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ABSTRACT: 

 

The use of remote sensing data for burned area mapping hast led to unprecedented advances within the field in recent years. Although 

threshold and traditional machine learning based methods have successfully been applied to the task, they implicate drawbacks 

including the involvement of complex rule sets and requirement of previous feature engineering. In contrast, deep learning offers an 

end-to-end solution for image analysis and semantic segmentation. In this study, a variation of U-Net is investigated for mapping 

burned areas in mono-temporal Sentinel-2 imagery. The experimental setup is divided into two phases. The first one includes a 

performance evaluation based on test data, while the second serves as a use case simulation and spatial evaluation of training data 

quality. The former is especially designed to compare the results between two local (trained only with data from the respective research 

areas) and a global (trained with the whole dataset) variant of the model with research areas being Indonesia and Central Africa. The 

networks are trained from scratch with a manually generated customized training dataset. The application of the two variants per region 

revealed only slight superiority of the local model (macro-F1: 92%) over the global model (macro-F1: 91%) in Indonesia with no 

difference in overall accuracy (OA) at 94%. In Central Africa, the results of the global and local model are the same in both metrics 

(OA: 84%, macro-F1: 82%). Overall, the outcome demonstrates the global model’s ability to generalize despite high dissimilarities 

between the research areas.  

 

 

1. INTRODUCTION 

Fire is a natural and ecologically relevant process in many 

ecosystems (Kelly & Brotons, 2017). However, following an 

intensification of anthropogenous land use, it has become an 

increasingly unpredictable socio-ecological hazard that effects 

many countries worldwide (Pereira et al., 2017). In Indonesia, 

forest and bush fires are often associated with land use 

conversion i.e. agricultural expansion and land conflict (Sizer et 

al., 2014). Converted peatland areas are especially prone to fires 

spreading out of control (Vetrita & Cochrane, 2020). Additional 

to agricultural fires that cause wildfires in Central Africa, the 

seasonal character of water availability in the savannah leads to 

the accumulation of easily ignited fuels that have the potential to 

burn every year (Pereira, 2003). Not only do these natural 

disasters in both regions largely contribute to pyrogenic 

emissions (Knorr et al., 2016), they also threaten biodiversity and 

forest health (Lewis et al., 2015) as well as the economy, lives 

and property (Chuvieco et al., 2010). With the impact of fires 

expected to increase (Roos et al., 2016), it is particularly relevant 

to monitor these events to generate knowledge about fire extent, 

location and frequency (Chuvieco et al., 2019). Burned area maps 

present a valuable option for devising prevention and recovery 

policies. As remote sensing data provides global information at 

high repetition rates, its utilization has led to unprecedented 

advances within the field of burned area mapping in recent years 

(Pereira et al., 2017).  

A large variety of products and techniques has been developed 

for this purpose. Most prevalent in literature is the use of Landsat 

data in regional studies and MODIS data for the development of 

global burned area products. While they present an important 

source of information for multiple user communities, it has been 

shown that especially in areas prone to smaller fires, the low 

spatial resolution can lead to an underestimation of total burned 

area (van der Werf et al., 2017). Consequently, there is an 
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outstanding demand for high-resolution burned area products that 

improve these estimates. Sentinel-2 data is well suited for this 

task. With a combined revisit time of 5 days considering both 

missions (Sentinel-2A and Sentinel-2B) and the included Near 

Infrared (NIR) and Shortwave Infrared (SWIR) spectral bands 

that are especially sensitive to fire effects (Pleniou & Koutsias, 

2013) it can facilitate the creation of a burned area product with 

10m resolution allowing improved post-fire evaluations on 

ecosystem damage and carbon emission.  

While threshold and traditional machine learning based methods 

have successfully been applied to the task, they implicate 

drawbacks including the involvement of complex rule sets and 

requirement of feature engineering such as the extraction or 

generation of features from the raw data. In contrast, deep 

learning offers an end-to-end solution for image analysis and 

semantic segmentation. Among deep neural networks, 

convolutional neural networks (CNNs) show the most promising 

potential as they are designed to handle spatially dependent data 

such as images especially well (LeCun et al., 1998). Despite that, 

their share in solutions for burned area applications is 

comparatively low, which might be based on the limited amount 

of labelled training examples that is available. 

