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ABSTRACT: 

 

Characterization and seasonal (periodic) monitoring of plant species distribution in the context of former industrial activity is crucial 

to assess long-term anthropogenic footprint on vegetated area. Species discrimination has shown promising results using both 

HyperSpectral (HS) and MultiSpectral (MS) images. Airborne HS instruments enable high spatial and spectral resolution imagery 

while time series of satellite MS images provide high temporal resolution and phenological information. This paper aims to compare 

supervised classification results obtained with non-parametric (Random Forest, RF, Support Vector Machine, SVM) and parametric 

methods (Regularized Logistic Regression, RLR) applied on both kinds of images acquired on an industrial brownfield. The studied 

site is a complex vegetated environment due to species diversity: 8 dominant species are retained. The performance obtained by 

preliminary feature selection based on principal component analysis and vegetation indices, to improve separability of spectral or 

temporal information according to species, is analysed.  The best performance is obtained by RLR method applied on HS data 

without feature selection (global accuracy of 93 %). Feature selection is found to be a necessary step to perform classification with 

time series of MS images. Species that are difficult to distinguish from the HS image, namely Salix and Populus, are well separated 

using Sentinel-2 images (precision around 70%).   
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1. INTRODUCTION 

Anthropogenic activities can result in various kinds of 

environmental footprint including soil contamination. Since soil 

contaminants, such as hydrocarbons or heavy metal, can 

damage biodiversity by impacting the plant physiology 

(Lassalle et al., 2019) and species spatial repartition and 

assemblage (Oniya et al., 2019), it is of first importance to 

know the distribution of species growing in a context of former 

industrial activity. 

HyperSpectral (HS) imaging is a widely explored topic that 

proved to be suited to vegetation classification. Indeed, such 

images detect subtle spectral differences in relation to 

biophysical and biochemistry vegetation traits specific to 

species (Fassnacht et al., 2016) or assemblages of species in 

case of complex species communities (Burai et al., 2015). Used 

in conjunction with dimension reduction techniques, machine 

learning algorithms are among the most efficient methods to 

perform vegetation classification (Gewali et al., 2018). Support 

vector machine or random forest algorithms usually lead to the 

best model performance (Guidici, Clark, 2017). Applied on HS 

images with spatial resolutions from 1 m to 5 m, these methods 

make it possible to classify 4 to 8 trees species with accuracies 

varying between 60 % and 90 % (Fassnacht et al., 2014; Dabiri, 

Lang, 2018; Richter et al., 2016) as well as complex alkali 

vegetation with more than 79 % of accuracy (Burai et al., 2015). 

Nevertheless, dimension reduction techniques do not always 

improve results (Dalponte et al., 2012) and can make their 

interpretability very challenging (Fassnacht et al., 2016). 

Studies have also shown that considering the phenology of the 

vegetation tends to improve classification accuracy (Fassnacht 

et al., 2016). Using this, MultiSpectral (MS) satellites like 

Sentinel-2 with high temporal resolution enable the 

development of efficient classification (Macyntre et al., 2020). 

Even if spectral and spatial resolutions are generally lower on 

images captured with such instruments, the exploitation of 

plants’ phenology by machine learning algorithms provide 

performance up to 90 % on tree species (Denisova et al., 2019; 

Clark et al., 2018) and up to 74% on homogeneous shrubs 

vegetation (Macyntre et al., 2020). 

A few studies comparing the efficiency of a single-date HS 

image with time series of MS images for tree classification have 

demonstrated that similar or even higher accuracies can be 

derived from the latter (Clark, 2020; Griegorova et al., 2020). 

However, these studies are limited to tree species classification 

and compare results obtained with MS and HS instruments with 

the same range of spatial resolution (10-30 m).  

Our objective is thus to compare classification results obtained 

by machine learning methods applied on airborne HS imagery 

with very high spatial resolution and temporal series of MS 

satellite image Sentinel-2 in a brownfield site. The brownfield is 

a complex vegetated environment owing to various kinds of 

vegetation and strata, from tall trees to low-layer vegetation 

such as grass. Here, the vegetation classes include single species 

(e.g., for trees) and assemblage of species (e.g., grass mixture). 

