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ABSTRACT: 

 

Machine learning (ML) has proven useful for a very large number of applications in several domains. It has realized a remarkable 

growth in remote-sensing image analysis over the past few years. Deep Learning (DL) a subset of machine learning were applied in 

this work to achieve a better classification of Land Use Land Cover (LULC) in satellite imagery using Convolutional Neural 

Networks (CNNs). EuroSAT benchmarking data set is used as training data set which uses Sentinel-2 satellite images. Sentinel-2 

provides images with 13 spectral feature bands, but surprisingly little attention has been paid to these features in deep learning 

models. The majority of applications focused only on using RGB due to high availability of the RGB models in computer vision. 

While RGB gives an accuracy of 96.83% using CNN, we are presenting two approaches to improve the classification performance of 

Sentinel-2 images. In the first approach, features are extracted from 13 spectral feature bands of Sentinel-2 instead of RGB which 

leads to accuracy of 98.78%. In the second approach features are extracted from 13 spectral bands of Sentinel-2 in addition to 

calculated indices used in LULC like Blue Ratio (BR), Vegetation index based on Red Edge (VIRE) and Normalized Near Infrared 

(NNIR), etc. which gives a better accuracy of 99.58%. 

 

 

1. INTRODUCTION 

Remote sensing plays a significant role in the modern world. It 

supports and assists the society in several fields not limited to 

agriculture, environmental monitoring, geology, hydrology, and 

LULC. Remote sensing facilitates the country’s development as 

to classify and monitor land use, as well as to detect problems in 

dangerous, or inaccessible areas. 

 

Satellite technology can generate regular updates on urban 

areas, desertification, agriculture land monitoring, crop area 

estimation, soil mapping and monitoring, water resources 

monitoring, identification of the characteristics of soil, water, 

crop, etc.    

 

This study uses the Sentinel-2 images for analysis because these 

satellite data are free to use, easy to obtain, enough revisit time, 

and are capable of supporting LULC analysis. 

 

In this paper, we aim to build a model able to classify and 

indicate the land use and cover situation using satellite imagery. 

This work looks into improving a LULC classification method 

using remote sensing technology. In addition, it explores new 

proposed methods for supervised LULC classifications using 

deep learning methods, specifically CNN. 

 

This research proposes two approaches to improve performance. 

  

The first approach investigates the us1e of all 13 spectral bands 

which have shown success in other image classification models. 

While the second approach involves the use of LULC calculated 

indices. These two approaches can be formulated in the 

following research sub-questions: 

 

1. Can using the 13 bands of Sentinel-2 spectral features 

improve the LULC classification performance? 

                                                                 

* Corresponding author 

 

2. Can involving the LULC calculated indices into the 13 

bands of Sentinel-2 spectral features improve the LULC 

classification performance? 

 

The overall objective is to evaluate the new model, which 

suggests to use the major 13 bands of Sentinel-2 in addition to 

LULC calculated indices.  

 

 (Chong, 2020) implemented increasingly complex deep 

learning models to identify LULC classifications on the 

EuroSAT dataset [16]. 

 

The best overall model uses all 13 bands and a 50% training set 

with 4 convolution-max-pooling layer pairs before a dropout 

layer and a dense layer. Indeed, training data has been 

augmented through random shearing, rotating, and flipping. It 

was able to accurately predict the classification for 94.9% of the 

testing set.  

 

While his best RGB model based on VGG16 with image 

augmentation through random shearing, rotating, and flipping 

for the training dataset, this model accurately classified 94.5% 

of the testing set images. 

 

Knowledge distillation (KD) is one kind of teacher-student 

training (TST) method first defined in (Hinton et al., 2015) [1], 

in which they distill knowledge from an ensemble of models 

into a single smaller model via high-temperature softmax 

training. 

 

(Chen et al., 2018) introduced the KD into remote sensing scene 

classification for the first time to improve the performance of 

small and shallow network models [15]. They performed 

experiments on several public datasets including EuroSat, and 

make quantitative analysis to verify the effectiveness of KD. 

(Chen et al., 2018) were able to achieve a total accuracy of 

94.74% in their proposed model.  
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(Sonune, 2020) tried to fine-tune 3 models using RGB bands 

[17]. The first model is VGG_19 which achieved a 

classification accuracy of 97.66%. While the second model 

ResNet_50 model had a classification accuracy of 94.25%, and 

for the RandomForest model classification the accuracy was 

61.46%. 