Examples for optical data implementations include the CNNs 

developed by Pinto et al. (2019) and Pinto et al. (2020). Both are 

based on Visible Infrared Imaging Radiometer Suite (VIIRS) 

composites and active fire data and used to segment burned areas 

in selected locations. The framework proposed by Mohla et al. 

(2020) utilizes a variation of U-Net trained on weakly labelled 

Landsat data for burn scar identification in the Amazon rain 

forest. Park and Lee (2018) employ U-Net to map forest disasters 

including fires in Sentinel-2 imagery from South Korea. Using a 

combination of Sentinel-1 and Sentinel-2 images Lee et al. 

(2020) developed a model based on U-Net for bushfire detection 

in Australia. Other small studies also show promising results on 

the combination of U-Net and Sentinel- 2 data for burned area 
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mapping in a mono-temporal approach. Beside Knopp et al. 

(2020), who achieved high overall accuracies in selected 

locations across the globe, Farasin et al. (2020) also proved the 

superior performance of this combination of network and sensor 

over conventional methods in a global case study of 147 cloud 

free areas. While these existing models are either trained and 

applied in a local or a global setting, this study investigates both 

by looking at the generalizability of a global model in comparison 

to local models using the example of two environmentally 

different research areas - Indonesia and Central Africa (Chad and 

Central African Republic).  

 

In summary, one central part of this research is to transfer the 

promising combination of Sentinel-2 imagery and the neural 

network architecture U-Net to the present study areas. As fitting 

a neural network is based on a training with appropriate example 

data, the task of creating sample images is crucial. The 

underlying objective is consequently, to construct a high quality 

set of example images for training, validating and testing of the 

model in the defined research areas. The second goal is to 

compare two local (trained only with data from the respective 

research areas) and one global variant (trained with the whole 

dataset) of the model to determine the feasibility of using 

multiple local datasets within one common detection framework 

without implying a loss in accuracy. 

 

2. MATERIALS AND METHODS 

2.1 Definition of Sampling Areas 

For defining the temporal and spatial distribution of sample data 

within the study areas, MODIS hotspots are used. This dataset 

contains point features that are generated by an algorithm within 

each pixels of size 1km that is flagged as containing one or more 

fires based on thermal anomalies (National Aeronautics Space 

Administration, 2020). The consideration of this dataset helps to 

refine the search for suitable, in this case defined as containing 

the target class, Sentinel-2 tiles that samples can be extracted 

from. Tiles are collected as evenly as possible across the study 

areas. In Indonesia, 21 Sentinel-2 images are used for the creation 

of the training, validation and test data, while in Central Africa 

23 are selected. Additionally, two representative scenes with tile 

numbers not included in the reference datasets are selected for 

the use case simulation in each area. Overall, the dataset is a mix 

of cloud-free and cloudy images. 

 

2.2 Data Preprocessing 

Sentinel-2 tiles are downloaded as Level-1C files and passed 

through a pipeline applying atmospheric correction, band 

stacking and spatial resampling. The final output is a Level-2A 

product with 10m resolution consisting of 10 out of the original 

13 Sentinel-2 bands (2, 3, 4, 5, 6, 7, 8, 8A, 11, 12). After their 

download, the selected scenes are classified manually scene-by-

scene by domain experts to ensure high quality input data for the 

network. Both the original images and the created masks are then 

split into patches of 256x256px. Patches that would not include 

any burned area pixels are skipped. Using the previously 

described method, 6656 sample pairs are generated in total. This 

includes 3022 patches located in Indonesia and 3634 patches 

from the Central African research area.  

Ensuring a neural networks ability to generalize is a core part of 

deep learning. To evaluate this characteristic, it is recommended 

to split the sample data into three different subsets, a training set, 

a validation set and a test set. In doing so, a trade-off between the 

statistical power in estimating the model performance on unseen 

data and the power of fitting a better adjusted model has to be 

considered (Korjus et al., 2016). For this project, a data split ratio 

of 60%, 30%, 10%, for training, validation and test datasets 

respectively, is chosen. Three characteristics are thereby 

considered as recommended by Ng and Katanforoosh (2020). 

