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ABSTRACT: 

 

Automatic detection, segmentation and reconstruction of buildings in urban areas from Earth Observation (EO) data are still 

challenging for many researchers. Roof is one of the most important element in a building model. The three-dimensional 

geographical information system (3D GIS) applications generally require the roof type and roof geometry for performing various 

analyses on the models, such as energy efficiency. The conventional segmentation and classification methods are often based on 

features like corners, edges and line segments. In parallel to the developments in computer hardware and artificial intelligence (AI) 

methods including deep learning (DL), image features can be extracted automatically.  As a DL technique, convolutional neural 

networks (CNNs) can also be used for image classification tasks, but require large amount of high quality training data for obtaining 

accurate results. The main aim of this study was to generate a roof type dataset from very high-resolution (10 cm) orthophotos of 

Cesme, Turkey, and to classify the roof types using a shallow CNN architecture. The training dataset consists 10,000 roof images 

and their labels. Six roof type classes such as flat, hip, half-hip, gable, pyramid and complex roofs were used for the classification in 

the study area. The prediction performance of the shallow CNN model used here was compared with the results obtained from the 

fine-tuning of three well-known pre-trained networks, i.e. VGG-16, EfficientNetB4, ResNet-50. The results show that although our 

CNN has slightly lower performance expressed with the overall accuracy, it is still acceptable for many applications using sparse 

data. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Buildings are the most important structural component of cities 

in many aspects. Building measurement and analysis have been 

used for many applications, such as urban planning, land 

management or climate change monitoring (Alidoost et al., 

2019). 3D City models in LoD2 (Level of Detail 2) or higher 

levels include roof geometries that can be used in 3D GIS 

applications, such as solar potential estimation, quality 

evaluation and verification of existing data, roof reconstruction, 

and enhancing the LoD0/LoD1 data with the roof type attributes 

(Biljecki and Dehbi, 2019). A building roof type classification 

approach can be utilized for model-driven 3D building 

reconstruction, which also reduces the dependency for a digital 

surface model (DSM) (Partovi et al., 2017).  

 

Deep learning (DL) and convolutional neural networks (CNNs) 

have contributed to the improvements in both photogrammetry 

and remote sensing tasks such as classification, 3D 

reconstruction change detection, object racking and extraction 

dramatically (Heipke and Rottensteiner, 2020). There exist 

different approaches in literature for roof type classification 

using the DL methods. Axellson et al. (2018) used low 

resolution photogrammetric point clouds from aerial imagery 

using deep CNNs (DCNNs) for roof type classification and roof 

height estimation. Partovi et al. (2017) utilized WorldView-2 

pansharpened multispectral satellite image of Munich city, 

Germany, with 50 cm spatial resolution for roof type 

classification using VGG-Net model (Simonyan and Zisserman, 

2015). Alidoost and Arefi (2016) have developed a model-

based approach for automatic recognition of roof types using 

convolutional neural networks using LiDAR (Light Detection 

and Ranging) data and aerial images. Mohajeri et al. (2017) 

employed Support Vector Machine (SVM) classifier and 

LiDAR data for classifying six different roof types using a total 

of 10,085 roofs in Geneva, Switzerland; and obtained 66% 

overall accuracy. Qin et al. (2019) evaluated DCNN on the 

panchromatic and multispectral sensor (PMS) imagery of 

Gaofen-2 satellite in dense urban areas for image segmentation 

and obtained 94.67% accuracy. They also stated that DCNNs 

are promising for building mapping from very high resolution 

imagery in dense urban areas with different roof patterns.  

 

Bittner et al. (2019) experimented Conditional Generative 

Adversarial Network (cGAN) using very dense DSM with 50 

cm resolution generated from Worldview-1 satellite imagery for 

roof type classification in their study. Castagno and Atkins 

(2018) proposed a method for labelling and classifying roof 

types with an automatic approach using different type of 

supervised machine learning and DL methods by fusing LiDAR 

and satellite imagery. Assouline et al. (2017) used LiDAR data 

and the random forest method for classifying building rooftops 

for large-scale solar photovoltaic deployment and obtained an 

average accuracy of 67%. Another prominent dataset used for 

similar tasks was provided by (Rottensteiner et al., 2012) within 

the ISPRS building reconstruction and urban classification 

benchmark. The dataset consisted of high resolution (8 cm) 

aerial imagery and airborne laser scanning data (6 points/m2) for 
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building, tree detection and 3D building reconstruction. The 

benchmark results were presented by (Rottensteiner et al., 2014) 

and the common problems of the state-of-the-art methods were 

discussed. 