 

(Helber et al., 2019), the creators of the novel dataset EuroSAT 

[12], experimented two approaches. First they compared 

GoogLeNet and ResNet-50 models using RGB bands and 

achieved consecutively an accuracy of 98.18%, and 98.57%. In 

the second approach, they tried to evaluate different band 

combinations, RGB, CI, and SWIR and achieved the following 

accuracies respectively 98.57%, 98.30%, and 97.05%. 

 

(Li et al., 2020), proposed the DDRL-AM method for remote 

sensing scene classification [18]. They addressed the problem of 

class ambiguity by learning more discriminative features. The 

approach involves two main tasks:  

(1) Building a two-stream architecture to fuse 

attention map semantic feature with original image 

semantic feature; 

(2) Training DDRL-AM that is coupled with a center 

loss to obtain discriminative feature for remote 

sensing images. 

 

Extensive experiments were conducted on EuroSAT Dataset 

and obtained a classification accuracy of 98.74%.  

 

Table.1 summarizes the previous models architectures and the 

accuracies gained from benchmarking the EuroSAT dataset. 

Table 1. Models architectures and accuracies gained from 

benchmarking the EuroSAT dataset 

 

2. DATA AND METHODOLOGY 

2.1 Data 

EuroSAT dataset [12], which this research depends on, is based 

on Sentinel-2 satellite images covering 13 spectral bands and 

consisting out of 10 classes within a total of 27,000 labelled and 

geo-referenced images.  

 

Sentinel-2A is one satellite in the two-satellite constellation of 

the identical land monitoring satellites Sentinel-2A and 

Sentinel-2B. The satellites were successfully launched in June 

2015 (Sentinel-2A) and March 2017 (Sentinel-2B). Both sun-

synchronous satellites capture the global Earth’s land surface 

with a Multispectral Imager (MSI) covering the 13 different 

spectral bands listed in Table 1. 

 

The three bands B01, B09 and B10 are intended to be used for 

the correction of atmospheric effects (e.g. aerosols, cirrus or 

water vapor). The remaining bands are primarily intended to 

identify and monitor land use and land cover classes. In 

addition to mainland, large islands as well as inland and coastal 

waters are covered by these two satellites. 

 

Each satellite will deliver imagery for at least 7 years with a 

spatial resolution of up to 10 meters per pixel. Both satellites 

carry fuel for up to 12 years of operation which allows for an 

extension of the operation. The two-satellite constellation 

generates a coverage of almost the entire Earth’s land surface 

about every five days, i.e. the satellites capture each point in the 

covered area about every five days. This short repeat cycle as 

well as the future availability of the Sentinel satellites allows a 

continuous monitoring of the Earth’s land surface for the next 

20 - 30 years. Most importantly, the data is openly and freely 

accessible and can be used for any application (commercial or 

non-commercial use). 

 

Figure 1. Sample EuroSAT images with the labelled class 

 

Authors Model Bands Accuracy 

(Chen et 

al.,  2018) 

Knowledge distillation RGB 94.74% 

(Chong, 

2020) 

4-convolution max-

pooling layer 

All 13 

sentinel 

bands 

94.9% 

(Chong, 

2020) 

VGG_16 RGB 94.5% 

(Sonune, 

2020) 

VGG_19 RGB 97.66% 

(Sonune, 

2020) 

ResNet_50 RGB 94.25% 

(Sonune, 

2020) 

RandomForest RGB 61.46% 

(Helber et 

al., 2019) 

GoogLeNet RGB 98.18% 

(Helber et 

al., 2019) 

ResNet-50 RGB 98.57% 

(Helber et 

al., 2019) 

ResNet-50 CI 98.30% 

(Helber et 

al., 2019) 

ResNet-50 SWIR 97.05% 

(Li et al., 

2020) 

DDRL-AM RGB 98.74% 
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Looking at the preview of the different classes, we can see some 

similarities and stark differences between the classes (Fig. 1).  

 

Urban environments such as Highway, Residential and 

Industrial images all contain structures and some roadways. 

AnnualCrops and PermanentCrops both feature agricultural 

land cover, with straight lines delineating different crop fields. 

