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ABSTRACT: 

 

PM10 concentrations are essential for assessing air quality in arid areas. They are usually measured at air quality monitoring stations. 

The limited number of monitoring stations can make difficult to study significantly the spatial variability of PM10 over relatively 

large areas. This study aimed at evaluating the use of Aerosol Optical Depth derived from satellite data to estimate PM10 

concentrations. The continuous coverage offered by remote sensing data helps to address the limitation encountered with the spatial 

distribution of relevant monitoring stations. In the current study we compared MODIS AOD at 550nm included in MCD19A2 and 

we established a regression equation between AOD and PM10. The use of daily AOD at 1km resolution helped establish regression 

with acceptable correlation coefficient. The regression equation is then used to create daily maps of estimated PM10 concentrations 

over the study area and helped assessing their variability.  

 

 

1. INTRODUCTION 

1.1 Overview 

Air pollution has always been considered a major problem 

worldwide particularly in areas with high population 

concentrations, areas with strong industrial activities and within 

arid and semi-arid regions in particular. The formation of such 

air pollutants depends upon the sources of their precursors 

whether natural or anthropogenic. The level of air pollution is 

derived from measured concentrations of present pollutants that 

usually include O3, NO2 and particulate matter (PM). This latter 

is measured for particulates with aerodynamic diameter less 

than 2.5 m or less than 10 m and are denoted respectively 

PM2.5 and PM10. Many studies established a strong 

relationship between the concentrations of PM2.5 and PM10 on 

one hand and respiratory diseases on the other (Liu, 2009). 

Contributors to PM in the atmosphere include many sources 

such as construction sites crushing or grinding operations, dust 

mobilized by vehicles on roads and meteorological factors such 

as fog and fumes. The challenges of meeting air quality 

standards in any region are impacted by identifying theses 

sources and further identifying the trans-borders transport of 

these pollutants.  

Furthermore, air pollutants express a wide range of 

spatiotemporal variations in any one region making it difficult 

to properly model and predict (Omari et. al., 2019). Identifying 

the spatiotemporal distribution of PM would help in the 

assessment of the population levels of exposure and 

significantly aid in identifying the sources and formation of air 

pollutants in the area.  

While PM concentrations are measured using ground based 

instruments at air quality monitoring stations, remote sensing 

can provide a means to extend the estimation of PM 

concentrations beyond monitoring stations to wider areas. Many 

researchers focused on estimating PM2.5 or PM10 from aerosol 

optical depth (AOD) retrieved from satellite imagery. This 

study aims at developing statistical correlation models between 

AOD derived from remote sensing data and PM10 over Al Ain 

city region in the United Arab Emirates (UAE). Several AOD 

global products exist and are of particular interest for this study. 

However, we opted to use only the 1 KM AOD provided in the 

Moderate Resolution Imaging Spectroradiometer (MODIS)  

Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) product (MCD19A2) as it is produced on daily basis 

at a higher spatial resolution than other available products.  

 

1.2 Background 

Particulate matter (PM) is one of the major air quality issues in 

the world these days. Exposure to tiny particles with diameter 

size smaller than 10 µm can cause respiratory problems and 

lead to premature death (Villeneuve et al., 2002). Air quality 

assessment of PM is typically supported by measurement data 

from established ground monitoring stations.  However, these 

stations do not provide an adequate spatial coverage to meet the 

needs of mapping regional air quality and human exposure 

assessments since they are considered as point measurements 

(Tian and Chen, 2010). Even though satellite measurements are 

less accurate than ground-based measurements, AOD retrieved 

from satellite sensors is considered as a good proxy for ground 

discovered PM mass concentrations and a valuable tool for 

monitoring aerosol pollution (Koelemeijer et al., 2006). MODIS 

provides a daily basis distribution of AOD near-globally with 

spatial resolution of 1 km over both ocean and land. While PM 

is derived from ground measurements as the daily average of 

dry mass concentration at the surface, AOD represents the 

columnar aerosol loading from the surface to the top of the 

atmosphere (Engel-Cox et al., 2004). The relationship between 

these two variables relies on a number of factors, including 

aerosol type and its chemical composition, aerosol vertical 

distribution, as well as its spatial and temporal variability, 
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which are controlled by spatio-temporal distribution of 

emissions and meteorological conditions (Chu et al., 2003). 

During the last decade, numerous studies have analyzed the 

relationship between PM and AOD. Earlier studies reported a 

large range of correlation coefficients (R) for univariate linear 

regression models (UV) for different cities around the world. 

For instance, a study of PM2.5-AOD relationship over the 

whole USA, including 1300 ground observation stations, found 

non-uniform correlations across USA, being strongest within 

the northeast part of USA (R >0.8) and weakest within the 

north-western part of USA (R <0.2), with an average of 0.43 

over the whole area (Engel-Cox et al., 2004). For 26 cities 

around the world (in Australia, India, USA, Hong Kong and 

Switzerland), the correlation ranged from 0.11 to 0.85 (Gupta et 

al., 2006). Even though AOD and daily averaged 24‐hour PM10 

derived from the Aerosol Robotic Network (AERONET) 

correlate well for some areas in specific situations with stable 

meteorological conditions and fixed pollution sources, most of 

those studies concluded that AOD alone does not universally 

represent surface PM concentrations well, since other factors 

have an effect on the PM-AOD relationship like aerosol type 

and chemical composition, the vertical distribution of aerosols, 

its temporal variability and meteorological parameters (Chu et 

al., 2003). 

