematic/contextual information
(Chen et al., 2015; Pflugmacher et al., 2019; Verde et al., 2020;
Zhang et al., 2020; Zhu et al., 2016). To this end, we exploited
a digital elevation model (EU-DEM) and the CLC product for
the year 2018, from the Copernicus Land Monitoring Service,
and the Environmental Zones product from the climatic
stratification of Europe (Metzger, 2018).

Classification models were built both on a per-tile/region basis
and by combining regions’ training data into cross-regional

models. Several experiments were performed, applying the TS
or TF approach and different combinations of the auxiliary data.

3. EXPERIMENTAL RESULTS AND DISCUSSION
3.1 Validation Framework and Accuracy Metrics

In a recent work (Karakizi et al., 2020) we advocated the use of
spatially independent training and testing sets, in order to avoid
over-estimation for the accuracy metrics. To this end, for each
tile, the reference data were split at the polygon level, using
approximately 65% for training and keeping 35% for testing.
The validation of the classification experiments was
quantitatively implemented by forming confusion matrices at
the pixel level, expressing the agreement between predictions
and testing data labels.

The standard accuracy metrics of overall accuracy (OA), user’s
and producer’s accuracy (UA and PA) were calculated. Per
class F-measure (F1) scores were also calculated as the
harmonic mean between UA and PA. In addition, the average
F1 from all classification categories (avF1) was calculated, as a
single-number indicator of each experiment’s -efficiency,
comparable to OA, but without the bias of class sample size. To
assist our analysis regarding crop and non-crop classes, F1
scores were also averaged only for crop classes (avF 1crops) and
only for, non-crop, general land cover classes (avF 1non-crops).
Qualitative evaluation was also performed by thorough,
intensive observation of the produced maps.

3.2 Quantitative Comparative Analysis

Results from experiments using the TS and TF features, form
the basis of the comparative analysis for the per-tile
experiments. Additional experiments using auxiliary data and
cross-regional/single classifiers are also presented and
discussed. For the sake of brevity we do not present results from
all combinations of auxiliary information, since the exploitation
of the full-set had the best performance. Nevertheless, several
insights and remarks from those experiments are discussed in
the following paragraphs

3.2.1 Spectral Time Series VS Temporal Features: Figure
2 presents OA, avF1, avFlcrops and avF1non-crops rates, for
the experiments performed on a per-tile base, with various
features’ set-ups. In bars of blue hue, rates for the TS
experiments are presented, while in bars of red hue, rates for the
TF ones. For both TS and TF darker shades represent full-set
experiments, which include auxiliary data. OA exceeded 80%
and F1 69% in all cases. For all tiles, TS features gave better
classification results compared to TF. OA differences between
the two sets were at most 3%; nevertheless, the avFl1crops
metric exhibited the largest differences, up to 8%, with every
case in favor of TS. The latter highlights the fact that the higher
number of features present on the TS set, due to the higher
frequency of observations, was critical for a more accurate
detection of the crop classes. The classification of different crop
types corresponds to a more complex task than the classification
of non-crop land cover classes, whose spectral behavior is less
variant across the year. This is also apparent in the comparison
between the avF1crops and avF1non-crops rates, with the first
one in the range of 56-87% and the second in the range of 82-
94%. In support of that, avFlnon-crops rates appear
significantly less affected, from using either TS or TF features
for the classification procedure.
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Figure 2. Accuracy metrics for the performed per-tile experiments using different sets of features (TS: spectral time series, TF:
temporal features, TS+AUX: TS and auxiliary data layers, TF + AUX: TF and auxiliary data layers).

3.2.2  Contribution of Auxiliary Data: The contribution of
auxiliary information on the classification was beneficial in all
cases. Improvements in rates ranged from 1-5% and 3-8% for
avFlcrops and avFlnon-crops respectively, while for OA
reached up to 3%. As expected, the influence of appending
three more features on the TF datasets of 90 layers, was greater
compared to the impact on the TS datasets, composed of 290-
350 layers. In this sense, for experiments using auxiliary data,
the disparity in accuracy metrics observed between the TS and
TF approach is smaller, in comparison to experiments that did
not utilize auxiliary data.

