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ABSTRACT: 
 
Snow depth mapping in Alpine forests is of high importance for hydrogeology, ecology, tourism, and natural hazards prevention. 
Different remote sensing approaches have been employed for the precise mapping of snow depth within forests. However, optical 
sensors cannot provide below-canopy information. While Airborne Laser Scanning (ALS) systems have been used successfully in this 
context and allow obtaining data below canopies, the costs of acquisitions are very high, not allowing frequent data acquisitions. UAV-
based Lidar technology potentially can provide the critical below-canopy information at lower cost and allows for frequent acquisitions.   
First attempts to employ a UAV-based Lidar system in forests have proven promising, but they are limited to flat forests and to grid-
level snow depth calculations. In this study, we present UAV-based Lidar data of both flat and steep forests. Different Lidar processing 
workflows are analyzed and compared, and snow depth algorithms are used both at the point and the grid level. Whereas the UAV-
Lidar system proved capable of mapping snow in both environments, the steep forests' data processing comes with greater challenges, 
especially for the 3D registration, ground classification, and point-to-point snow depth calculations.  
 
 

1. INTRODUCTION 

Forests cover around 30% of the surface of Switzerland. 
Especially in Alpine regions, the snow dynamics and the 
snowpack properties affect ecology (Wipf et al., 2009), water 
resources (Farinotti et al., 2012; Thornton et al., 2021) and are 
relevant for snowmelt forecasts and tourism (Pütz et al., 2011). 
They are also important in the context of natural hazards such as 
avalanche prevention (Einhorn et al., 2015). 
 
However, mapping snow in forests remains a big challenge for 
remote sensing applications. Unmanned Aerial Vehicle (UAV)-
mounted optical sensors appear inefficient in mapping snow 
below canopies (Harder et al., 2020). Airborne Lidar Systems 
(ALS) show promising capabilities in mapping snow in forests 
within different scales and canopy types (Hopkinson et al., 2004; 
Currier et al., 2019). However, apart from the high cost of data 
acquisition, challenges related to the forested environment can 
underestimate the snow depths (Hopkinson et al., 2004). Also, 
data gaps below the canopy (Mazzotti et al., 2019; Broxton et al., 
2015) can limit ALS systems' application to map snow dynamics. 
UAV-based Lidar techniques potentially overcome the 
constraints of optical sensors by capturing both canopies and the 
sub-canopy snow surface at the same time. The feasibility of 
frequent scans of various scanning angles in contrast to the ALS 
systems leads to denser point clouds and differential snow depth 
grids of high spatial and temporal resolution. Only a few UAV-
based Lidar studies for forest snow mapping have been published 
(Harder et al., 2020; Jacobs et al., 2021). The challenges 
identified include accurate flight planning and the subsequent 
Lidar-related processing workflows. These challenges are 
accentuated in steep forested terrain due to the difficulties of 
operating UAV in such terrain. However, steep terrain typically 
leads to increased vertical inaccuracies for Lidar systems with 
larger laser beam footprints (Deems et al., 2013; Baltsavias et al., 
1999). For this reason, UAV-based Lidar has the potential to 
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generate snow cover datasets of higher quality than those that can 
be obtained by ALS in steep forested terrain, yet such an 
application has not been attempted yet. 
 
In this study, we present a UAV-based Lidar approach and 
compare snow mapping techniques over flat and steep forests. 
For the first time, we present UAV-based Lidar data obtained 
over steep slopes with a high resolution of 0.5m and forest snow 
depth extraction directly from the point clouds.  
The study's specific objectives are 1) to present Lidar data 
processing workflows for snow cover mapping in flat and steep 
forested terrain, and 2) to compare 3D registration algorithms and 
the snow depth mapping techniques applied individually to each 
case study. 
 
 

2. METHODS 

2.1 UAV acquisitions  

UAV-based Lidar data were acquired over a flat forest of 200 by 
200 m at Flin, Engadine, in the Eastern Swiss Alps in 2019. One 
snow-on data acquisition in late March and a snow-off 
acquisition in the middle of June were carried out. In 2020, data 
over two forested slopes of opposing orientation were collected 
over an area of the same extent in Flüela valley near Davos. Eight 
and thirteen snow-on flights over the north and south-exposed 
slopes were complemented by snow-off flights at the end of April 
and at the beginning of May, respectively.  
 