 

In this study, we present a dataset with 10 cm resolution for 

urban roof type classification that consists of 10,000 roof 

images categorized in six commonly used roof types, which can 

also be used for segmentation or building reconstruction. A 

shallow CNN architecture was evaluated with the dataset and 

compared with the results achieved by three state-of-the-art pre-

trained CNN models, which were fine-tuned with the study 

data. We achieved overall accuracy values between 80%-86% 

the shallow CNN and one pre-trained models. 

 

2. DATA PREPARATION 

In this study, orthophotos with 10 cm spatial resolution, which 

were produced from a total of 4468 aerial images taken with 

80% forward overlap and 60% lateral overlap using UltraCam 

Falcon large-format digital camera, were utilized to prepare the 

training data. The building footprint vectors were manually 

delineated from the stereo models during a mapping project by 

operators (photogrammetry professionals) (Buyukdemircioglu 

et al., 2018).  Since the building footprints do not contain 

attribute information and often differ from roof boundaries; a 

visual comparison by overlaying the orthophotos and the 

building footprints was performed to manually adjust the roof 

border vectors, and to include the roof type attribute 

information for each vector. The roofs that are completely or 

partially covered by trees or shadows were also visually 

checked, and were not included in the dataset. A roof library 

with six different commonly types (flat, hip, halfhip, gable, 

pyramid, complex) was populated for classification. A view of a 

roof polygon before and after the manual editing (adjustment) is 

given in Figure 1. 

 

 
 

Figure 1. Building roof polygon before (left) and after (right) 

manual adjustment.  

 

When creating dataset, a balance between the different roof type 

classes was sought as much as possible. Yet, due to the different 

numbers of instances for each roof type in the study area, 

classes such as halfhip and pyramid have lower number of 

samples than the others. The class sample distribution of the 

dataset is presented in Table 1. 

 

Roof 

Type 

Training 

(72%) 

Validation 

(18%) 

Test 

(10%) 
Total 

Complex 1620 405 225 2250 

Flat 1260 315 175 1750 

Gable 1260 315 175 1750 

Hip 1260 315 175 1750 

Pyramid 1080 270 150 1500 

Halfhip 720 180 100 1000 

 

Table 1. The distribution of the class samples used in the study. 

In the next step, the roof images were clipped automatically 

from the orthophotos by using the vector data. Since there are a 

total of 927 orthophotos in the study, a roof may be located at 

the border of an image, and thus covered by multiple 

orthophotos. Therefore, an orthophotos mosaic was produced 

prior to clipping with the same resolution (10 cm). The roof 

images were then clipped and classified based on their roof type 

attributes from the mosaic using the FME software (Safe 

Software, 2021) and stored in individual folders for each class. 

The pixel values outside the roof polygons were stored as 

“NoData”. Sample roofs from all classes are given in Figure 2. 

 

3. METHODOLOGY 

The DL based methods, especially the CNNs, exhibit great 

prediction performances on image classification tasks. To train 

a CNN model from the scratch means finding optimal values for 

the large quantities of parameters. The number of parameters 

depends on the model design, and the modeling is only possible 

if there is sufficient amount of training data. The sufficiency of 

the data for model training in a CNN architecture is problem 

specific. In this study, we developed a CNN architecture for the 

roof type classification task. In order to compare the prediction 

performance of our CNN with the state-of-the-art architectures, 

we modified the pre-trained EfficientNet (Tan and Le, 2019), 

ResNet (He et al., 2016) and VGG-16 (Simonyan and 

Zisserman, 2015) models and fine-tuned them for the roof type 

classification task using the study dataset. For the training step, 

the generated roof images were split into train, validation and 

test data (72%, 18% and 10% respectively) to be used as input 

for the CNN models. Python 3.8 with the open source DL 

library Tensorflow 2.4 environment was used to train the deep 

CNN using the generated roof images for the six classes. Since 

the DL methods in general require large amount of data for 

obtaining accurate results, a data augmentation technique was 

also employed in the study while training the CNN to increase 

the accuracy and to prevent from overfitting. We also used data 

augmentation with horizontal flip, vertical flip, zoom (0.1) and 

rotation (0.1) while training the CNN models. As the last step, 

we compared the classification results and the accuracy of the 

different CNN models for performance assessment using 

precision, recall, F1-score, and accuracy values. The details of 

our shallow CNN and the pre-trained models are explained in 

the following sub-sections. 