Further analysis on additional experiments, by including or
excluding layers of the auxiliary data from the classification
process, highlighted certain remarks, regarding their
contribution in accurately classifying each class and preventing
classification errors between spectrally similar classes. In
particular, elevation information from the EU-DEM product, in
most cases, considerably improved the classification results for
natural vegetation classes and crop classes that present spectral
similarities, such as NGR and FDR, OLG and SSV or DSV, and
for high brightness artificial classes (DUF, SUF, ICU) and
bareland classes (SVA, BDM, RCK). Mixing and classification
errors between those high brightness artificial and bareland
classes were also significantly reduced, by incorporating
thematic/contextual information from the CLC18 product. The
geographic/bioclimatic  information  derived from the

Environmental Zones product had a slight positive effect mainly
for certain crop classes.

3.2.3  Variation in Classification Performance of Different
Regions: Variation in classification performance between the
studied tiles can be observed in Figure 2. The most obvious
note is that tile 34SEG presented the lowest rates for all metrics.
OA for all other three tiles exceeded 90%. The highest rates
were achieved for tile 34SEJ, upwards of 77% for all metrics
and set-ups. Comparing between 34SEJ and 34SEG, albeit more
data were available for the latter, i.e., 35 multi-spectral images
instead of 31 for the former, 34SEG exhibited the lowest
accuracy rates and 34SEJ the highest. This can be directly
attributed to differences in sample size of the reference data for
these tiles. In particular, 34SEJ had the largest amount of
reference data (~1.6 million pixels) since this region represents
a highly heterogeneous landscape, as mentioned in subsection
2.1. On the contrary, tile 34SEG had the lowest amount of
reference data (~0.8 million pixels), since half of its extent is
covered by the sea. Furthermore, as also documented in
subsection 2.1, regarding agriculture, the cultivation of OLG
prevails, and many other crops like POM, STN, NUT, RIC and
LEG are cultivated in a relatively limited extent and so a smaller
number of reference data is available for these categories. Tiles
35TLF and 34TEK presented a similar total sample size of
reference data, around 1.5 million pixels. In the cases of 35TLF
and 34TEK, OA rates for TS experiments were over 93% and
for TF over 91%, while avF1 over 83% and 78% respectively.

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLI11-B3-2021-319-2021 | © Author(s) 2021. CC BY 4.0 License.

322



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021
XXIV ISPRS Congress (2021 edition)

3.2.4 Single VS Per-tile Models: In order to examine the
impact of cross-region class variability in the training process of
the classifier, additional models were built by combining TF
data from all four tiles. Similar experiments based on TS could
not be performed, since the time series cubes had different
feature counts, dependant on the available acquisitions for each
tile, while the temporal distributions of acquisitions were also
different across the four tiles studied.

Table 1 shows accuracy metrics for the testing assessment
performed separately on each tile, when using the model trained
on the same tile (per-tile), and when using the cross-regional
model (single), trained with data from all tiles. In all these cases
the features’ set-up is TF+AUX, i.e. temporal features plus all
available auxiliary features. Experiments using models trained
and tested on the same tile, presented slightly higher accuracy
rates for tiles 35TLF, 34TEK and 34SEJ. This can be attributed
to the fact that, the classifier is trained and tested using the same
spectro-temporal cube across one region/tile. However, that was
not the case when testing the performance on tile 34SEG, since
per-class average metrics (avF1, avFlcrops, avFInon-crops)
were higher when using the single classifier. As described on
the previous section, tile 34SEG had a limited number of
reference data, especially for certain crop classes, compared to
all other tiles. In this sense, incorporating more training data
from the other regions proved beneficial for many categories.
Enhancements in accuracy when using the single model, were
also recorded for the other tiles too, for certain low (per-tile)
sample size categories, like GRH in 35TLF, TBC and VEG in
34TEK and ICU in 34SEJ.