Finally, HerbaceaousVegetation, Pasture, and Forests feature 

natural land cover. Rivers also could be categorized as natural 

land cover as well, but may be easier to distinguish from the 

other natural classes. 

 

If we consider the content of each image, we might be able to 

estimate which classes might be confused for each other. For 

example, an image of a river might be mistaken for a highway, 

or an image of a highway junction with surrounding buildings 

could be mistaken for an Industrial site. We'll have to train a 

classifier powerful enough to differentiate these nuances. 

 

2.2 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a type of Neural 

Networks [10] which became with the impressive results on 

image classification challenges [5], [7], [19], the state of-the-art 

image classification method in computer vision and machine 

learning. 

 

To classify remotely sensed images, various different feature 

extraction and classification methods (e.g., Random Forests) 

were evaluated on the introduced datasets. (Yang et al., 2010) 

evaluated Bag-of-Visual-Words (BoVW) and spatial extension 

approaches on the UCM dataset [8]. (Basu et al., 2015) 

analyzed deep belief networks, basic CNNs and stacked 

denoising autoencoders on the SAT-6 dataset [14]. (Basu et al., 

2015) also presented an own framework for the land cover 

classes introduced in the SAT-6 dataset. 

 

The framework extracts features from the input images, 

normalizes the extracted features, and uses the normalized 

features as input to a deep belief network. Besides low-level 

color descriptors, (Penatti et al., 2015) also evaluated deep 

CNNs on the UCM and BCS dataset [4]. In addition to deep 

CNNs, Castelluccio et al. (2015) intensively evaluated various 

machine learning methods (e.g., Bag-of-Visual-Words, spatial 

pyramid match kernels) for the classification of the UCM and 

BCS dataset [2]. 

 

In the context of deep learning, the used deep CNNs have been 

trained from scratch or fine-tuned by using a pretrained network 

[2], [3]. The networks were mainly pretrained on the ILSVRC-

2012 image classification challenge dataset [11]. Even though 

these pretrained networks were trained on images from a totally 

different domain, the features generalized well. Therefore, the 

pretrained networks proved to be suitable for the classification 

of remotely sensed images [9]. The previous works extensively 

evaluated proposed machine learning methods and concluded 

that that deep CNNs outperform non-deep learning approaches 

on the considered datasets [2], [6], [11], [9]. 

 

2.3 Satellite Remote Sensing 

Remote sensing is the process of identifying the physical 

characteristics of an object or an area by measuring its reflected 

and emitted radiation at a distance. 

  

Each material has a unique spectral signature which becomes 

the basic criterion for material identification. The graph below 

in Fig. 2 depicts the typical reflectance characteristics of water, 

vegetation, and soil. The typical curves of water, vegetation and 

soils are close in the visible region and quite different in the 

infrared spectrum. 

 

 

Figure 2. Material reflectance at different wavelengths 

 

The basic information for developing classification models is 

discriminative reflectance characteristics of materials at 

different wavelengths [13]. The spectral reflectance 

characteristics of Sentinel -2 image data for different crops are 

presented in Fig. 3. In the visible region, the spectral reflectance 

values of different crops are close but in the infrared region, 

crops are discriminable. 
 

 

Figure 3. Characteristics of different crops in different bands 

 

2.4 Dataset Preparation 

As mentioned before, the EuroSAT dataset is split into 10 

classes of land cover. Each class varies in size (Fig. 4), thus we 

have to split the data into training, validation, and testing sets 

respectively 70%, 20%, and 10% per class. 

 

 

Figure 4. EuroSAT Class Distribution 

 

In the ImageDataGenerator, the batch size is 64. For the training 

dataset, we applied rotation, horizontal, and vertical flip for the 
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images to generate and handle more data. Moreover, we 

calculated the mean and standard deviation(std) for the bands 

and indices as shown in Table 2. These values were used to 

normalize the inputs as recommended in deep learning models 

by subtracting the mean per channel and then divide by the std 

value. 

In the RGB model, we read the bands 2, 3, and 4 respectively, 

while in All 13 bands model, we read all the 13 bands, while in 

the new proposed model, we read all the 13 bands and 

calculated the following indices (MSI, NDSI, NDWI, NDVI, 

GNDVI, BNDVI, NDRE, BareSoil, NDCI, NBR, DSWI, CVI) 

and appended them to the data. 

Table 2. Mean and Standard Deviation for the training images 

of the EuroSat Dataset Bands and Calculated Indices. 

