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ABSTRACT: 
 
Building Change Detection (BCD) via multi-temporal remote sensing images is essential for various applications such as urban 
monitoring, urban planning, and disaster assessment. However, most building change detection approaches only extract features 
from different kinds of remote sensing images for change index determination, which can not determine the insignificant changes of 
small buildings. Given co-registered multi-temporal remote sensing images, the illumination variations and misregistration errors 
always lead to inaccurate change detection results.  This study investigates the applicability of multi-feature fusion from both directly 
extract 2D features from remote sensing images and 3D features extracted by the dense image matching (DIM) generated 3D point 
cloud for accurate building change index generation. This paper introduces a graph neural network (GNN) based end-to-end learning 
framework for building change detection. The proposed framework includes feature extraction, feature fusion, and change index 
prediction. It starts with a pre-trained VGG-16 network as a backend and uses U-net architecture with five layers for feature map 
extraction. The extracted 2D features and 3D features are utilized as input into GNN based feature fusion parts. In the GNN parts, we 
introduce a flexible context aggregation mechanism based on attention to address the illumination variations and misregistration 
errors, enabling the framework to reason about the image-based texture information and depth information introduced by DIM 
generated 3D point cloud jointly. After that, the GNN generated affinity matrix is utilized for change index determination through a 
Hungarian algorithm. The experiment conducted on a dataset that covered Setagaya-Ku, Tokyo area, shows that the proposed 
method generated change map achieved the precision of  0.762 and the F1-score of 0.68 at pixel-level. Compared to traditional 
image-based change detection methods, our approach learns prior over geometrical structure information from the real 3D world, 
which robust to the misregistration errors. Compared to CNN based methods, the proposed method learns to fuse 2D and 3D features 
together to represent more comprehensive information for building change index determination. The experimental comparison 
results demonstrated that the proposed approach outperforms the traditional methods and CNN based methods. 
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1. INTRODUCTION 

Building Change Detection (BCD) via multi-temporal remote 
sensing images is essential for various applications such as 
urban monitoring, urban planning, and disaster assessment. 
Automated BCD technology has been a hot topic in the remote 
sensing field in recent years and has accelerated the 
development of actual industrial production and applications 
(Xiao, 2017). 
 
In the past few decades, a lot of BCD methods have been 
proposed. Based on the difference of input data, BCD methods 
can be categorized as 2D BCD and 3D BCD. Traditional 2D 
BCD methods utilize the image information for building 
segmentation and conduct the post-classification methods for 
change detection.  As the development of the sensor, the 
remotely sensed image has reached a finer level. Pixels in very 
high resolution images contain more detailed information, 
making the BCD results more sensitive to the pixel-based 
comparison (Liu, 2020). 
 
Meanwhile, perspective distortion is a big challenge for 2D 
BCD.  The orthophoto generated in different periods usually 
contained geometric distortions. The per-pixel-based image 

registration is generally conducted as a preprocessing for 2D 
BCD methods, which is difficult for images with a large 
difference in viewing angle (Annibale, 2009). The 2D BCD 
methods can only extract the planimetric changes such as 
appearing/disappearing, shrinking/expanding. It is insufficient 
for applications requiring more specific volumetric information, 
such as building construction progress monitoring (Qin, 2016). 
With additional information from the 3D points cloud, more 
detailed change types and accurate change detection results can 
be automatically generated by 3D BCD methods. Since the 3D 
information is free from illumination changes and perspective 
distortions, the co-registration is more likely to achieve. But the 
biggest challenge of 3D BCD is the 3D data acquisition. LiDAR 
data has high accuracy, but the cost is expensive. 
Photogrammetric dense image matching generated 3D point 
clouds is much denser and cheaper than LiDAR, which is more 
suitable for this kind of work. Based on this, in this paper, we 
present a 2D and 3D combined BCD method based on multi-
feature fusion via graph neural network. 
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2. RELATED WORKS 