35TLF 34TEK 34SEJ 34SEG

Model /

Metric per-tile  single

per-tile  single  per-tile  single  per-tile  single

OA 9443 9412 9271 9226 9620 95.69 84.18 83.24

avFl 8134 80.15 87.70 8493 8633 84.79 7543 76.39

avFL e 4r 6752 8169 7960 8110 7827 5971 6147
crops
"‘V;(l)‘;‘s’“' 9425 9278 94.08 90.61 91.57 9132 9022 90.43

Table 1. Comparison of the models trained on a per-tile basis,
with the single model trained with data from all regions, using
the TF+AUX set-up.

Further insights on the relative performance of each class can be
derived by the F1 rates presented per class in Table 2 for
selected experiments. In particular, the first two “Experiments”
columns show the F1 scores for the single model using training
and testing data from all tiles, applying the TF and TF+AUX
set-ups. The total sample size percentage from all regions is also
presented for each class. Relative rates in Table 2 indicate that
the contribution of the auxiliary data is positive in the OA and
F1 scores of all classes, in agreement with the corresponding
analysis for the per-tile experiments (subsection 3.2.2). In
particular, the F1 scores of artificial classes DUF, SUF and ICU
were considerably improved (8-21%), when using auxiliary
data. F1 scores for natural vegetation classes, NGR and SSV,
were also increased up to 15%, while bareland class BDM
exhibited an 8% increment. Several crop type classes like VNY,
STN, NUT, VEG and FLW also yielded increased F1 rates by
over 5%, while fruit tree classes CTR and POM showcased a
significant improvement, of approximately 20%. Regarding

sample size influence on the cross-regional experiments, most
classes of high sample size percentage e.g., BLF, CRL, CTN,
CNF, MALI, presented F1 scores of over 90% for both set-ups.
On the contrary, low sample size for certain classes, like POM,
NUT and VNY was associated with lower F1 scores.
Nevertheless, this correlation was not consistent across all
classes studied, with exceptions, e.g., RAN, PHV, WCR,
exhibiting low sample size percentages, but very high F1 scores,
most probably related to their distinct spectral characteristics.

The third and fourth “Experiments” columns in Table 2, record
the F1 scores when applying the cross-regional (single) model
and when applying the per-tile trained model, in order to predict
the 34SEG testing data, with the TF+AUX set-up. The sample
size percentage for tile 34SEG is also presented for each class.
As already mentioned in previous paragraphs, certain low-
sample size classes in 34SEG (e.g., STN, RIC, POM, ICU,
RAN, SVA), were detected more accurately when applying the
single model. Nonetheless, exceptionally low sample size crop
classes (LEG, POM, STN) hold very poor classification rates
for both cases.

Experiment:

Clns | Yostat Yoo | st | S
Code | Size | porp FTF+AUX | F:TF+AUX F:TF4AUX| 1%

perc. perc.

F1 scores (%)
DUF 0.30 71.07 86.37 79.81 80.41 0.41
SUF 0.37 78.67 8691 91.27 91.67 1.15
ICU 0.33 70.94 92.22 81.92 74.97 0.34
RAN 0.37 91.82 95.85 97.39 95.40 0.45
PHV | 0.19 97.26 97.67 99.37 99.53 0.32
BLF |17.37 98.73 99.30 96.68 98.53 295
CNF 6.60 96.43 98.25 98.08 97.71 6.67
NGR | 0.71 71.82 86.44 75.79 75.53 0.54
DSV 5.07 88.07 90.20 84.49 84.27 14.10
SSv 3.72 81.59 86.58 83.32 84.09 13.75
SVA 1.65 88.07 91.68 91.37 89.91 1.24
BDM 1.21 87.02 94.92 97.10 96.74 2.46
RCK | 0.62 89.36 92.87 97.03 96.64 1.59
WIL | 2.19 92.30 98.77 97.08 98.50 1.25
WCR | 0.23 87.31 89.12 7191 75.16 0.17
WBD | 3.08 98.91 99.61 94.78 94.73 1.08
CWT | 3.04 99.32 100.00 100.00 99.98 2.29
OLG | 3.64 85.96 90.40 91.79 92.74 16.74
VNY | 0.97 67.58 72.86 73.67 76.50 1.77
CTR | 0.34 63.76 80.89 78.38 82.42 1.58
POM | 0.28 43.62 65.21 445 1.35 0.05
STN 0.64 79.66 85.75 41.78 0.00 0.05
NUT 1.34 52.52 59.74 24.80 28.70 0.82
RIC 0.48 98.92 99.28 96.55 85.79 0.09
CRL |11.55 92.71 93.37 50.01 54.93 4.50
CTN 9.25 97.42 97.93 90.06 89.17 3.28
MAI 6.60 98.32 98.49 95.14 95.12 2.60
TBC 1.26 85.35 87.83
SUN 2.14 88.30 91.22
LEG | 2.03 62.79 67.59 0.00 0.00 0.05
POT | 0.80 81.18 86.14 87.82 89.53 1.90
VEG 1.78 65.38 72.81 74.13 76.23 3.67
FDR 7.22 84.86 87.68 61.92 64.10 5.41
GRH | (.58 82.11 85.81 84.52 85.51 3.17
FLW | 2.04 47.49 55.36 28.51 33.29 3.55
0A (%) 90.05  92.44 8324  84.18
avF1 (%) 81.90 87.57 76.39 75.43