We used a Yellowscan Mapper II mounted on multicopter from 
Altigator SA. The Lidar system operates in the 905nm 
wavelength with a FOV of 100◦ and horizontal and vertical 
accuracies of 15 and 5 cm, respectively, and weighs 
approximately 3 kg (including battery). The multicopter can 
carry a payload of 12 kg. 
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The flight planning for both 2019 and 2020 combined four 
interlaced flying patterns for each acquisition to achieve higher 
point densities. Each flying pattern consisted of four scanning 
lines. The flying altitude was retained at 70-80 m above ground, 
aiming to follow the topography in the steep forest case, and the 
flight speed was set to 3m/s. These flying characteristics led to a 
mean point density of 30 points/m2 per scan with a maximum of 
two returns per pulse.  
 

 
Figure 1. Field sites of the steep (upper) and flat forests 

(lower). 
 
 
2.2 In-situ snow depth measurements 

In-situ snow depth measurements were acquired for both studies 
to validate the snow depth maps. In the flat forest case, snow 
probe measurements were acquired in five different transects 
within the forest with a one-meter spacing. The measurements 
took place after the snow-on flight so as not to disturb the snow 
surface. 74 snow probe measurements were acquired in total 
within the five transects.  
In the case of the steep forests, due to the difficulty in the 
accessibility of the sites and the need for in-situ snow 
measurements for each winter acquisition, we followed different 
procedures: We used five snow depth stakes that we installed at 
fixed locations within the forests. They remained in the fields 
during the whole winter and were removed after snowmelt.  
In addition to the snow depth measurements on the snow depth 
stakes, we placed three plastic hemispheres covered with 
reflective tape on the snow surface during every acquisition. The 
reflective tape could backscatter the incident beams of the Lidar 
in the wavelength of 905 nm. Therefore, the hemispheres could 
be identified on the point clouds (PCs) using the "intensity" value 
of each point that is automatically recorded by the Lidar system 
and saved as a scalar field on the PC. Absolute snow depths with 
a snow probe were measured in the centre of the hemispheres. 
The snow depth stakes and the hemispheres used provided 8 in-
situ snow measurements per acquisition. 
 
2.3 Post Processing Kinematic correction of the UAV 
trajectory   

The data from the inertial navigation system of the Lidar system 
that include both the IMU and GPS recordings were retrieved and 
converted into PCs using Yellowscan CloudStation (version 
1.18.0, licensed). 
For increased PC accuracy, the IMU and GPS data were further 
used to correct the raw UAV trajectory. This integrated forward 
and backward GNSS post-processing corrections, which were 
performed using the POSPac UAV software (version 8.3, 
licensed). We used the GNSS data from a base station from the 

Swiss Continuously Operating Reference Stations (CORS) 
network within 2km of the field sites. The Post Processing 
Kinematic (PPK) correction of the UAV trajectory led to position 
accuracies around 1-2 cm. The corrected trajectory was then 
exported as a Smoothed Best Estimated Trajectory (SBET) file 
and re-imported into the CloudStation to correct the PCs. This 
workflow was followed for all the data acquisitions of the flat and 
steep forests. 
 
2.4 Manual strip adjustment   

As a next step, for each acquisition, a strip adjustment quality 
check took place to evaluate the alignment of the four scanning 
lines. In some cases, even after the SBET-based post-processing 
of the PCs, there was a misalignment between neighboring 
scanning lines (hereafter strips). This can be related to 
uncertainties in calibration angles, unsuccessful initialization of 
the IMU, satellite loss, or heading drifts. 
We thus established a manual strip adjustment workflow that was 
applied in case of misalignments after the SBET-based post-
processing of the PCs. This workflow includes the selection of a 
random intersection of the two neighboring strips within the PC. 
The workflow took place on CloudCompare software (version 
2.11, open-source). One intersection remained fixed (reference), 
while the other was manually moved to register to the reference. 
The 3D transformation matrix was then extracted and applied to 
the whole strip. A quality check was done to evaluate if the 
transformation matrix was well applied to all the corresponding 
strips' points. The process was repeated using different 
intersections until the extracted transformation matrix was 
successfully applied to all the points. The workflow was applied 
separately for every two strips, and the result was one PC for each 
scan. 
The manual strip adjustment was mainly used for the steep forests 
data, where the higher alignment errors were identified within 
neighboring strips. For the flat forest, the SBET post-processed 
PCs yielded better strip alignment. Therefore, it was not needed 
to apply the manual workflow. 
  