First, patches from one image are only assigned to one of the 

three groups. Second, the sets have the same distribution, both in 

order not to over- or underestimate the predictive power of the 

network, and third, the three groups are reproducible to make 

tests comparable. 

 

2.3 U-Net Architecture 

U-Net is a network architecture originally developed for 

biomedical image segmentation by Ronneberger et al. (2015). 

However, having characteristics like model simplicity, easy 

trainability and suitability for small datasets it has achieved good 

results in other fields as well (Zhang et al., 2020). It is a type of 

Fully Convolutional Network (FCN) only containing 

convolutional and no dense or fully connected layers, which 

means that it can accept images of any size as decisions are made 

on local scale as opposed to the global image. It has an end-to-

end setting that allows the input of a raw image for producing a 

complete segmentation map as the output. The encoder-decoder 

architecture with two sequential paths compose its eponymous 

U-shaped form. The first path is a contracting path. It follows the 

typical architecture of a CNN consisting of convolutional and 

pooling layers and has the purpose of capturing the context and 

more complex features in the input image. The second path 

enables the localization of these features by using concatenations 

to combine the contextual information from the first path with the 

up-sampled output from the symmetric second part. The vector 

is thus retransformed to a two-dimensional image through 

transposed convolutions. Figure 1 shows a graphic representation 

of the utilized network. 

 

 

Figure 1. Architecture of the U-Net variation used in this study. 

Image source: Modified after Ronneberger et al. (2015) 

 

2.4 Hyperparameter Settings 

The implementation of the model follows the original 

architecture but includes some adaptions to account for 

differences in the input data and the related task. The model is set 

up with hyperparameters chosen according to best practice 

recommendations from developer platforms/communities as well 

as scientific papers or specified after some preliminary testing.  
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Batch Size 

In comparison to the original paper, the batch size is increased to 

account for smaller input patches as well as larger variations 

within the samples. Preliminary testing showed that smaller batch 

sizes lead to large fluctuations in loss and accuracy during 

training. To counteract this effect, a batch size of 30 is defined. 

Samples are shuffled between epochs so that batches do not look 

alike, which ultimately makes the model more robust. While 

feeding samples into the algorithm all input images are 

standardized and the mask values are converted to one hot 

encoded rasters. 

 

Weight Initialization 

The initial setting of the network weights is determined using an 

activation-aware initialization. As ReLU (Rectified Linear Unit) 

is used as the activation function for the convolutional layers in 

this network, the Kaiming He initialization (He et al., 2015) is 

selected. 

 

Regularization 

The number of epochs the network is trained for is designed 

flexibly by setting the maximum number of epochs to 100 and 

including early stopping, which helps to avoid overfitting. 

Training is stopped when the loss on the validation set has not 

improved over more than 20 epochs. What is stored is the best 

model, here defined as the combination of weights that result in 

the lowest validation loss. Another way of avoiding overfitting is 

the use of dropout. A dropout layer with a dropout rate of 0.1 is 

therefore included after every convolutional block. 

 

Optimization 

For network optimization, Adam is used because of its ability to 

use adaptive learning rates for individual network parameters. 

With a learning rate of 0.001, β1 value of 0.9 and β2 value of 

0.999, its parameters are kept at their default values. 

Additionally, the learning rate is reduced by the factor 0.5 when 

the validation loss does not improve over 10 epochs until a 

minimum of 0.0001 is reached. The additional learning rate 

adaption has been shown to improve convergence speed and 

accuracy (Smith, 2017).  

 

Loss Function 

As the case at hand presents a binary segmentation task, Binary 

Cross-Entropy (BCE) is the most suitable loss function for the 

proposed network and is used in the burned area model. 