 

3.1 Roof Type Classification using Shallow CNN Model 

The shallow CNN architecture implemented here includes 

312,550 trainable parameters. The batch size parameter was 

chosen as 64. There are five convolutional blocks in the 

architecture (Figure 3). A 3x3 kernel filter size was chosen for 

the convolutional layers (Conv2D). The default pool size (2x2) 

was used in the pooling layers (MaxPooling2D, 

GlobalAveragePooling2D). The batch normalization (Ioffe and 

Szegedy, 2015) with the momentum of 0.01 was used to prevent 

from overfitting. We used global average pooling layer instead 

of flatten layer to reduce the parameter size. Adam optimizer 

(Kingma and Ba, 2015) with a learning rate of 0.0003 was used 

with the categorical cross entropy loss. The model was trained 

for 150 epochs. A more detailed view of the model is given in 

Figure 3.  
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Figure 2. Roof type class samples in the study area (Cesme, 

Turkey). 

 
 

Figure 3. An overview of the generated CNN model 

 

3.2 Roof Type Classification using Transfer Learning 

Fine-tuning is a method, which freezes the base model of a 

previously trained network with massive amount of data (e.g. 

millions of images), and trains only the selected top layers of 

the network with the study data. The approach helps to 

overcome weak performance problems of the CNNs trained 

with smaller datasets and to ensure that the model is more 

relevant for the study area.  In this study, we modified and fine-

tuned three deep CNNs, such as VGG-16, EfficientNetB4 and 

ResNet-50, which were pre-trained on ImageNet (Deng et al., 

2009) for image classification tasks. The fully connected layers 

of the three networks were replaced with the new fully 

connected layer block designed and implemented in this study. 

The batch size of the models was chosen as 64, and the 

categorical cross entropy was used as loss function. The Adam 

method was used as optimizer. After the replacement, the 

modified networks were configured in order to train the new 

fully connected layer block for 10 epochs. In this configuration, 

the layers of the base networks, i.e. EfficientNet, ResNet and 

VGG-16, were configured as non-trainable; and only the fully 

connected layer block of each network was configured as 

trainable. After 10 epochs, the last layers of the base networks 

were configured as trainable and the whole networks was re-

trained for 50 epochs.  

 

4. RESULTS AND DISCUSSIONS 

The performance evaluation metrics used the study were F1-

Score, precision, recall and accuracy. A total of 1,000 roof 

images were employed as test data, which were randomly 

selected from the 10,000 samples. The classification results are 

presented and discussed in the following subsections in detail. 

 

4.1 Performance of Shallow CNN Model 

The shallow CNN model implemented here achieved 80% 

accuracy as the overall performance from the test set as shown 

in Table 2.  In the table, the precision, recall, F1-score and the 
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weighted and macro averages of the accuracy values obtained 

from all classes are also presented. In the support column, the 

numbers of test samples in each class are given. According to 

the results, the flat roof type, which has relatively uniform 

geometric and spectral properties, has the highest precision and 

F1-score values. The precision of the complex roof type class 

was in the second place. This type also has the highest number 

of samples in the dataset. The least F1-score was obtained from 

the half-hip roof type, which also has the smallest number of 

test samples. 

 

Roof Type Precision Recall F1-score Support 

Complex 87% 80% 83% 225 

Flat 89% 84% 86% 175 

Gable 76% 86% 81% 175 

Halfhip 74% 62% 67% 100 

Hip 78% 75% 76% 175 

Pyramid 73% 86% 79% 150 

     

Accuracy   80% 1000 

Macro avg. 79% 79% 79% 1000 

Weighted avg. 80% 80% 80% 1000 

 

Table 2. Classification performance results of the shallow CNN 

model implemented in the study. 

 

4.2 Performance of Fine-tuned VGG-16 

The VGG-16 (Simonyan and Zisserman, 2015) model achieved 

92.7% accuracy with top-5 score in ImageNet Benchmark, 

which is a dataset of 1000 different classes with more than 14 

million images. The VGG-16 model architecture is given in 

Figure 4. The classification results obtained from the fine-tuned 

VGG-16 model in this study are presented in Table 3. The 

overall classification accuracy obtained from the model was 

86%. Here, the pyramidal roof types exhibited the highest 

precision and F1-score values. The half-hip roof type again 

yielded to lower prediction performance in comparison to the 

other classes. 

 

 
 

Figure 4. VGG-16 model architecture (Simonyan and 

Zisserman, 2015). 

 

Roof Type Precision Recall F1-score Support 

Complex 90% 80% 84% 225 

Flat 81% 93% 86% 175 

Gable 90% 84% 87% 175 

Halfhip 82% 80% 81% 100 

Hip 83% 92% 87% 175 

Pyramid 94% 89% 91% 150 

     

Accuracy   86% 1000 

Macro avg. 86% 86% 86% 1000 

Weighted avg. 87% 86% 86% 1000 

 

Table 3. Classification performance results of the fine-tuned 

VGG-16 architecture. 