2.5 Registration of the scans  

The strip adjustment quality check mentioned in section 2.4 was 
followed by the registration of each acquisition's four flying 
patterns (hereafter scans). The aim was to extract one PC per 
acquisition, combining all four scans for increased point density. 
For the data of the flat forest, the Iterative Closest Point (ICP) 
algorithm was used for the registration of the four scans as 
follows. 
 
For every two scans, the ground points of the overlapping parts 
were used for the ICP algorithm. The scans' registration per 
acquisition for the flat forest took place after the snow/ground 
classification (see section 2.6). The ICP algorithm was applied 
only to the snow/ground points. The vegetation points were 
excluded since the canopy point density was not satisfying 
enough for the ICP algorithm to operate adequately.  
After applying the ICP algorithm on the ground points of the 
overlapping parts of the two scans, the 3D transformation matrix 
was extracted and then applied to the entire PCs of the 
corresponding scans. The quality check included selection of 
random intersections within the PCs to evaluate whether the 3D 
transformation matrix was well applied to all the points. If not, 
the ICP algorithm was re-applied but in a smaller sub-sample of 
the points within the scans' overlapping part until the 3D 
transformation matrix led to satisfactory matching of all the 
points throughout the whole PCs. 
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This process took place for every two overlapped scans until all 
four of them were correctly registered to each other. The final 
result was one PC per acquisition. The ICP implementation, as 
well as the quality check, were performed using the 
CloudCompare software.  
Interestingly, the ICP algorithm could not be applied to the 
forested slopes' data as it led to large errors (see section 3.2.2). 
Alternatively, we performed a manual strip adjustment as 
described in section 2.4 using the whole scans instead of 
individual strips.  
 
The registered PCs derived from the application of the ICP and 
the manual adjustment workflow were further used for the 
snow/ground classification.   
 
2.6 Snow/Ground classification  

The registered PCs derived from the application of the ICP and 
the manual adjustment workflow were further used for the 
snow/ground classification, which is an essential step for creating 
the snow depth maps. It aims to separate the snow or ground from 
the vegetation points in order to extract the snow or bare earth 
surface. For this step, the lasground tool from LAStools software 
(academic version 198012, licensed) was used, which classifies 
points into ground and non-ground points. 
   
2.6.1 Ground classification at the flat forest 
 
In the flat forest case, for the snow-on PC, the lasground tool was 
used with the default parameters proposed for a flat natural 
environment (parameter set called "natural"). Additionally, we 
applied the setting “offset = 0.6 m”, which entails all points 
within this threshold from the initial ground-classified points to 
be classified as ground as well.  
 
For the snow-off PC classification, the lasground algorithm had 
to account also for the underlying low vegetation in the middle 
of June when the snow-off acquisition took place. The low-
vegetation points could be wrongly classified as ground points 
and therefore lead to an over-estimation of ground elevations in 
the DEM of the snow-off acquisition, which would result in an 
underestimation of the snow depths. Despite the "natural" and 
"step 5" parameters suggested for the flat forest, the offset 
parameter was set to 0.8 m to include all ground points. 
 
2.6.2 Ground classification at the steep forests 
 
The snow/ground classification workflow followed was different 
from the one used for the flat forest. In the case of the steep 
forests, the algorithm had to identify whether the differences 
between points occurred because the points are of a different 
class (i.e. capturing different surfaces), or due to the elevation 
difference.  
Since the south-exposed site was steeper than the north-exposed 
one, the vertical inaccuracies derived from the in-built Lidar 
configuration were higher. This constraint affected the selection 
of the lasground parameters for the snow-on PCs, which were 
then different from those used for the north-exposed slope. 
Regarding the snow-off PCs' ground classification, the algorithm 
had to account also for the low-vegetation points. Since the snow-
off acquisition for the north-exposed slope took place later than 
the south-exposed slope, the ground classification parameters 
used were different. 
 
For the snow classification, for the south-exposed slope, the 
offset parameter was set to 0.7 m. To remove all the spikes 5 m 
above or below the initial snow classified surface, we set the 

"spike" parameter equal to 5 m. To account for the forested 
environment, we used the parameter "nature," and in order to 
intensify the search of initial ground points due to the terrain's 
steepness, we added the parameter "hyper fine". With these 
selected parameters resulting from many iterations, we managed 
to separate the snow from the vegetation points even in the 
forest's steeper parts.  
For the snow classification of the north-exposed slope, the 
parameters remained the same as those for the south-exposed 
slope. The only difference was the offset that was set to 0.5 
instead of 0.7 m.  
 