Table 2. OA and per-class F1 rates for selected experiments
(M: model, T: testing data source, F: features’ set-up).
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3.2.5 Feature importance: In order to validate the
contribution of all classification features, we assessed the
impurity-based feature importance (Gini index), computed as
the normalized total reduction of the criterion brought by each
feature, when building the RF classifiers for all experiments.
For both TS and TF datasets, the use of spectral indices, and
especially NDVI, had a significant contribution in the
classification task, independently of the date for TS and the
statistical metric for TF. NIR, Red, Red-Edge and SWIR bands
followed, while Green and Blue bands were in most cases at the
bottom of the ranking.

Regarding the TS models, for tiles 34SEJ and 34TEK, spectral
features from images acquired during the summer were higher
on the ranking list, for 34SEG features corresponding to spring
and autumn proved more important, while for the northernmost
tile, 35TLF, spectral features corresponding to all four seasons
were found in the top places. Variance in importance,
depending on the season the imagery was acquired, can be
associated with inter-regional differences in the dynamic
classes’ behavior along the year, but also on the presence and
extent of classification categories in each area. For example,
tiles 34SEJ and 34TEK present large extents of arable crops,
thus the relatively higher importance of images acquired during
the summer can be attributed to the dynamic behavior of
agricultural classes during summertime.

Regarding the TF models, the statistical metrics of standard
deviation, median, 25%, mean, 10% and 75% were found to be
the most important across all spectral features. This indicated
that extreme values, i.e., min and max, were not very efficient
for discriminating between classes. This can be attributed to, the
fact that such values in some cases constitute outliers. The
auxiliary data of EU-DEM and CLC18, were for most
experiments, in top places regarding their GINI importance, as
also documented for similar ancillary information in recent
literature (Pflugmacher et al., 2019; Verde et al.,, 2020).
Nevertheless, this remark should be interpreted with caution,
since all other competing features are either multi-temporal
observations (TS), or derived from said observations (TF), thus
presenting high correlations between each other.

3.3 Qualitative Validation on the Map

Numerous maps were produced by applying the developed
classifiers. Qualitative evaluation was performed by thorough
observation and comparison of the produced land-cover and
crop type maps with very high resolution reference imagery.
Examples from maps for the southernmost (34SEG) and
northernmost (35TLF) tiles are presented hereby.

In Figure 3, a part of tile 34SEG is presented, depicting the city
of Kalamata and surrounding areas. The map produced by
applying the per-tile classifier is showcased in Figure 3b, while
the map resulting from the cross-regional single classifier is
presented in Figure 3c. The input data used are the same in both
cases, i.e., the TF+AUX set-up. OA rates for both experiments
were around 84% and both maps appear quite accurate, when
compared to Bing satellite imagery superimposed with the
reference data, showcased in Figure 3a. However, slight
differences can be observed between the two maps. In
particular, on the western part of the map, lays the airport of
Kalamata. This area is correctly classified as the artificial
classes ICU and RAN in Figure 3c, while in Figure 3b
numerous pixels are erroneously depicted as the bareland class
BDM. This remark is further supported by the quantitative

analysis of the classification results (Table 2), since these three
classes hold higher F1 rates when using the single, instead of
the per-tile, model.

