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ABSTRACT: 

The observation of Arctic sea ice is of great significance to monitoring of the polar environment, research on global climate change 

and application of Arctic navigation. Compared to optical imagery and SAR imagery, passive microwave images can be obtained for 

all-sky conditions with high time resolution. However, the spatial resolution of passive microwave images is relatively low (6.25 km 

- 25 km) for the observation of detailed sea ice characteristics and small-scale sea ice geographical phenomena. Therefore, in this paper,

considering the suitability of different alignment and fusion strategies to the characteristics of passive microwave images of sea ice,

two multi-images deep learning super-resolution (SR) algorithms, Recurrent Back-Projection Network (RBPN) and network of

Temporal Group Attention (TGA), are selected to test the effects of SR technique for passive microwave images of sea ice. Both

qualitative and quantitative comparisons are provided for the SR results oriented from two algorithms. Overall, the SR performance of

TGA algorithm outperforms RBPN algorithm for the passive microwave images of sea ice.

1. INTRODUCTION

The observation of Arctic sea ice is of great significance to 

monitoring of the polar environment, research on global climate 

change and application of Arctic navigation (Serreze and Stroeve, 

2015). Data from a variety of satellite sensors, including optical 

satellite images, passive microwave images, and synthetic 

aperture radar (SAR) images have been employed to observe 

polar sea ice. Although optical images, such as Moderate 

Resolution Imaging Spectroradiometer (MODIS), Medium 

Resolution Imaging Spectromete (MERIS), and Advanced Very 

High Resolution Radiometer (AVHRR), have high temporal-

spatial resolution, they are often contaminated by cloud, even no 

available images can be obtained due to poor atmospheric 

conditions (Petrou et al., 2018). SAR images, such as Sentinel-1 

(Xian and Tian, 2017), have high spatial resolution, but limit to 

the small swath and low temporal resolution, resulting in mass 

data processing when producing Arctic sea ice characteristics.  

Passive microwave images, such as the Special Sensor 

Microwave Imager (SSM/I) on the series of satellites of Defense 

Meteorological Satellite Program (DMSP), the Advanced 

Microwave Scanning Radiometer-EOS (AMSR-E) on Aqua 

satellite of the National Aeronautics and Space Administration 

(NASA) Earth Observation System (EOS), and the Advanced 

Microwave Scanning Radiometer 2 (AMSR2) on the Global 

Change Observation Mission 1st - Water "SHIZUKU" (GCOM-

W1), are important data sources for Arctic sea ice observation 

with the advantages of  wide coverage, high temporal resolution, 

strong surface penetration ability and all-weather work (Petrou et 

al., 2018). Among them, AMSR2 is one of the representative 

passive microwave sensors that has been observing sea ice since 

2012, it has more frequency bands and relatively high spatial 

resolution (Han and Kim, 2018). Although AMSR2 can provide 

daily coverage of the entire Arctic, its typical spatial resolution 

of around 6.25-25 km makes it difficult to monitor small leads 
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and ridges, and it is prohibitively coarse for some fine-scale 

application, such as detailed characteristics of sea ice, and small-

scale geographical phenomena (Agency and Project, 2013; 

Wagner et al., 2020). 

Considering the high cost and limitations of increasing the 

resolution through “hardware”, especially for large scale imaging 

equipment like AMSR2, signal processing methods, known as 

SR techniques, have become a potential way to improve 

resolution of images (Yue et al., 2016). SR techniques, which 

refers to the process of recovering high resolution (HR) images 

from one or sequence low-resolution (LR) images, is an 

important technique in computer vision and image processing. 

According to the input number of LR images, the SR techniques 

can be divided into single-image SR (SISR) and multi-image SR 

(MISR) (Dong et al., 2016). Compared with SISR, MISR 

methods have the advantage of combining spatial and temporal 

information from sequence images (Wang et al., 2019). 

Traditional MISR methods based on spatial and frequency 

domain, are not only unable to deal with complex motions but 

also have problems with huge computation (Tom and 

Katsaggelos, 1995; Li et al., 2001; Daithankar and Ruikar, 2020). 