 

2.5 Calculated Indices 

Today many different remote sensing indices exists. It was 

successfully used for the identification of drifting sand areas, 

vegetation cover, loss of wetlands, and urban land use mapping. 

The mentioned calculated indices used in the new model are 

mainly related to LULC classification, we present an overview 

for these indices as followed: 

 

2.5.1 MSI: Moisture index 

MSI = (B8A – B11) / (B8A + B11) 

The index is inverted relative to the other water vegetation 

indices; higher values indicate greater water stress and less 

water content. The values of this index range from 0 to more 

than 3. The common range for green vegetation is 0.4 to 2. 

 

2.5.2 NDSI: Normalized difference snow index 

Normalized difference snow index is a ratio of two bands: one 

in the VIR (Band 3) and one in the SWIR (Band 11). Values 

above 0.42 are usually snow. 

NDSI = (B03 – B11) / (B03 + B11) 

 

2.5.3 NDWI: Normalized difference water index 

NDWI was proposed by (McFeeters 1996). It is used to monitor 

changes related to water content in water bodies. As water 

bodies strongly absorb light in visible to infrared 

electromagnetic spectrum, NDWI uses green and near infrared 

bands to highlight water bodies. It is sensitive to built-up land 

and can result in over-estimation of water bodies. 

NDWI = (B03 - B08) / (B03 + B08) 

Index values greater than 0.5 usually correspond to water 

bodies. Vegetation usually corresponds to much smaller values 

and built-up areas to values between zero and 0.2. 

 

2.5.4 NDVI: Normalized difference vegetation index 

NDVI is simple, but effective index for quantifying green 

vegetation. It normalizes green leaf scattering in Near Infra-red 

wavelengths with chlorophyll absorption in red wavelengths. 

NDVI = (B08 - B04) / (B08 + B04) 

The value range of the NDVI is -1 to 1. Negative values of 

NDVI (values approaching -1) correspond to water. Values 

close to zero (-0.1 to 0.1) generally correspond to barren areas 

of rock, sand, or snow. Low, positive values represent shrub and 

grassland (approximately 0.2 to 0.4), while high values indicate 

temperate and tropical rainforests (values approaching 1). It is a 

good proxy for live green vegetation. 

 

2.5.5 GNDVI: Green normalized difference vegetation 

index 

GNDVI is similar to NDVI, but it uses visible green instead of 

visible red and near infrared. Useful for measuring rates of 

photosynthesis and monitoring the plant stress. 

GNDVI = (B08 - B03) / (B08 + B03) 

 

2.5.6 BNDVI: Blue Normalized Difference Vegetation 

Index 

BNDVI is an index similar to NDVI, but without red channel 

availability it uses the visible blue, this index is useful for areas 

sensitive to chlorophyll content. 

BNDVI = (B08 - B02) / (B08 + B02) 

 

2.5.7 NDRE: Normalized Difference Red Edge 

This index formulated with NIR and red edge band and it is 

useful for areas sensitive to chlorophyll content in leaves 

against soil background effects.  

NDVI_RedEdge = (B08 - B05) / (B08 + B05) 

 

2.5.8 BareSoil 

This index identifies all observations in which the feature of 

interest (FOI) is bare soil which is a result of ploughing or 

covered with non-photosynthetic vegetation as a consequence 

of harvest or vegetation drying up on the field. 

BareSoil = 2.5 * ((B11 + B04) - (B08 + B02)) / ((B11 + B04) - 

(B08 + B02)) 

 

2.5.9 NDCI: Normalized difference chlorophyll index 

NDCI is an index that aims to predict the plant chlorophyll 

content which plays a critical role in plant growth and helps 

predicting the plant type in addition to its health condition. It is 

calculated using the red spectral band B04 with the red edge 

spectral band B05. 

NDCI = (B05 - B04) / (B05 + B04) 

 

2.5.10 NBR: Normalized burn ratio 

To detect burned areas, the NBR index is the most appropriate 

choice. Using bands 8 and 12 it highlights burnt areas in large 

fire zones greater than 500 acres, with Darker pixels indicate 

burned areas.  