 

4.3 Performance of Fine-tuned EfficientNetB4 

EfficientNet (Tan and Le, 2019) is a model developed by 

Google for scaling up CNNs by increasing number of layers for 

classification tasks. Most of the CNN models arbitrarily scales 

network dimensions, where EfficientNet uniformly scales each 

dimension with a fixed set of scaling coefficients. The model 

balances network depth, resolution and width for better 

performance. The EfficientNet model architecture is given in 

Figure 5. The classification results obtained from the fine-tuned 

EfficientNetB4 model are provided in Table 4. This model 

yielded to an overall accuracy of 83%, whereas the class with 

highest F1-score was pyramidal as in VGG-16. The precision 

values obtained from the halfhip and the complex roof types 

were equally high (85%), and followed by the pyramid type 

(84%). 

 

 
 

Figure 5. EfficientNet model architecture (Tan and Le, 2019). 

 

Roof Type Precision Recall F1-score Support 

Complex 85% 77% 81% 225 

Flat 82% 83% 83% 175 

Gable 79% 88% 83% 175 

Halfhip 85% 81% 83% 100 

Hip 82% 81% 81% 175 

Pyramid 84% 89% 87% 150 

     

Accuracy   83% 1000 

Macro avg. 83% 83% 83% 1000 

Weighted avg. 83% 83% 83% 1000 

 

Table 4. Classification performance results of the fine-tuned 

EfficientNetB4 architecture. 

 

4.4 Performance of Fine-tuned ResNet-50 

The ResNet-50 (He et al., 2016) is a CNN model, which is 

commonly used in many DL and computer vision studies. The 

model was the winner of the ImageNet challenge in 2015. The 

ResNet allows users to train very DCNNs with hundreds or 

thousands of layers with high performance. The ResNet-50 

model architecture is provided in Figure 6. The classification 

performance results of the fine-tuned ResNet-50 model in this 

study is provided in Table 5. The results show that an overall 

accuracy of 85% was obtained from the model, which is slightly 

inferior to the VGG-16 results. Similar to the VGG-16, the 

pyramidal roof types exhibited the highest precision and F1-

score values. On the contrary, the halfhip roof type also exhibit 

high precision and F1-score and placed as second. 

 

When the overall results were evaluated, it can be said that the 

pre-trained model exhibit higher prediction performances due to 

the very high number of training data used in the model 

building phase. On the other hand, our shallow CNN model also 

exhibited high accuracy even though the training data was 

sparse. The model can be tuned further for increasing the 

prediction performance. 
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Figure 6. ResNet-50 model architecture (He et al., 2016). 

 

Roof Type Precision Recall F1-score Support 

Complex 86% 79% 82% 225 

Flat 84% 85% 85% 175 

Gable 82% 88% 85% 175 

Halfhip 89% 85% 87% 100 

Hip 81% 86% 83% 175 

Pyramid 90% 88% 89% 150 

     

Accuracy   85% 1000 

Macro avg. 85% 85% 85% 1000 

Weighted avg. 85% 85% 85% 1000 

 

Table 5. Classification report of fine-tuned ResNet-50 

 

5. CONCLUSIONS AND FUTURE WORK 

In this study, a roof type dataset compiled from very high 

resolution aerial imagery was generated for automatic roof type 

classification tasks. We defined six different roof types 

including complex, flat, gable, hip, halfhip and pyramid in the 

dataset. A shallow CNN model was also implemented in the 

study and its prediction performance was investigated by 

comparing with three different pre-trained CNN models, i.e. 

VGG-16, EfficientNetB4, and ResNet-50. The pre-trained 

models were fine-tuned here prior to the comparison. The 

highest roof type classification accuracy was obtained from the 

fine-tuned VGG-16 model (86% overall accuracy). The shallow 

CNN implemented here yielded to 80% overall accuracy. The 

fine-tuned models help to overcome performance problems of 

smaller datasets. The ranking of the class accuracy values 

obtained from the four models were not uniform, such as the 

halfhip type yielded the lowest accuracy with the VGG-16 

model and one of the highest with the ResNet-50 model.  

 

The classification results show that initial results of the method 

were promising, but can be improved further by using more 

data. Although the accuracy of the used models was 

comparable, the pre-trained models achieved slightly higher 

performance than the implemented shallow CNN. The quality, 

the resolution and the total number of the generated roof 

patches for training are very important for obtaining satisfying 

performances. As planned work, we will focus on improving the 

results of developed shallow CNN, improve the training dataset 

with images from different data sources and study areas, and 

expand the classification with new roof type classes. Since the 

success rate of transfer learning results is also satisfactory, we 

plan to fine-tune some other popular pre-trained CNNs with the 

same dataset and evaluate their performances as well. 
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