From 2015, MISR techniques based on deep learning (DL-MISR) 

have begun to be developed and been applied in natural images 

with good performance (Liu et al., 2020). DL-MISR uses deep 

neural networks to construct motion estimation and fuse the 

complementary information of sequence images to obtain HR 

images. The latest existing DL-MISR methods not only make full 

use of temporal information, but also deal with complex motion 

state. When there is a large amount of sample data to train the 

model, DL-MISR is more computationally efficient, saves time 

and cost, which is very suitable for batch data processing and has 

strong application value for the SR task of the same type of low-

resolution images.  
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At the same time, the passive microwave images have the 

characteristics of "more and less", that is, because AMSR2 circle 

the earth one times a day, the amount of image data that is 

repeated multiple times in the same polar sea ice area is huge 

(Agency and Project, 2013). These data can serve as the data set 

for the training DL-MISR model. 

 

Therefore, in this paper, we analysis existing DL-MISR methods. 

Considering the suitability of different alignment and fusion 

strategies to the characteristics of passive microwave images of 

Arctic sea ice, RBPN (Harris et al., 2019) and TGA (Isobe et al., 

2020) are selected and adopted to test the effectiveness of DL-

MISR applied for AMSR2 images of sea ice. Both qualitative and 

quantitative evaluation on experimental results are compared and 

analysed. 

 

2. METHODOLOGY 

MISR basically consist of three modules, including alignment 

module, fusion module, reconstruction module as shown in Fig.1 

(Liu et al., 2020). The alignment module extracts motion 

information from sequence frames to reference frame, which 

concerns on the spatial transformation applied to misaligned 

images. The fusion module refers to combining complementary 

information from the aligned images and fusing them into a 

feature map. Reconstruction module transforms the aggregated 

features to the final output image by deconvolution or subpixel 

convolution layers. 

 

Alignment module and fusion module could always lead to a big 

swing in terms of performance and efficiency (Chan et al., 2021). 

Therefore, we chose DL-MISR method mainly to consider the 

applicability of these two modules for characteristics of passive 

microwave images and polar sea ice movement. The sea ice 

motion in the Arctic region is complex, which includes rigid 

motions of drifting and rotating in different directions and speed, 

as well as non-rigid motions of melting, freezing and 

disintegration. On the other hand, there are also large motions 

due to both seasonal and regional impacts (Tschudi et al., 2010; 

Maeda et al., 2020). In addition, there are some noise and 

unreliable values on passive microwave images. 

 

For alignment module, Motion estimation and motion 

compensation methods (MEMC) and deformable convolution 

methods (DCN) are two common alignment strategies. Both 

MEMC and DCN may be able to handle the complex sea ice 

motions. But DCN such as Temporally Deformable Alignment 

Network is difficult to train and may smooths out high-frequency 

details (Tian et al., 2018; Wang et al., 2019). Some early MEMC 

methods such as Detail-revealing deep network are easy to 

generate artifacts, which lead to inconsistencies between image 

sequences (Liao et al., 2015; Kappeler et al., 2016; Liu et al., 

2017; Tao et al., 2017). Therefore, we select RBPN model, a 

MEMC model based on optical flow. Compared with other 

MEMC methods, the back projection module of RBPN adopts an 

iterative error-correcting feedback mechanism to calculate both 

up- and down-projection errors for minimizing the feature map 

error. It actually reduces artifacts and temporal inconsistencies to 

a certain extent (Haris et al., 2018).  

 

For fusion module, existing DL-MISR methods fuse features 

through direct concatenating (Huang et al., 2015; Sajjadi et al., 

2018) or temporal and spatial attention (TSA). Considering that 

the information provided by different adjacent frames is not equal 

due to occlusion or blurring, TSA calculates a weight map to each 

neighbouring frame, so it is better than direct concatenating. 

Therefore, we select the TGA model based on TSA fusion (Isobe 

et al., 2020), it makes full use of complementary information 

across frames to recover missing details for the reference frame. 

In addition, the strategy of group fusion is also adopted in TGA. 

 
Figure 1. The general flowchart of deep learning methods for DL-MISR. (Liu et al., 2020) 

2.1 RBPN 

 

The RBPN network consists of three parts as Fig2: Initial feature 

extraction, Multiple Projections, Reconstruction. Initial feature 

extraction makes compensation based on optical flow. It 

calculates neighbor feature tensors {Mt-3; : : : ; Mt+3} using  

precomputed dense motion flow maps{Ft-3; : : : ; Ft+3} ,the 

reference frame {It} and each neighbouring frame {It-3; : : : ; It+3}. 
Multiple Projections extracts missing information through an 

encoder-decoder structure. Encoder part includes MISR block 

(input is coming from the vertical red line direction) and SISR 

block (input is coming from the horizontal blue line direction) to 

obtain high feature maps {Ht-3; : : : ; Ht+3} as Fig2 shows. It also 

performs back-projection from Lt-n-1 obtained by decoder part to 

Mt-n to produce the residual map. Finally, Reconstruction 

concatenates all HR feature maps and obtains HR images by a 

simple convolutional layer (Haris et al.,2019).
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Figure 2. Sketch map of RBPN (Haris et al., 2019)