Number Bands and Indices Mean Std 

1 Aerosols 1353.439 65.571 

2 Blue 1117.253 154.376 

3 Green 1042.253 188.262 

4 Red 947.128 278.926 

5 Red edge 1 1199.404 228.244 

6 Red edge 2 2002.936 355.633 

7 Red edge 3 2373.488 454.901 

8 NIR 2300.642 530.549 

9 Red edge 4 732.159 98.716 

10 Water vapor 12.113 1.187 

11 Cirrus 1820.932 378.496 

12 SWIR 1 1119.173 304.439 

13 SWIR 2 2598.82 501.747 

14 MSI 0.348 0.136 

15 NDSI 0.282 0.115 

16 NDWI 0.245 0.122 

17 NDVI 0.251 0.107 

18 GNDVI -0.095 0.123 

19 BNDVI 0.082 0.104 

20 NDRE -0.282 0.115 

21 BareSoil -0.731 0.251 

22 NDCI 0.138 0.074 

23 NBR -0.055 0.046 

24 DSWI 1.283 0.172 

25 CVI 4.322 116.297 
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NBR = (B08 – B12) / (B08 + B12) 

To observe burn severity, you may subtract the post-fire NBR 

image from the pre-fire NBR image.   

 

2.5.11 DSWI: Disease-Water Stress Index 

This index is used to classify the water stress diseases and its 

health condition. 

DSWI = (B03) / (B04) 

 

2.5.12 CVI: Chlorophyll vegetation index 

CVI is an index that aims to predict the plant chlorophyll 

vegetation index. Chlorophyll plays a critical role in plant 

growth and helps predicting the plant type in addition to its 

health condition. 

CVI = (B08 * B04) / (B03)2 

 

2.6 Model Architecture 

In this research we use DenseNet201 architecture excluding the 

fully-connected layer at the top of the network and without 

loading its defined weights (random initialization) with three 

inputs: width, height, and number of channels respectively    

(W, H, C#). Width and height is fixed 64 by 64 while number of 

channels varies based on the model as specified below: 

 RGB Model (64, 64, 3) 

 All Bands Model (64, 64, 13) 

 All Bands with Calculated Indices Model (64, 64, 22) 

Moreover, we added a global spatial average pooling layer 

using GlobalAveragePooling2D, and the Softmax activation 

function is applied to the very last layer in the model since it is 

useful as the activation for the last layer of a classification 

network. 

 

Figure 5. Updated Dense201 Model Architecture 

 

This model was compiled using Adam optimizer, this optimizer 

is an extension to stochastic gradient descent that has recently 

seen broader adoption for deep learning applications in 

computer vision and natural language processing. The compile 

parameters configured the ‘categorical_crossentropy’ as the 

loss function, and ‘categorical_accuracy’ as model metric. 

After compiling the model, we run the training on the training 

datasets using fit function, with two callback functions, 

‘Checkpointer’ to monitor the accuracies and save the best 

weights for the model which are saved on Google Cloud storage 

buckets, and ‘EarlyStopping’ to stop the training when a 

monitored metric has stopped improving, which specified in the 

training with patience equal to 50 epochs. The number of 

epochs specified to train the model is maximum 10000 which is 

the number of maximum iterations over the entire data 

provided. Moreover, each epoch trains 1000 batch of samples 

which is 64, i.e. 64000 image to be trained every epoch. 

 

3. EXPERIMENTAL RESULTS 

This section presents the results of the various models including 

Confusion Matrix, Classification Report, and mislabeled 

images.  

 

3.1 Models Benchmarking 

We are presenting and comparing the results of the new models 

supported by analyzing the Confusion Matrix, Classification 

Report, and mislabeled images of each model.  

 

3.1.1 RGB Model 

After 60 epochs the training process for the RGB model 

finished with accuracy 96.83%, with an unstable learning as 

seen in the accuracy graph (Fig. 6) and the loss graph (Fig. 7). 

 

 

Figure 6. Training Accuracy graph for the RGB Model 

 

 

Figure 7. Training Loss graph for the RGB Model. 

 

Although this model is straightforward, it achieves a good 

accuracy of 96.83%. Below we present the Confusion Matrix 

(Fig. 8) and Classification Report (Fig. 9) for this model. We 

can find from both figures that this model perfectly classifies 

the main classes with minimal wrong classifications, but has 

limitation in differentiating from similar classes (Table 3) 
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Figure 8. RGB Model Confusion Matrix 

 

 

Figure 9. RGB Model Classification Report 

 

3.1.2 All Bands Model 

The All Bands model input consists of 13 channels from 

Sentinel-2 bands, Aerosols, Blue, Green, Red, Red edge 1, Red 

edge 2, Red edge 3, NIR, Red edge 4, Water vapor, Cirrus, 

SWIR 1, and SWIR 2.  