Regarding the ground classification of the snow-off PCs, the 
lasground tool had to account for the low-vegetation points and 
the steepness of the terrain.  
For the south-exposed slope, we used the same parameters for the 
snow-on PCs. The offset in the case of the snow-off PC was set 
to 0.5 m.  
In order to remove the low-vegetation points, we additionally 
applied the lasthin tool. The ground classified points from the 
lasground tool were used on lasthin to keep only the percentile of 
30% of the elevations within a step of 10 cm, similar to Mazzotti 
et al. (2019). This "percentile 30" parameter aimed at retaining as 
ground points only the lowest points within the 30 % of the 
elevation values of all points within a step of 10cm.  This 
concluded to a thinner ground surface that most of the low-
vegetation points had been filtered out.  
 
For the north-exposed slope, the lasground parameters were the 
same as those for the snow classification, with the difference of 
setting the offset to 0.8 m. As in the south-exposed slope, the 
"percentile 30" option on lasthin tool was used to filter out the 
low-vegetation points within a step of 10cm.   
  
To evaluate the classification results for both flat and steep 
forests, we were visualizing the two classes via the 
"classification" scalar field assigned to the PCs during the 
classification process from lasground. Afterward, we took 
intersection within the classified PCs to evaluate whether the 
classification was efficient, especially in challenged parts, such 
as below-canopies. Not satisfying classification, including 
misclassified vegetation points or fluffy snow surface led us to 
change the lasground parameters. The evaluation process was 
repeated until we extracted satisfying classification results, 
including as less as possible misclassified points and thin summer 
ground surface.    
 
2.7 Snow mapping over the flat forested terrain 

The snow and ground classified PC were used for the creation of 
the snow depth maps. The workflow followed for the flat and 
steep forest was different.  
 
2.7.1 Cloud to Cloud (C2C) distance algorithm  
 
The distances between the snow-on and snow-off ground 
classified points were estimated using the Cloud to Cloud (C2C) 
distance algorithm on CloudCompare. The C2C algorithm uses 
the one PC as a "reference" and computes the Euclidean distances 
to the second one that acts as the "compared" PC. The 
identification of the closest point on the compared PC is based on 
the Hausdorff algorithm (Rockafellar and Wets, 2005).  
 
Before applying the C2C distance algorithm, we tested the 
relative position between the snow-on and snow-off PCs.  
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They are dependent on the geolocation inaccuracies between the 
acquisitions. These are relative to the initial processing (SBET 
post-processing, strip adjustment, and registration of the scans).  
Despite the precise application of the registration method at the 
strip or scan level (ICP or manual strip adjustment), the 
registration comes with errors from millimeters to centimeters, 
depending on the quality of the PC (density, noise) and the 
accuracy of the method used. Since there are inaccuracies at each 
processing level, the final PCs retain all the processing steps' 
errors. Consequently, it is important to assess the geolocation 
accuracies between the PCs. 
 
We used the groomed street on the field site to detect potential 
misalignments between snow-on and snow-off PCs. Since the 
groomed road was snow-free during the snow-on and snow-off 
acquisitions, the two PCs were expected to be finely registered 
along this road, which was indeed the case. Consequently, no 
additional registration was required. 
For the C2C distance algorithm, we used the ground classified 
snow-off PC as reference, and the Euclidean distances to the 
snow classified snow-on PC were computed.  The distances were 
stored as a new scalar field into the ground classified snow-off 
PC and gridded into a 0.5m spatial resolution raster to yield a 
snow depth map. For the gridding, we selected the average values 
of points falling within a pixel of 0.5 by 0.5m. The gridding was 
also performed using Cloud Compare without using any type of 
interpolation for gap filling purposes.  

 

 
Figure 2. Point Cloud-level processing workflow. 

 
 
2.7.2 DEM of difference (DoD) 
 
The second methodology, called DEM of difference (DoD) is 
based on the subtraction of two DEMs to create a new one. The 
two initial DEMs used for the subtraction are the snow-on and 
snow-off DEMs. The produced DoD is the snow depth map. 
This second approach acquires as first step the gridding of the 
ground points of the snow-on and snow-off PCs. 
The spatial resolution chosen for our study was 0.5m depending 
on the point density of the PCs. Finer resolutions of 0.2 and 0.3 
m were tested but yielded many data gaps. 
The PCs were gridded using the lasgrid tool from LAStools. Each 
pixel was given the average elevation value of all the ground 

points within an area of 0.5 by 0.5 m. The resulting elevation 
rasters were the DEMs of the snow-on and snow-off acquisitions. 
By subtracting the snow-off DEM from the snow-on DEM, we 
created the DEM of difference (DoD) in which each pixel 
represents the snow depth value.   