 

2.5 Experimental Setup 

Network performance of the local and global variants is first 

evaluated on test data. This includes four scenarios: 1) A local 

classifier trained on the Indonesian training dataset and the 

resulting model evaluated in the Indonesian test data (I/I); 2) a 

local classifier trained on the Central African training dataset and 

the resulting model evaluated in the associated test data 

(CA/CA); 3) and 4) a global model trained on the whole dataset 

and separately applied to the Indonesian (G/I) and the Central 

African  (G/CA) test data. This organization is based on the 

assumption, that in a real use case, the data the model is applied 

to would not consist of a mixture of patches from both regions 

but rather be confined to one. During the training phase, model 

performance is monitored on the training and validation set using 

loss, overall accuracy, and macro-averaged F1-score as metrics. 

Validation data is hereby used as the control to avoid over- or 

underfitting. Subsequently, the performance is reported on the 

test sets to compare the global and local classifiers. Therefore, 

predicted and true labels are contrasted in a confusion matrix to 

generate the number of True Positives (TP), False Positives (FP), 

False Negatives (FN) and True Negatives (TN). As the model 

output consists of probability maps for each class, these are 

converted to binary masks using a 50% threshold before the 

comparison is made. Metrics derived from the confusion matrix 

are described in the following. Precision (Px), or positive 

predictive value, denotes the number of successfully predicted 

samples that are in fact relevant. Recall (Rx) expresses the 

number of relevant samples that are successfully predicted. 

 

 𝑃𝑥 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

 

 

 
𝑅𝑥 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2) 

The F1-score is defined as the harmonic mean of recall and 

precision metrics (Farasin et al., 2020). It describes the trade-off 

between the two previously explained metrics. 

 

 
𝐹1𝑥 = 2 ∗ 

𝑃𝑥 ∗  𝑅𝑥

𝑃𝑥 +  𝑅𝑥
 

 

(3) 

In the second phase, the three variants are additionally tested and 

evaluated on two example Sentinel-2 scenes per research area to 

mimic a real use case. The performance analysis of the network 

in a spatial context is set up to reveal strengths and shortcomings 

of the current training dataset which will allow for a targeted 

update and increase of the training data quality. The post-

classification accuracy of the segmented scene pairs is analyzed 

using a set of random points, to compare the true classes with the 

classified data at the same locations. The sampling method used, 

is ’equalized stratified random’, which in this case automatically 

distributes 100 points randomly within each class but generates 

the same number of points per class. The performance of each 

model variant is evaluated based on two scenes creating the same 

four scenarios as described before (I/I, CA/CA, G/I, G/CA). Point 

values are contrasted using a confusion matrix and the metrics 

described above.  

 

The framework used for model implementation is Keras with a 

TensorFlow backend. Computing is conducted on an 

NVIDIATesla P100-PCIE with 27.4 GB of available RAM via 

Google Colab.  

 

3. RESULTS 

3.1 Performance Assessment based on test data 

In order to determine whether one combined or two separate local 

classifiers are better suited for the task of burned area 

segmentation in Indonesia and Central Africa, the results of the 

global and local models are contrasted on the isolated test 

datasets in the following.  

 

Model Type Metric Burned Non-burned 

global 

class 

Precision (%) 88 96 

Recall (%) 83 97 

F1 (%) 86 96 

overall 
Accuracy (%) 94 

Macro-F1 (%) 91 

local 

class 

Precision (%) 83 96 

Recall (%) 91 97 

F1 (%) 87 96 

overall 
Accuracy (%) 94 

Macro-F1 (%) 92 
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Table 1. Performance comparison of the global and the local 

model in Indonesia with predictions based on the Indonesian 

test dataset.  

Table 1 shows the comparison of the local Indonesian and the 

global model. The accuracy assessment of the two variants 

applied to the Indonesian test data reveals a minor superiority of 

the local model (macro-F1: 92%) over the global model (macro-

F1: 91%) with no difference in the OA at 94%. The results for 

the comparison between the local Central African and the global 

model applied to the same test data are displayed in Table 2. The 

accuracy of the global and local model is the same in both metrics 

(OA: 84%, macro-F1: 82%).  