(@

594000

591000

600000
g

4101000 4104000

4101000

4098000
4098000

591000 594000

(b)

597000 600000

597000

591000 594000

Wz

4104000

LEGEND

I DUF
[ surF
I v
I RAN
I PHV
I BLF
I CNF
[ INGR
I psv
W ssv
[ IsvA
[ 1BDM
RCK
501000 5o 597000 . Tl
(c) [0 wer
597000 - Il WBD
B cwt
Il oG
. vy
[ cR
[ pOM
I sTN
. NUT
I RIC
[0 crRL
[ IcnN

4101000
4101000

591000

4104000

[ MAI
I TBC
[ sun
| i
[1pot
[ VEG
[ FDR
I GRH
I Aw

15
]
=
]
El
<

591000 594000 597000

Figure 3. Part of the 34SEQG tile, near the city of Kalamata: (a)

Reference data over Bing Satellite imagery, the maps produced

by applying: (b) the per-tile model and (c) the single model, for
the TF+AUX set-up.

In Figure 4 a part of tile 35TLF is presented, depicting the
Nestos river delta, and surrounding agricultural areas, where
maize and rice are dominant. Presented in the subfigures are
maps produced by applying the per-tile classifier with the
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Figure 4. Part of the 35TLF tile, near the Nestos river delta: (a) Reference data over Google Satellite imagery, the maps produced by
applying: (b) the per-tile classifier with the TF+AUX set-up, (c) the single classifier with the TF set-up and (d) the single classifier
with the TF + AUX set-up.

TF+AUX set-up (Figure 4b), the single classifier with the TF
set-up (Figure 4c) and the single classifier with the TF+AUX
set-up (Figure 4d). OA for these experiments exceeded 93%.

Comparative analysis of Figures 4c and 4d, regarding the
impact of auxiliary data, further supports the corresponding
quantitative analysis insights derived from Table 2. In
particular, artificial classes (SUF, DUF) appear more accurately
detected for villages and small towns in Figure 4d, while Figure
4c displays certain mis-classifications cases towards the class
BDM. Agricultural parcels do not present many discrepancies,
apart from certain fruit tree parcels that are incorrectly labeled
as BLF in Figure 4c. Wetland areas also appear to be more
consistently detected when using the auxiliary data. The per-tile
model predictions (Figure 4b) in comparison to the single
model ones (Figure 4c), present slightly enhanced results
regarding the classification of the agricultural parcels and
wetland areas. Nonetheless, as also mentioned in subsection
3.2.4, low sample size class GRH is more accurately detected
when applying the single model. In this case, the block of
greenhouses on the eastern part of the image is classified as ICU
using the per-tile model, while it is correctly detected as GRH
from the cross-regional single model.

4. CONCLUSIONS

In this paper we presented a methodology for joint land cover
and crop type mapping using multi-temporal Sentinel-2 data
over four regions belonging to different environmental zones in
Greece. The classification task was performed using the RF
algorithm towards the classification of 35 land cover classes,
including 18 crop-type categories. High OA rates of over 90%
were achieved for most experiments. Quantitative comparative
analysis on the experimental results, indicated that temporal
features, which have a considerably reduced dimensionality,
gave results of slightly lower (up to 3%) OA rates, in
comparison to the time series spectral features that were
approximately triple to quadruple in dimension. Although
general land cover classes were insignificantly affected by the
type of classification features, crop categories’ classification
was noticeably better when using the time series approach. In
this sense, a higher frequency of observations was proven
significant when classifying numerous crop types. The inclusion
of elevation and thematic/contextual auxiliary data to the
classification procedure was beneficial in all cases. Further
analysis on per-class accuracy rates, highlighted that both
sample size and spectral distinctness affected the performance
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of each classification category. Aggregation of all available
training data, towards producing a single, cross-regional model,
resulted in marginally lower OA rates (<1%) compared to per-
tile trained models, but improved the classification accuracy of
low (per-tile) sample size classes. Qualitative evaluation on
predicted maps affirmed the quantitative evaluation and
established the efficiency of the developed methodology.
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