Building change detection can be categorized as pixel-based 
change detection and object-based change detection. During the 
last decades, a lot of well-known machine learning technology 
has been utilized for pixel-based change detection, such as 
Markov random field (MRF)-based change detection (Moser, 
2011), support vector machine (SVM)-based change detection 
(Volpi, 2011), k-nearest neighbor (KNN)-based change 
detection, and random forest (RF)-based change detection. Due 
to the fast development of deep learning, well-performed deep 
neural networks are introduced for improving the building 
segmentation accuracy and change detection accuracy (Chen, 
2012). Such as the multi-layer perceptron neural network (Xu, 
2017) and convolutional neural network-based U-net (Lian, 
2020).  However, a single neural network usually considers the 
2D image features for instance classification and segmentation. 
Which is not adequate for multi-temporal images with different 
illumination changes. To address this issue, ensamble learning 
has been introduced to enhance change detection and 
classification accuracy. Although deep learning-based methods 
have achieved preferable results, the training sample 
preparation is still economical and time-consuming.  
 
Despite the advantages of the deep learning based methods, 
pixel-based methods usually contained many noises around the 
building edges and boundaries. On the other hand, the image 
resolution becomes higher and higher. The influence of land 
cover changes between the multi-temporal data is sensitive for 
the pixel-based methods to generate robust results. And the 
manually selected labeled training sample can not be transferred 
well between the multi-temporal data. To overcome the above 
issues, the object-oriented approaches have become more 
popular than pixel-based methods.  In 2018, Zhang et al 
proposed an SVM based uncertainty analysis for object-based 
change detection, which outperforms pixel-based methods 
(Zhang, 2018 ). 

 
Since the 2D change detection can only provide limited 
information, more and more researchers are concentrated on 
2D-3D combined BCD to meet the requirements of more 
specific applications. The most challenging thing is the 3D data 
acquisition and multi-data co-registration. Since the LiDAR 
data is usually collected with no texture information, and the 
data collection is economical consuming, the photogrammetric 
generated 3D points cloud is preferable for 3D BCD methods. 
The generated ortho-photo and dense 3D point cloud can be 
registered very well through photogrammetric processing, 
which makes the co-registration between multi-temporal data 
much easier. 
 

3. METHOD 

The aim of this work is to combine the 2D and 3D information 
to generated more comprehensive change detection results for 
urban monitoring and planning. Given bi-temporal raw image 
data, we automatically generate the whole area's dense 3D point 
clouds and rectify images and detect the changed buildings with 
semantic change types. 
 
In Figure 1, our entire approach consists of: (a) an optical flow 
field based dense image matching step for dense 3D point 
clouds generation and ortho-image rectification; (b) a 2D and 
3D feature extractor, extracted 2D and their corresponded geo-
position then fuse 3D features; (c) a graph neural network that 
takes the fused features as input and constructs a graph with the 
node feature from the fused feature extract from the bi-temporal 
data. Then the graph neural network iteratively aggregates the 
node feature from the neighborhood and contributes the affinity 
matrix for change type determination. 
 
 

 
Figure 1. The workflow of the proposed GNN based multi-future fusion for building change detection. 

 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-377-2021 | © Author(s) 2021. CC BY 4.0 License.

 
378



 

3.1 Optical flow field based dense image matching and 
image rectification 

The 3D information is more informative to illumination changes 
and perspective distortions. To make the pixel between two 
time-period data precisely aligned, georeferencing between the 
two images is necessary. In order to balance the processing time 
and image rectification quality, we use our former optical flow 
field based DIM methods for pixel-wise dense correspondence 
matching and 3D point cloud generation. The detailed matching 
strategy and procedures can be found in the paper (Yuan et al., 
2019). After the pixel-wised matching results is generated, the 
photogrammetric forward intersection is conducted for the 3D 
points cloud generation. Then the orthophoto is generated by a 
pixel-wise image rectification. 
 
3.2 2D and 3D feature extractor 

The 2D and 3D feature extractors have different modalities and 
can be utilized to learn discriminative features. The commonly 
utilized approaches treat the 3D information as the height 
dimension or depth dimension in traditional RGB images while 
then embedding them into a 4-dimensional image to input deep 
neural networks. This kind of approach only utilizes the height 
information of the 3D data but can not be aware of the internal 
structure connection between the 3D data itself. In our 2D and 
3D feature extractor, we input 3D point cloud and rectified 2D 
RGB images into separate feature extractors to leverage 2D and 
3D features strength. 
 