Moreover, satellites can measure almost the same columnar 

AOD throughout two different conditions: first with low 

planetary boundary layer height (PBLH) when the surface PM 

concentrations can be high and second with high (PBLH) when 

surface concentrations are low (Gupta and Christopher S, 2009). 

Ground and spaceborne lidars, like Cloud Aerosol and Infrared 

Pathfinder Satellite Observation (CALIPSO) provide 

information on vertical distribution of aerosols that may 

facilitate the assessment of whether aerosols are restricted to the 

surface planetary boundary layer (PBL) or aloft (Engel-Cox et 

al., 2006). Additionally, lidar apportionment of the fraction of 

aerosol optical depth that is within the PBL can be scaled to 

give better agreement with PM that come from the surface than 

does the total column amount (Engel-Cox et al., 2004). 

However, there are limitations with these data since CALIPSO 

provides observations with a very narrow swath and the global 

coverage is reached only after many weeks. These data can be 

useful for improvement and interpretation of the PM-AOD 

relationship by searching the most significant upper-level 

transport events. However, they cannot be used for spatial 

mapping of daily averaged PM concentrations. Note that some 

studies using limited observations of vertical distribution of 

aerosols from lidars have concluded that aerosols are well 

mixed and mostly confined within the PBL (Gupta and 

Christopher, 2009).  

The PM-AOD relationship can also be affected by certain 

meteorological parameters including: humidity, due to 

hygroscopic growth of particles and production of secondary 

particles, temperature, due to effect on photochemical reactions 

in which PM particles are produced, wind speed, that influences 

horizontal and vertical dispersion and temperature vertical 

gradients that affect vertical mixing (Gupta and Christopher, 

2009). 

Even though the satellite-based retrieval of air quality is 

promising, it poses several challenges. There are several factors 

that affect the relationship between AOD and PM10. For 

instance, the satellite-derived quantities provide columnar 

information for ambient conditions while the PM10 

measurements are representative of near-surface dry mass 

concentrations. The satellite footprints represent large spatial 

areas and are subject to cloud contamination (Zhang et al., 

2005). Other issues including variations in aerosol type and 

hygroscopicity must be adequately understood before using 

satellite data for air quality assessment. In the present study 

MODIS-derived AOD at 1 Km from two satellites, Terra and 

Aqua, is compared with the several ground monitoring stations 

PM10 mass concentrations (μg/m3) spread over AL Ain region 

by developing statistical correlation and regression models to 

allow the prediction of PM10 over the study area. 

 

2. METHODOLOGY 

2.1 Study area 

The study area, shown in figure 1, covers AL Ain region 

extending from (24.55N, 55.30E) to (23.33N, 55.80E) and is 

located in the eastern part of the UAE. The study area falls in a 

desert climate zone with scarce precipitation. It is dominated by 

sand dunes and sand sheets with some date palm farms and 

urban centres. The dominancy of sand and sand dunes in the 

study area makes it exposed to major dust outbreaks affecting 

significantly air quality. 

 

 

Figure 1. Study area. 

 

2.2 Data 

PM10 data is collected continuously by Abu Dhabi 

Environment Agency (EAD) at five air quality monitoring 

stations inside the study area. These stations are listed along 

with their coordinates and land use type in table 1. The daily 

average of PM10 is made available and is used in the World Air 

Quality Index Projects (aqicn.org). In this study, we use the 

daily PM10 average expressed in g/m3 collected in 2018. 

 

 

Station Latitude Longitude Area Type 

AL Ain Islamic 

Institute 

24.219058 55.734864 Urban 

AL Ain Street 24.225858 55.765831 Urban traffic 

Sweihan 24.46666 55.342883 Suburban 

AL Tawia 24.259183 55.704869 Suburban 

Zakher 24.163467 55.702106 Urban 

AL Qua’a 23.531154 55.48596 Rural 

Table 1. Air monitoring stations in the study area. 

 

The remote sensing derived aerosol loading used in this study is 

provided by AOD at 550 nm included in the MODIS 

MCD19A2 product. The MAIAC algorithm used in this product 

was developed for AOD retrieval over both bright and dark 

surfaces from MODIS data at 1 km resolution (Lyapustin et al., 
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2011). The algorithm uses time series analysis based on spectral 

regressions in the blue (0.47 mm) and shortwave infrared (2.1 

mm) bands considering the bidirectional properties of surface 

reflectance. AOD retrieval using this approach assumes that 

surface reflectance remains stable considering a time series of 

16 days. This is true in arid regions where land cover is almost 

the same throughout the year. MCD19A2 data can be freely 

accessed via NASA LAADS DAAC website 

(https://ladsweb.modaps.eosdis.nasa.gov). Daily MCD19A2 

collected in 2018 for tile h26v3, that encompasses our study 

area, is downloaded and used in this study. 