 

Model Type Metric Burned Non-burned 

global 

class 

Precision (%) 70 91 

Recall (%) 78 87 

F1 (%) 74 89 

overall 
Accuracy (%) 84 

Macro-F1 (%) 82 

local 

class 

Precision (%) 69 91 

Recall (%) 80 86 

F1 (%) 74 89 

overall 
Accuracy (%) 84 

Macro-F1 (%) 82 

Table 2. Performance comparison of the global and the local 

model in Central Africa with predictions based on the Central 

African test dataset.  

 

Overall, it can be observed that the accuracy for segmenting non-

burned areas is higher than for burned areas. Precision and recall 

values additionally show that false predictions in the class burned 

are rather based on samples that are predicted as burned but are 

not relevant. Accordingly, shortcomings in the class non-burned 

can rather be attributed to relevant samples that are missed. 

 

3.2 Use Case Accuracy Assessment 

Consistent with the approach outlined in chapter 2.5, the local 

and global models’ performance is compared based on entire 

scenes in the following.  

 

3.2.1 Indonesia: The Sentinel-2 scenes chosen for the use 

case accuracy assessment in Indonesia have the tile numbers 

49MCV and 48MTB. The former was acquired in West 

Kalimantan (2019-09-04) and the latter in Sumatra (2019-09-13).  

 

Local Model 

          Class 

GT 

Non-Burned Burned Total Recall 

(%) 

Non-Burned 100 38 138 72.5 

Burned 0 62 62 100.0 

Total 100 100 200  

Precision (%) 100.0 62.0  81.0% 

Table 3. Confusion Matrix of ground truth (GT) and 

classification (Class) for the use case example in Indonesia 

using the local model. The bottom right cell displays the overall 

accuracy. The F1-score for non-burned is 84.7% and for burned 

76.5%. 

In contrast to the results displayed in the previous chapter the 

difference in accuracy between the two model variants is more 

visible (Table 3 and Table 4). The results agree in the higher 

accuracy of the non-burned class. Precision and recall as well as 

the numbers within the confusion matrix again show that the 

lower accuracy in the burned class can be attributed to the 

detection of false positives, rather than false negatives. 

Accordingly, these falsely predicted samples appear as false 

negatives for the non-burned class resulting in precision values 

that are higher than the recall. As seen before, the accuracy 

measured by the F1-score is lower for burned areas in comparison 

to non-burned areas for both models. 

Global Model 

          Class 

GT 

Non-Burned Burned Total Recall 

(%) 

Non-Burned 100 44 144 69.4 

Burned 0 56 56 100.0 

Total 100 100 200  

Precision (%) 100.0 56.0  78.0% 

Table 4. Confusion Matrix of ground truth (GT) and 

classification (Class) for the use case example in Indonesia 

using the global model. The bottom right cell displays the 

overall accuracy.  The F1-score for non-burned is 81.9% and for 

burned 71.8%. 

 

 

Figure 2. Example of false positive predictions in land cover 

classes like mangroves (top), urban (middle) and bare soil 

(bottom) in Indonesia (RGB composition: B12/B8/B3). 
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Analyses of the spatial results show that misclassifications of 

burned areas occur mainly in the land cover classes urban and 

bare soil but also in areas where mangroves are present (see 

Figure 2). Although confusions with cloud shadows are common 

in other studies (Chuvieco et al., 2019), the network performed 

well in this case (see Figure 3, top). Figure 3 also shows that in 

addition to large burns, small burn scars are segmented reliably. 

 

 

Figure 3. Segmentation of small and large burned areas in 

Indonesia (RGB composition: B12/B8/B3). 

 

3.2.2 Central Africa: The Sentinel-2 scenes for the Central 

African research area are both located in Chad. The first image 

has the number 34PDU and was acquired on 2019-11-09, the 

second, with tile number 33PYN, was acquired on 2019-01-31.  

 

The test results displayed in Table 5 and Table 6 confirm 

previous findings in terms of precision and recall. Similar to the 

Indonesian use case example, there is a small difference in the 

overall accuracy. In this case, the spatial analysis additionally 

showed that misclassifications can mainly be found in the land 

cover class bare soil. Clouds and cloud shadows are correctly 

labeled as non-burned (see Figure 4). The segmentation shown in 

Figure 5 represents an example of a successful prediction of true 

positives in the burned class. 