 
Figure 3. Snow depth grids extracted from DoD lasgrid and 

C2C algorithms. 
 
 

2.8 Snow mapping over the steep forested terrain  

The snow maps for the steep forested slopes were extracted using 
the before-mentioned DEM of difference (DoD) method. The 
C2C algorithm was initially tried on the data but yielded high 
errors due to the terrain's steepness (see section 3). 
 
The steep forests lacked snow-free features within the sites that 
would have allowed evaluation of the alignment of the snow-on 
and snow-off PCs. To assess and minimize geolocation errors, 
we could only use tree points to register different PCs. As we 
were flying during wind-free conditions and when the snow 
intercepted in the tree branches was limited, the trees were stable 
features within all the acquisitions. The points corresponding to 
the branches and the treetops were therefore used for applying 
different feature-based 3D registration algorithms: point-to-point 
manual alignment, ICP algorithm, and 3D transformation 
proposed by Ferraz et al. (2018) were applied to our data.  
The first two point-based methods did not identify pairing points 
in the trees (more details in section 3).    
Alternatively, we used the registration workflow proposed by  
Ferraz et al., (2018). Since this is a registration methodology 
based on the treetop positions within the scans that need to be 
registered, we first had to segment the treetops. 
We used the ITC segmentation package (itcSegment) integrated 
into R designed by Michele Dalponte (2018) to extract the 
positions of the treetops on the snow-off and each of the snow-
on PCs. The 3D optimal rigid transformation was followed based 
on the extracted rotation and translation matrices from the 
treetops' coordinates. The snow-off PC was used as reference, 
and as the registered one was used, the snow-on PC. This method 
proved to be also not applicable to our data (see section 3.2.2).  
Taking different transections within the different PCs, it was 
concluded that the geolocation errors within the different scans 
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existed only in some locations in the PCs' borders. This made the 
misalignments non-uniform between the PCs. Therefore, the 
geolocation errors could not be quantified through the 
transformation matrices that were extracted from the 
abovementioned registration methods. Considering this data-
related restriction, we proceeded in the snow depth gridding, 
acknowledging that those errors would be retained in the snow 
depth maps. 
 
2.8.1 DEM of difference (DoD) 
 
The ground classified points of the snow-on and snow-off PCs 
were gridded into rasters of 0.5m spatial resolution, using the 
average elevation value of all the points falling within an area of 
0.5 by 0.5 m using the lasgrid tool.  
The resulting grids were the DEMs of the snow-off acquisition 
was then subtracted from each of the snow-on DEM and the 
output DoD raster was the snow depth grid. The same procedure 
was followed for all the snow-on acquisitions for both slopes.  
 

 
Figure 4. Snow depth maps for the south (a) and north (b) 
exposed steep slopes. 
 
 
2.9 Snow depth maps validation 

The in-situ measurements acquired as described in section 2.2 
were used to validate the extracted snow depths maps. 
 
For the flat forest, a canopy height model (CHM) of 0.5m 
resolution was applied to the snow-off PC using the lasheight tool 
from LAStools. The lasheight tool was applied to the snow-off 
ground classified PC to estimate each point's relative height 
above ground. Therefore, all the ground points were assigned 
zero Z coordinate and the vegetation points were assigned as Z 
coordinate their relative height above ground. This relative height 
above the ground of the vegetation point represented the canopy 
height per point and was gridded into a 0.5 m pixel size raster  
The snow probe measurements' locations could be identified 
within the CHM by measuring their distances to the canopy 
edges. To compare point values with pixel values of an area of 
0.5 by 0.5 m, we created a buffer of 3 m around the estimated 
snow probe location/pixel in the CHM. The final snow depth 
value that we were using to compare with the snow probe 
measurement at the specific location was the mean value of all 
the pixels perpendicular to the identified snow probe location/ 
pixel on the buffer's snow depth maps.  
 