2.2 TGA 

TGA adopts a fast spatial alignment method. It estimates 

homograph between every two consecutive frames and warps 

neighbouring frames to the reference frame so it can handle 

images sequences with large sea ice motion. Since homograph 

transformation is a global, TGA keeps the structure better and 

introduces few artifacts. Considering that the contributions of 

neighbouring frames in different temporal distances are not equal, 

TGA designs temporal grouping. For each group, an intra-group 

fusion module is employed for feature extraction and fusion. 

Every intra-group fusion module is equipped with dilation rate to 

model the motion level associated with a group. To better 

integrate features from different groups, a temporal attention 

module is introduced. It works as a guidance to efficiently 

aggregate information across different temporal groups and 

produces a high-resolution residual map (Isobe et al., 2020). The 

final SR output is obtained through a sub-pixel convolution layer. 

 
Figure 3. Sketch map of TGA (Isobe et al., 2020)

3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 DATA 

The training dataset comes from the AMSR2 passive microwave 

sensor on the GCOM-W1 polar orbiting satellite platform in the 

global change observation mission of the Japanese aviation 

research and development agency. This series of satellites carry 

out long-term (10-15 years) detection of the earth and provide 

observational data for the study of the global water cycle and 

climate change mechanisms. The current observations on water 

are carried out by the ASMR2 mounted on the water cycle 

variation observation satellite launched in 2011. AMSR2 obtains 

images with higher resolution than the other passive microwave 

sensors at more frequencies. It has the largest antenna diameter 

(approximately 2 meters) of the observation sensor for carrying 

satellites, and can achieve a high-speed rotation of 40 times per 

minute, sweeping along the arc of the earth's surface, and 

searching the earth day and night in two days (Agency and 

Project, 2013). 
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AMSR2 can capture and measure microwaves from the ground 

and ocean in seven frequency bands (6~89HZ). The final 

products of the AMSR2 have five types: Level 0, Level1B, 

Level1R, Level2, and Level3.In particular, the Level 1B 

brightness temperature swath data of horizontal polarization and 

vertical polarization at 89 GHz is selected because it has the 

highest spatial resolution (5×5 km). As Fig. 1 shows, all swath 

AMSR2 data of one day is gridded to obtain daily average 

passive microwave brightness temperature data with the polar 

stereographic grids of the National Snow and Ice Data Center 

(NSIDC) at 6.25 km as real true images. To produce LR images, 

we downscale the HR images four times with bicubic 

interpolation at 25 km. The experimental images cover 30° N to 

90° N, and -180° W to 180° E, including the entire Arctic region. 

The images acquisition time range is from 2013 to 2016. The 

dataset contains a total of 33,600 image sequences, of which 

30,660 are used for training and 2.940 are used for evaluation. 

Each image sequence consists of 7 adjacent images, and the 

image size is cropped to 256×256 pixels. In addition, we use data 

augmentation technology such as rotation, mirror, and random 

cropping to expand the training set to improve the generalization 

ability of the model. 

 

3.2 Implementation and training details 

In this experiment, we convert the format of passive microwave 

images from GEOTIFF to PNG, which is more suitable for 

network. The original brightness temperature is stored as 16bit 

value. In all our experiments, we adopt with a 4× sampling factor  

to evaluate the different methods. Before fed into networks to 

train models, the input data is normalized. 

 

The hyper-parameters of RBPN are set as follows: the network 

uses kaiming initialization and Adam optimizer, the loss function 

is L1 loss per-pixel between the predicted frame and the ground 

truth HR frame. The learning rate is 0.0001 for all layers and 

decreases by a factor of 10 for half of total 150 epochs. The batch 

size is set to 4. The RBPN model is trained under the environment 

of Ubuntu 16.04 + NVIDIA GTX 1080GPUs*2 + Python3.5 + 

CUDA9.2 + pytorch 1.0 for two days. 

 

TGA is supervised by pixel-wise L1 loss as well and optimized 

using kaiming initialization and Adam optimizer with β1 = 0.9 

and β2 = 0.999. Weight decay is set to 0.0005 during training. 