 

2.3 Methods 

The processing approach is summarized in figure 2. Subsets of 

the study area for 2018 are extracted from the downloaded 

MCD19A2 tiles using the HDF-EOS to GeoTIFF Conversion 

Tool (HEG) (https://lpdaac.usgs.gov/tools/heg/). Pixels 

corresponding to the location of the air quality monitoring 

stations are then identified and values of AOD at 550nm for 

these pixels are extracted for all days in 2018 and stored in a 

CSV file. Microsoft Excel is then used to study the relation 

between measured PM10 concentrations and corresponding 

AOD values and to establish a regression equation. This latter is 

evaluated and then applied to MODIS AOD data to create raster 

images of PM10 estimates at 1km spatial resolution for the 

whole study area. 

 

 

 

Figure 2. Processing approach. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 PM10 concentrations 

The average daily analysis of the PM10 concentrations derived 

from the monitoring stations is depicted in Figure 3. It shows 

that the study area has moderate levels of PM10 with 

comparable average values across the five stations ranging from 

120-158 g/m3.  

 

Figure 3. Average daily concentrations of measured PM10. 

The average monthly PM10 concentration for 2018 is shown in 

figure 4. It is noticeable that Al Ain City has the largest PM10 

concentration in July, reaching 290 μg/m3. The figure shows a 

slight decrease of PM10 concentration from January to March, 

followed by an increase that becomes sharp after April to reach 

a peak in July where it starts decreasing again. These variations 

seem to coincide with seasonality in UAE where two seasons 

are mainly distinguished: winter from November to April and 

summer from May to October. Desert storms activities peak in 

the months of July and August increasing significantly PM10 

concentrations. 

 

 

Figure 4. Monthly average PM10 concentrations. 

 

3.2 MODIS AOD 

Figure 5 shows the average monthly AOD obtained from the 

MODIS MCD19A2 product over the study area for in 2018. As 

with PM10 measurements, MODIS AOD is high during the 

summer period. The highest values of were observed in the 

June-August period where sand storms are most active. 

 

 

Figure 5. Monthly average of MCD19A2 AOD over the study 

area in 2018. 

 

 

3.3 Correlation between AOD and PM10 concentration 

MODIS AOD values observed in pixels matching the location 

of the five monitoring stations were extracted and exported to a 

spreadsheet for 2018. These values were then used to compare 

the measured PM10 concentrations using regression analysis. 

Figure 6 depicts the regression analysis performed for each 

monitoring station individually. A linear regression with 

acceptable R2 value ranging between 0.67 and 0.72 was 

obtained for all stations. The best correlation was observed in 

the rural area of Al Qua’a.  
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Figure 6. Correlation between MODIS AOD and  PM10 for 

individual air quality monitoring stations. 

 

 

PM10 measurements from all five stations were then combined 

and correlated with matching MODIS AOD values. The results 

are presented in figure 7 that indicates an acceptable level of 

correlation when using linear regression with a R2 value of 0.75. 

Since the whole study area is under similar meteorological and 

environmental conditions, combining all the monitoring stations 

to perform the regression did not impact negatively the results. 

Additionally, it presents a great advantage over using the 

stations individually as it yields one regression equation that can 

be used across the whole area.  

 

 

Figure 7. Correlation between MODIS AOD and PM10 for all 

stations combined. 

 

 

3.4 PM10 estimates from MODIS AOD 

The linear regression equation obtained from correlating 

MODIS AOD and PM10 measurements from all five 

monitoring stations combined (see figure 7) was used to 

estimate PM10 over the study area from daily MODIS data. A 

sample of the results for selected dates is presented in figure 8. 

To evaluate the performance of the PM10 estimation process, 

AOD values matching the five monitoring stations were used in 

the model to estimate PM10 at the stations’ locations. The 

predicted PM10 values were then compared to the actual 

measured values and a mean absolute percentage error (MAPE) 

was calculated. Using all five stations, the average MAPE was 

calculated to be 35.9%. This result compares well with other 

similar studies such as a PM10 estimation study over the Shanxi 

province in China where an average error of 28.8% was found 

to be good enough for subsequent experiments (Hui, 2018). 

The  approach presented in this study illustrates the potential of 

using MODIS AOD to predict PM10 over large areas and hence 

enables more thorough analysis of its spatial variations.   

 

 

3.5 Conclusions 

This study presented an approach to estimate PM10 

concentrations from MODIS AOD at 550 nm in the study area. 

A linear regression model was derived by correlating air quality 

monitoring stations PM10 data and MODIS MAIAC AOD 

retrievals. The model was achieved with a reasonable R² of 0.75 

without using additional ancillary data. While the results are 

considered satisfactory, they can be further improved by 

integrating meteorological data and segmentation based on land 

use.  

Using remote sensing data to estimate PM10 concentration is 

promising as it allows to fill gaps where monitoring stations are 

not present and help better understand the spatial variability of 

this parameter. 
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Figure 8. Daily mean PM10 concentration maps of Al Ain city 

for four different dates in 2018. 
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