The RMSE between snow probe measured and Lidar-derived 
snow depth values were calculated for all the 74 locations within 
the five transects. The RMSE was calculated separately using 
both the C2C and DoD-derived snow depth maps and the results 
were compared to evaluate the efficiency of the two algorithms. 
For the steep forested slopes, a canopy height model was also 
calculated with 0.5m pixel size using the lasheight tool. The snow 
depth sticks' position could be identified within the point cloud 

of the 1st of April since the hemispheres were placed in the middle 
of each bamboo stick. Hence, the coordinates of their locations 
were derived from the PC. The coordinates were afterwards 
matched with the corresponding pixels on the snow depth maps. 
Hence, every stick's location was assigned to one pixel within the 
snow depth maps. 
The measured value on each stick as well as the measured snow 
depths on the middle of the hemispheres, were compared with the 
snow depth value of the corresponding pixel on the snow depth 
maps. These differences were expressed in terms of RMSE. 
Since the steep forests were characterized by more complex 
accessibility that limited the in-situ measurements as well as by 
the lack of snow-free areas that could act as a reference as 
described in section 2.8, we followed an additional validation 
step. The measured snow depth values on the sticks and on the 
hemispheres were used to apply a vertical offset to each of the 
snow depth grids. The offset was calculated as the average 
difference between in-situ and Lidar-derived snow depths at the 
corresponding pixels. 
 

  
Figure 5. Schematic workflow of all the processing steps 

followed until the extraction of the snow depths maps. In blue 
the algorithms for the flat forest and in green the one for the 

steep forests. 
 
 

3. RESULTS AND DISCUSSIONS 

3.1 UAV data acquisitions in forested environments 

The UAV operation in the forested Alpine environment proved 
challenging with respect to the UAV  flight planning, piloting and 
data processing. The flight planning in the steep terrain was much 
more demanding than that in flat terrain, as it required the 
adjustment of the flying altitude to the elevation changes at every 
location. In addition to the challenging UAV operation over steep 
forested terrain, the flying altitude adjustment forced the UAV to 
consume more battery capacity, resulting in a smaller surveyed 
area. In this terrain, restricted site accessibility due to avalanche 
danger also limited our capability to acquire ground-validation 
measurements, with further implications for data processing and 
evaluation (see section 3.3). 
 
3.2 Registration of strips and scans  

3.2.1 Evaluation of the manual strip adjustment  
 
The manual strip adjustment proposed in this study proved to 
work efficiently for registering overlapping scanning lines and 
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scans from different acquisitions. It can be applied alternatively 
when registration algorithms such as the ICP algorithm are 
inefficient due to low point densities, high noise, and limited 
spatial overlap. Note that this step demands many quality checks 
in different parts of the registered PCs after applying the 3D 
transformation matrix. Due to the lower accuracy of the Lidar 
system in the borders due to smaller overlapping areas and lower 
point densities, a transformation matrix derived from points in 
the middle of the PCs may not appropriately represent the 
borders. Therefore, a quality check including all the parts of the 
PCs is recommended.  
The increased error in the strip adjustment on the data steep 
forests that was observed can be due to the IMU's difficulty 
operating accurately when the UAV was changing elevations 
within two neighboring scanning lines to follow the topography.  
 
3.2.2  Evaluation of the PC registration algorithms on the 
steep forests 
 
As mentioned in section 2.8, both feature-based coarse and fine 
registration methods were used for the steep forests based on the 
tree points. Regarding the feature-based methods, the forested 
environments that were snow-covered and the lack of human-
made constructions did not allow us to apply feature-based 
algorithms that are using standard features as tie points (e.g., 
corners of the buildings). Therefore, we were restricted to the use 
of the tree points for the implementation of any registration 
algorithm. The point-to-point manual registration based on tree 
points selected by the user proved unable to assign a uniform 
transformation matrix to the whole PC.  
 
Regarding the fine registration algorithms, the ICP algorithm 
applied on the tree points could not effectively perform on our 
data. The ICP algorithm is highly dependent on the accuracy of 
the PCs in terms of noise and point densities. The ICP algorithm's 
inefficiency in operating on our data can be due to the low point 
density in the trees.  
This means that the algorithm could not correctly identify the 
pairing points on the trees due to the beam's very low possibilities 
to hit the exact same point at every scan. This was also why the 
manual point-to-point registration method did not work 
sufficiently well: It was difficult to identify precisely the same 
points in both PCs.  
 