The learning rate is initially set to 0.0001 and later down-scaled 

by a factor of 0.1 every 10 epochs until 50 epochs. The batch size 

of TGA is 8. TGA model is trained under the environment of 

Ubuntu 16.04 + NVIDIA GTX 1080 GPUs*2 + Python3.6 + 

CUDA9.2 + pytorch 1.2 for one days. 

 

3.3 Analysis of the super-resolution results 

Evaluation index: the image quality evaluation indexes used in 

this experiment are full reference image quality evaluation 

indexes: peak signal-to-noise ratio (PNSR) and structural 

similarity (SSIM) (Daithankar and Ruikar, 2020). 

 

The larger value of the PSNR only indicates the smaller the gap 

between the image to be reviewed and the reference image but 

also the better the image quality. The formula of PNSR is as 

follows: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑔
655352

1
𝑀𝑁

 ∑ ∑ |𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)|2𝑁
𝑗=1

𝑀
𝑖=1

                               

 
 

(1) 

 

Where     M, N = image width and height 

Figure 3. Daily average passive microwave brightness 

temperature data with the polar stereographic grids of NSIDC 

 

X(i,j) = the pixel value of original image 

Y(i,j) = the pixel value of SR image  

 

SSIM measures image similarity from brightness (equation (1)), 

contrast (equation (2)) and structure (equation (3)). The SSIM 

value range is (0,1). Higher value indicates a smaller distortion 

of the image. It can better reflect the subjective feelings of the 

human eye. 

l(X, Y) =
2𝜇𝑋𝜇𝑌 + 𝐶1

𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1
 

 

(2) 

c(X, Y) =
2𝜇𝑋𝜇𝑌 + 𝐶2

𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶2
 

 

(3) 

s(X, Y) =
𝜕𝑋𝑌 + 𝐶3

𝜕𝑋𝜕𝑌 + 𝐶3
 

 

(4) 

 

SSIM = l(X, Y) ∗ c(X, Y) ∗ s(X, Y) 

 

(5) 

 

Where     X, Y=Original image, SR image 

𝜇𝑋 , 𝜇𝑌 =the mean value of image X and Y 

𝜕𝑋, 𝜕𝑌= the variance of image X and Y 

𝜕𝑋𝑌= the covariance of image X and Y 

C1, C2, C3 = (0.01∗65535)2, (0.03∗ 65535)2, C2/2  

 

The quantitative comparison is given in Tab. 1. TGA algorithm  

has a better performance on both evaluation indexes especially in 

terms of SSIM. In addition, the results of vertical polarization 

image are slightly better than that of horizontal polarization. 

Fig. 4 shows two subregions of passive microwave images of 

Arctic sea ice including LR images, SR images of two model  

and HR images. Sub-region A in Fig. 3 mainly includes different 

sea ice texture, and sub-region B includes sea ice and sea water. 
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It’s obvious that there are finer boundaries and more detailed 

texture after DL-MISR. It seems that TGA generates more 

detailed edge while SR results is smoother. But RBPN maintains 

the consistency between LR and SR better than TGA. In addition, 

both two DL-MISR introduces less noise. 

 

 

Table 1. Quantitative evaluation of RBPN and VSR-TGA SR 

results. 

 

4. CONCLUSION 

Considering the suitability of different alignment and fusion 

strategies to the characteristics of passive microwave images of 

sea ice, two DL-MISR methods, namely RBPN and TGA, are 

applied to the passive microwave images of sea ice, which can 

improve the spatial resolution of passive microwave images and 

obtain finer boundaries and more details. The TGA not only 

performs better on quantitative evaluation but also generates finer 

boundaries and more detailed texture than RBPN. However, 

RBPN keeps the consistency between LR and SR well. Overall, 

TGA might be more suitable method to improve the resolution of 

passive microwave images to observe Arctic sea ice. In the 

further, we will optimize the model according to the 

characteristics of sea ice motions and the applicable scene of 

different strategies of alignment and fusion module. In addition, 

we will make more detailed analysis and evaluation of SR 

process and experimental results. 

 

 
（a）LR                    （b）RBPN                                 （c）TGA                    （d）GT 

Figure 4. The top and bottom lines are SR results of subregion A and B in Fig. 3. (a) original LR images, (b) SR results of RBPN, (c) 

SR results of TGA, (d) Ground truth 
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