3.2.1 2D Feature extraction  
 
We first employ a U-net (Ronneberger, 2015) like architecture 
for 2D feature extraction. Unlike common CNN-based feature 
extractors,  we use the whole raw image as inputs instead of 
utilizing the sliced image patches. In our case, U-net shows a 
strong performance in extracting appearance features on the raw 
image resolution, which makes it fulfill our requirements. The 
utilized U-net architecture contained with fifve layers, the 
second and third layer are downsampled layer with PReLU 
activation function, and the fourth to fifth layer are the 
upsample layer with PReLU function and batch normalization. 
 
3.2.2 3D Feature extraction  
 
Different from the 2D feature extractor, the 3D feature extractor 
considering both the appearance feature and also the structure 
information. Given a detected building in time t, and time t+1 
we want to extract the corresponding 3D feature containing 
both appearance and structure information. By analyzing that 
information, it is more informative for us to determine the 
corresponded building change types, such as newly built, 
demolished, under constructed, etc. 
 
Since the whole 3D point cloud dataset is quite large. For 
appearance feature extraction, we first extract the point cloud 
enclosed by a certain 3D detection box and then utilizing 
PointNet (Qi, 2017) for appearance feature extraction. The 
structure information is extracted by utilizing a three-layer 
MLP, then the structure and appearance feature vector is forced 
to have the same dimension and concatenated to build the final 
3D feature. 
 

3.2.3 Feature fusion  
 
After the 2D and 3D features are extracted, we utilize an add 
operation instead of concatenating two features. The add 
operation will force the two kinds of features to have the same 
dimension had more feasible for operation. 
 
3.3 Graph neural network based change detection 

Compared with traditional CNNs, the GNN can esily find the 
internal connections between one node with its neighbors, 
which may reduce the false-positive noise from the pixel-based 
detection results. To leverage the strength of GNN we feed the 
fused features extracted from the different time period to 
automatically determin the building change maps. 
 
3.3.1 Graph construction  
 
The fused features are treated as the node to build the graphs. In 
the graph build step, we need to define the edges between all 
the node to construct the whole graph. Since we aim to find the 
difference between the two time period, just connected every 
node is computationally expensive. Instead of using the simply 
edge construction, we selected to build the edges only between 
nodes from different time periods. Also, the corresponded 
features should have near geo-loactions, so we add a threshold 
to build the edges.  
 
3.3.2 Edge regression and Node feature Aggregation 
 
To find the changes between the two-time series data, we need 
to compute an affinity matrix based on the pairwise similarity of 
the features extracted by the 2D and 3D feature extractors. For 
every pixel on the rectified image, it will have a label to 
represent the changed types. In the edge regression part we 
utiliz a two-layer MLP to calculate the pairwise similarity score. 
The detailed calculation is shown as function (1): 
 

1
1 2( (ReLU( ( - ))))t t

ij i jA S n nσ σ +=            (1) 

Where 1σ and 2σ are two linear layers, t
in  and 1t

jn +  are two 

extracted features from different time period, S is the sigmoid 
function. The node feature aggregation is utilizing the same as 
GraphConv (Morris, 2019). 
 
3.3.3 Loss Function 
 
The proposed networks introduce a combined losses for traning. 
The first one is affinity loss and the second is a contrastive loss. 
The affinity loss is the calculate tby the average cross entropy 
between the ground truth matrix and the affinity matrix. It can 
be represented as : 
 

               
1 1

1 log( )
M N

aff ij ij
i j

L G A
MN = =

−
= ∑∑                 (2) 

Where A  is the predicted affinity matrix, G is the ground 
truth matrix, M is the number of extracted features in the time 
t, and N  is the number of extracted features in the time t+1. 
 