Local Model 

          Class 

GT 

Non-Burned Burned Total Recall 

(%) 

Non-Burned 97 21 118 82.2 

Burned 3 79 82 96.3 

Total 100 100 200  

Precision (%) 97.0 79.0  88.0% 

Table 5. Confusion Matrix of ground truth (GT) and 

classification (Class) for the use case example in Central 

Africa using the local model. The bottom right cell displays the 

overall accuracy. The F1-score for non-burned is 87.4% and for 

burned 84.5%. 

 

Global Model 

          Class 

GT 

Non-Burned Burned Total Recall 

(%) 

Non-Burned 98 16 114 86.0 

Burned 2 84 86 97.7 

Total 100 100 200  

Precision (%) 98.0 84.0  91.0% 

Table 6. Confusion Matrix of ground truth (GT) and 

classification (Class) for the use case example in Central 

Africa using the global model. The bottom right cell displays 

the overall accuracy. The F1-score for non-burned is 91.6% and 

for burned 90.3%. 

 

 

Figure 4. Example of confusions with dry and rocky terrain and 

reliable classification of cloud shadow as non-burned in the use 

case example in Central Africa (RGB composition: 

B12/B8/B3). 

 

 

Figure 5. Segmentation of burned areas in Central Africa (RGB 

composition: B12/B8/B3). 

 

4. DISCUSSION AND FUTURE RESEARCH 

As observed in the spatial results, depending on the prevalence 

of different land cover types the performance is negatively 

affected. Misclassifications are observed for the burned area class 

when mangroves, urban areas or bare soil exist in the scene. 

These types of unburned areas have also caused problems in other 

segmentation approaches (Bettinger et al.).  Figure 6 shows 

example spectra of these land cover types in reference to a burned 

area spectrum. The plot displays a high similarity of the spectral 

responses between classes.  
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Figure 6. Example spectral signatures of burned areas and land 

cover types prone to misclassifications. 

 

As the sampling design is targeted towards burned areas to reduce 

class imbalance, and fires mostly occur in forested regions or 

grassland, most of the negative examples in the training dataset 

represent vegetation, which has a spectral signature that is very 

different from the presented examples (see Figure 7). This 

explains the network’s assignment of the affected pixels to the 

class with the most similar spectral reflectance, which in this case 

is burned.  

 

 

Figure 7. Example spectral signatures of unburned vegetation 

in comparison to burned area. 

 

To account for these shortcomings, the goal in the next step of 

this project is to put together an improved training dataset. The 

non-burned area samples should be more heterogeneous so the 

model can cope with the more ambiguous differentiations. This 

will enable an updated comparison of class accuracies and is 

expected to lead to more similar results between the burned and 

non-burned class. While scale and image constitution could be 

factors, we would additionally like to investigate the origin of the 

divergence of global and local model performances in the use 

case examples further.  

Other areas of future research include the implementation of k-

fold cross validation for the performance assessment of different 

model configurations to make it more robust against other 

random factors like weight initialization and shuffling of training 

data between epochs (Brownlee, 2017). Furthermore, the 

evaluation of this model against a benchmark would aid the 

assessment of the results.  

 

5. CONCLUSION 

In this study, a model for burned area recognition in mono-

temporal Sentinel-2 imagery from Indonesia and Central Africa 

was successfully developed. The established method uses a CNN 

for supervised segmentation of the target class that is based on 

U-Net, a network architecture specialized for segmentation 

problems with small training datasets. The neural network is 

trained from scratch with a customized training dataset for the 

research areas Indonesia and Central Africa. As the independent 

test identified some shortcomings in specific land cover classes 

the main goal in the continuation of this project is the design of 

an updated catalogue of training samples to support the 

successful differentiation of burned areas and the identified land 

cover types prone to confusions with it. Overall, the accuracy 

assessments demonstrate state-of-the-art performance of the 

developed model as well as the effectiveness of this combination 

of network and datasets for the designated regions. The 

application of the models on test data shows the global model’s 

ability to generalize despite the high dissimilarities between the 

two research areas, which proves the feasibility of using multiple 

local datasets within one common detection framework without 

implying a loss in accuracy. 
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