The rigid 3D registration workflow proposed by Ferraz et al., 
(2018) was also not applicable to our data, despite its promising 
application in cases where stable features on the surface are 
missing. The vectors between corresponding points in the two 
scans did not have the same orientation through the whole PCs. 
This caused the inability of the used singular value 
decomposition (SVD)-based least-square fitting approach to 
extract a global rotation and translation matrix for the whole PC. 
The geolocation inaccuracies that we tried to quantify and 
minimize through scans were not uniform. The non-uniform 
inaccuracies within scans also restricted us from extracting 
differential snow depth grids. The mismatches in the relative 
positions between two consecutive scans were higher in the 
borders but difficult to quantify and eliminate. The non-
uniformity in the inaccuracies between scans can be due to the 
decreased accuracy of the Lidar IMU in the steep forests. 
 
3.3 Snow depths maps validation  

The snow-free pixels corresponding to the groomed road allowed 
the evaluation of the snow depths maps at the flat forest site. 
However, the road was occupying only a part on the east side of 
the forest. For the remaining areas, no snow-free features were 

present. Despite the snow probe measurements in the middle of 
the forest, there were no snow-free features in the west part of the 
field site, neither snow probe measurements were acquired. 
Therefore, the snow depth map quality could not be evaluated 
within the whole area of the project. That leads to the conclusion 
that the intensive in-situ measurements and the snow-free areas 
that can act as a reference for the extraction of the snow depths 
are of high importance in snow depth mapping studies. 
Additionally, the soil during June was wet due to the already 
started snow melting. This introduced a systematic error in the 
snow probe measurements due to the probe's penetration into the 
soil. This error could not be quantified and therefore subtracted 
from the snow depth values as we did in the case of the snow 
depth stakes. Yet, despite the use of the average snow depth 
values of all the pixels within the 3m buffer to achieve the best 
representation of the snow probe measurements, the comparison 
between values in specific locations with the averaged values of 
an area of almost 3 m2  introduced inaccuracies.  
 
The same limitations in the validation process occurred in the 
steep forested slopes, mainly because of the limited number of 
validation measurements (only 8 per acquisition) due to the 
accessibility restrictions. The inaccuracies introduced by the 
comparison between snow depth values at specific locations with 
areas of 0.25m2 were more substantial in the steep than in the flat 
forest due to the complex micro-topography. Therefore, we 
placed the snow depth sticks in comparably flat locations with 
limited micro-topography, so that the snow depths were expected 
to be uniform around these areas.  
 
3.4 Snow/ground classification  

While the snow/ground classification was revealed to be one of 
the major challenges for both of our studies, the classification in 
the case of the steep forests was significantly more complicated. 
This was due to the integration of the increased vertical 
inaccuracies of the Lidar system on top of the IMU performance. 
In the case of the steep forests, the lasground algorithm had to 
deal with the elevation changes within each step. More precisely, 
it had to identify whether the different elevations for points 
within the same cell are due to the steepness of the terrain or 
because they belong to different classes (ground/snow or 
vegetation). 
The IMU-related inaccuracies that were increased in the steep 
forests, despite the ground classification procedure, led to fluffy 
snow and ground surface. To address this, a thinner snow/ground 
surface is recommended to be created to include only the snow 
points into a "median" snow surface, as proposed by Martin 
Isenburg (2021). This workflow is analysed by Koutantou et al. 
(in preparation), where we present a snow/ground classification 
workflow for reducing the fluffiness of the snow surface, using 
the same data over the steep forests. 
For the flat forest, the classified snow/ground surface was 
characterized by much less fluffiness. This can be associated with 
the better IMU performance, already noticed on the strip 
adjustment processing step. Therefore no extra processing step, 
including the thinning of the classified ground/snow surface was 
applied to the data of the flat forest.  
 
3.5 Evaluation of the snow depth algorithms and snow depth 
grids 

3.5.1 The case study of the flat forest  
 
As presented in figure 6, based on the R2 values, both C2C and 
DoD methods resulted in snow depths close to the in-situ 
measured. The RMSE for all the 74 points within the five 
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transects is between 10-19 cm for the C2C and between 5-18 cm 
for the DoD method. 
We see that in most transects, the lasgrid snow depths are closer 
to the in-situ ones. The C2C distance algorithm calculates 
Euclidean distances between identified pairing neighboring 
points. The Euclidean distances differ from the actual (vertical) 
distances that correspond to snow depths, and this explains the 
differences between in-situ and C2C-derived snow depths. Low 
densities can cause the identification of wrong neighboring 
points. 
 

 
 

 
 
Figure 6. Linear correlations and RMSE for snow depths derived 
from C2C and DoD lasgrid algorithm. The different colors 
correspond to the five different transects. 
 