The contrastive loss function can be represented as: 
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Where sim is the function to calculate weather t
in  is equal to 

1t
jn +  if not sim() equals to 0 otherwise it equal to 1. τ  is the 

margin of contrL . The combined loss is: 

+contr affL L L=                                (4) 

 
4. EXPERIMENT AND ANALYSIS 

4.1 Datasets 

The experiment is conducted on an Aerial image dataset from 
Tokyo urban area. It covers the whole Setagaya district the 
detailed parameter for the test image is listed as Table 1. Since 
the raw data from 2 years are collected from the same platform 
and same camera, so here we only show one year’s data 
parameter. 
 

Table 1. Technical parameter of the test images 
 

Item Tokyo 
Aerial craft Aerial 

Camera Intergraph/ZI DMC II 
Principal distance (mm) 70.50000 

Format (pixels) 11310×17310 
Pixel size (µm) 6.0 

Ground sample distance (GSD) 
(cm) 16 

Relative flying height (m) 1180 
Longitudinal overlap (%) 80 

Lateral overlap (%) 80 
Number of mapping strips 4 
Number of control strips 0 

Number of images 48 
Number of ground control 

points 21 

Number of pass points 23317 
Block area (km2) 4.0 × 3.0 

Maximum topographic relief 
(m) 135 

Average terrestrial height (m) 35 
 
The automatic generated georectified image and the 
corresponded 3D points cloud is shown as Figure 2. The 
orthophoto achieved the same resolution as the raw aerial image 
and the corresponded 3D points cloud accuracy achieve 
1.5GSD. 

  
(a) 

 

 
(b) 

Figure 2. The automatic generated (a) orthophoto and (b) 
corresponded 3D point cloud. 

 
4.2 Implementation details 

The experiment is conducted on a high-performance 
computational server with 2 RTX 2080ti GPU. Evaluation 
matrics quantitatively evaluate the change detection results with 
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the index of precision (P), recall I, and F1 score. Let ijN  be the 

number of pixels of class i predicted as class j, and there have 3 
kinds of change types we detect, newly built, demolished, and 
unchanged. Then the precision, recall and F1 score can be 
calculated as below: 
 

/

/

1 2 / ( )

ii jij

ii ijj

P N N

R N N

F PR P R

=

=

= +

∑
∑                          (5) 

 
4.3 Experimental results  

In figure 3 we show the selected area of our proposed change 
detection results with the ground truth. For comparison, we 
choose the CNN-based method proposed by Lian et al. (2020). 
They were utilizing DSM and orthophoto as input for building 

change detection and achieved superior results than tradional 
image-based post-classification method and pixel-based deep 
learning method. Figure 3 (c) and (g) show that the GNN based 
methods can accurately detect the changed building with 
completed building structures, but some small changes are 
missed. Compared with CNN-based methods, the detection 
results have significantly improved, but it occurred with some 
small noises. The quantitative comparison is shown in Table 2. 
 

Table 2. The quantitative evaluation matric of CNN based 
method and the proposed method. 

 
Methods Precision(%) Recall(%) F1-Score(%) 

post-classification 57.1 37.1 44.9 
CNN based 68.1 52.0 58.9 
Proposed 76.2 62.1 68.3 

 
 

 

       
                                (a)                                                                 (b)                                                                 (c) 

       
                                (d)                                                                (e)                                                                  (f) 

 
(g) 

Figure 3. The experimental results of the proposed method. (a) and (d) are two time periods orthophoto, (b) and (e) are the 
corresponded 3D points cloud, (c) is the ground truth, black means new constructed, grey means unchanged, black means 
demolished, (f) is the CNN based change detection results, (g) is this paper proposed GNN based change detection results. 
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5. CONCLUSION 

In this paper, we propose a GNN based multi-level feature 
fusion network for building change detection. The experimental 
results demonstrated that the proposed method is superior to the 
traditional 2D image-based post-classification methods and 
outperforms the CNN-based method, which combines the DSM 
and orthophoto for building change-type detection. The 
proposed methods extract 2D  and 3D features separately and 
leverage the strength of those two kinds of features to generate 
the building change map comprehensively.  However, the 
proposed methods still suffered from two major limitations. 
First, it utilizing the supervised learning manner, which requires 
large numbers of manually labeled samples; Second, this 
method lacks considering the transferability of the trained 
model, which will be considered in the future. 
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