After 62 epochs the training process finished with accuracy 

98.78%, with more stable and better learning as seen in the 

accuracy graph (Fig. 10) and the loss graph (Fig. 11) 

 

 

Figure 10. Training Accuracy graph for the All Bands Model 

 

Figure 11. Training Loss graph for the All Bands Model 

 

We can find from the Classification Report (Fig. 12) and 

Confusion Matrix (Fig. 13) for this model that this approach has 

better accuracy (98.78%) than the RGB model (96.83%). First it 

preserves the accuracies for the classes with high classification 

accuracies. Second it provides good enhancement from the first 

model for the similar classes (Table 3) 

 

Figure 12. All Bands Model Classification Report 

 

 

Figure 13. All Bands Model Confusion Matrix 
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3.1.3 All Bands with Calculated Indices Model 

This model input consists of 25 channels, in which 13 are from 

the Sentinel-2 bands and 12 are calculated indices as follows: 

MSI, NDSI, NDWI, NDVI, GNDVI, BNDVI, NDRE, BareSoil, 

NDCI, NBR, DSWI, and CVI. 

 

After 90 epochs the training process finished with accuracy 

99.58%, with better learning as seen in the accuracy graph (Fig. 

14) and the loss graph (Fig. 15) 

 

 

Figure 14. Training Accuracy graph for the All Bands with 

Indices Model 

 

 

Figure 15. Training Loss graph for the All Bands with Indices 

Model 

 

 

Figure 16. All Bands with Indices Model Confusion Matrix 

 

 

Figure 17. All Bands with Indices Model Classification Report 

 

Based on the accuracies, this model achieves accuracy of 

99.58% which is better than the first model 96.83% and the 

second one 98.78%. From the Confusion Matrix (Fig. 16) and 

Classification Report (Fig. 17) for this model, we can find that 

involving the indicated indices that targets LULC classification 

to the proposed model helps better classify the similar classes as 

follows (Table 3): 
 

Table 3. Comparison of Models wrong predictions between 

similar classes 

 

 

4. CONCLUSION 

The main focus of this research was to investigate whether we 

can improve the classification performance of the EuroSAT 

dataset. Two approaches are presented for this objective. While 

the RGB model gives an accuracy of 96.83%, in the first 

approach, features are extracted from 13 spectral feature bands 

of Sentinel-2 instead of RGB leads to a better accuracy of 

98.78%. While in the second approach features are extracted 

from 13 spectral bands of Sentinel-2 in addition to calculated 

indices used in LULC like Blue Ratio (BR), Vegetation index 

based on Red Edge (VIRE) and Normalized Near Infrared 

(NNIR), etc. which gives a better accuracy of 99.58%. 

Actual 

Class 

Wrong 

Predicted 

Class 

RGB 

Model 

All 

Bands 

Model 

All Bands 

with Indices 

Model 

Herbaceous 

Vegetation 

Permanent 

Crop 

1.56% 0.43% 0% 

Highway Residential 1.32% 0% 0% 

Industrial Residential 6.84% 0.75% 1.98% 

Pasture Annual 

Crop 

1.57% 1.39% 0% 

Permanent 

Crop 

Annual 

Crop 

1.60% 0% 0% 

Permanent 

Crop 

Herbaceous 

Vegetation 

3.47% 0.28% 0% 

Permanent 

Crop 

Pasture 1.33% 0% 0.73% 

River Highway 2.16% 0.52% 0.26% 

Total 19.85% 3.37% 2.97% 
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This significant enhancement in the LULC classification 

performance for the Sentinel-2 images in the new model can 

play a major role in our society especially in the environmental 

and agricultural sectors. These accurate classifications can help 

us manage, monitor and predict the agricultural areas 

periodically in a wide range without any efforts in going onsite, 

as well as to detect problems in dangerous, or inaccessible 

areas. 

 

Due to time and computational limitations, we are forced in this 

study to cover only the novel EuroSAT dataset. Future research 

may focus on the BigEarthNet Dataset using TPU, and 

benchmarking different sets of calculated indices. 
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