Figure 7 reveals that for one transects within the forest, both C2C 
and DoD snow that depths increase when moving from the 
canopy edges towards the open gaps. The same was noticed for 
the rest of the four transects. Also, the in-situ snow depth values 
in most locations are bigger than those extracted from both 
algorithms. This overestimation is probably due to the systematic 
error imposed by the snow probe's penetration into the soil. Both 
C2C and DoD methods proved to work in flat forests and 
complement the results based on studies in open sites 
 

 
Figure 7. Snow depths within a transect, comparing in-situ 

observations with measurements derived from the PC's using 
different methodologies 

 

3.5.2 Steep forests 
  
The C2C distance algorithm yielded high errors in the case of the 
steep forests. The data in the steep forests have increased low 
noise in addition to low point densities. Additionally, due to the 
terrain's steepness, the differences between estimated (Euclidean) 
and actual distances are even higher (figure 8).  

 
Figure 8. Effect of the slope on the estimation of the  C2C 

Euclidean distances.  
 
Alternatively, we used the local modeling technique on 
CloudCompare on the reference-snow-off PC to have a better 
model around the identified nearest point and extract distances 
closer to the actual (vertical) ones. Similarly, we also applied the 
cloud-to-mesh (C2M) distance algorithm on CloudCompare. 
Both the local modeling and the mesh-based methods showed 
high errors especially in the forests' steeper parts and areas with 
lower densities, such as close to the canopies. More advanced 
point-based algorithms, such as multiscale model-to-model cloud 
comparison (M3C2) have not been tested yet in steep forested 
terrain to our knowledge A first attempt to apply the M3C2 
plugin on CloudCompare in our data was made with the default 
parameters. The algorithm's performance was similar to the 
performances of the C2C, local modeling and point-to-mesh 
methods. A more advanced application of the M3C2 algorithm 
still needs to be tested and evaluated in steep forests. 
 
Therefore, the grid-based snow depth extraction in steep terrain 
is more robust than point-based algorithms. Depending on the 
selected gridding resolution and the gridding value (i.e., an 
average of all elevations), it can lead to satisfying results. The 
DoD technique is the most common one for snow mapping 
studies, and our conclusion is compatible with studies already 
conducted in open sites. Lower resolutions could also eliminate  
part of the noise during the snow/ground classification process.  
 
Validation measurements of the absolute and relative snow depth 
values between Lidar-derived snow depth grids and in-situ 
measured showed an RMSE of 4-16cm for both steep sites (figure 
9) before implementing the offset. The implemented offset that 
was used reduced the RMSE at every snow depth stake location, 
as expected. 
 

 
 

Figure 9. Snow depths before and after the application of the 
offset for the south (a) and north (b) exposed slopes. 
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The snow depth maps for the two forested slopes provide 
interesting data to investigate the distribution of the snow 
patterns relative to the canopy structure and topography 
(Koutantou et al., in preparation). 
 
 

4. CONCLUSIONS 

This study presented the first application of UAV-based lidar 
specifically aimed at assessing its performance for mapping snow 
depth on flat versus sloped forested terrain. UAV-based Lidar 
proved to be an efficient technology in capturing snow depths 
below canopies in flat and steep forests with a fine-scale of 0.5 
m. Mapping steep forests included more challenges, from the 
accessibility of the sites to the data post-processing workflows at 
the point cloud and grid levels. Higher vertical inaccuracies are 
identified for the data over steep forests even after the PPK post-
processing of the IMU and GPS data. The lower quality of the 
IMU performance in the steep forests imposed limitations in the 
strip adjustment and in the snow/ground classification processes. 
 
Comparing the 3D registration algorithms used, the manual strip 
adjustment introduced in our study worked efficiently in both 
terrains. Coarse and fine registration algorithms that were applied 
alternatively on the treetops of the steep forests were inefficient 
due to lower point densities and low noise that made the 
identification of pairing points very difficult. Regarding the snow 
depth mapping, both C2C and DoD methods worked efficiently 
in the flat forest, with the DoD performing better. Evaluating the 
C2C algorithm in steep terrain for the first time yielded high 
errors due to the above-mentioned data restrictions (low densities 
and surface fluffiness). Thus, the grid subtraction method (DoD) 
proved to be more robust over steep terrain. Overall, our results 
confirmed UAV lidar as a promising tool for forest snow 
mapping in complex forested terrain, but they also revealed that 
many technical challenges still need to be overcome.  
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