 

 

2. STUDY SITE 

The study area was an industrial brownfield located in a 

temperate region covering approximately 2.45 km². Part of the 

site was exposed to activities for over 20 years that resulted in 

different kinds of impacts on soil and vegetation. Since then, 

vegetation had colonized most of the area (Figure 1).  

Vegetation was mainly made of deciduous trees, shrubs, and 

grassland among which fourteen species or assemblage of 

species were identified. The same species were also studied at a 
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non-impacted site with similar soil properties located next to the 

brownfield (Figure 1). 

 

 

Figure 1. Industrial brownfield (surrounded in red) and 

reference site (surrounded in blue) extracted from BD 

ORTHO® 25 cm. 

 

3. MATERIALS 

3.1 HyperSpectral images 

HS radiance images were acquired over the study area in the 

absence of cloud using HySpex cameras in July 5, 2017.  

These images have a spatial resolution of 1 and 2.5 m and a 

spectral resolution of 5.2 and 7.8 nm in the visible-near-infrared 

(VNIR: 400-1000 nm) and short-wave infrared domains (SWIR: 

1000-2500 nm) respectively. The SWIR image was registered to 

the VNIR image using the Gefolki algorithm and resampled to 

1-m spatial resolution using a nearest neighborhood filter to 

provide a hypercube covering the VNIR-SWIR domain (Brigot 

et al., 2016). Because of the lack of knowledge about the 

composition of the local industrial atmosphere, the spectral 

radiances were converted to spectral reflectances using the 

Empirical Line Method (ELM) (Smith, Milton, 1999). A 

Savitsky-Golay filter was then applied to the image to improve 

Signal-to-Noise Ratio (SNR) (Erudel et al., 2017). Finally, 

bands within the interval 500-2500 nm with atmospheric 

transmission below 80 % were not retained due to their low 

signal-to-noise ratio. The processed image was then a 

georeferenced spectral reflectance hypercube composed of 227 

spectral bands. 

 

3.2 MultiSpectral images 

MS images were acquired from the Sentinel-2 satellites in 2017. 

Images were selected only if they were cloud-free 

georeferenced, surface reflectance images (correction level 2A) 

available on the Theia platform (Theia, 2021). One image per 

month obtained from Sentinel-2A (S-2) satellite was kept 

(Table 1). Finally, spectral bands with a spatial resolution of 20 

m were resampled at 10-m with a nearest neighborhood filter. 

 

 

 

 

 

 

 

 Sentinel 2A HySpex 

Band 

number  

8 227 

Spatial 

resolution 

10 m 1 m  

Time 

frequency 

1 date per month 1 date 

Selected 

dates 

01/26; 02/25; 03/10; 

04/19; 05/26; 06/18; 

07/18; 08/14; 09/23; 

10/23; 11/22; 12/25 

 

07/05 

Table 1. Characteristics of preprocessed images 

 

3.3 In-field data 

A field survey was carried out at the brownfield and reference 

site in November 2020 (Figure 1). Species and locations were 

used to construct a GIS with manual delineation on BD 

ORTHO® 25 cm resolution images.  

From the initial fourteen identified species, 8 species, or 

assemblage of species for grasses, were considered as classes 

because of their predominance. The number of pixels extracted 

from images of each class is noted down in table 2.  

 

Dominant genus 

or mixture of 

species 

HS pixels MS pixels 

Ref. Imp. Ref. Imp. 

Platanus (Plat.) 2487 18771 18 106 

Salix (Sal.) 321 1125 16 13 

Populus (Pop.) 4046 1678 131 31 

Acer (Ace.) 375 0 16 0 

Quercus (Que.) 326 1265 12 12 

Reynoutria (Rey.) 609 1022 8 8 

Rubus (Rub.) 1567 4012 12 36 

Grass mixture 

(Gra.) 

625 1341 8 24 

Table 2. Predominant species on each area and corresponding 

pixel number for MS and HS images (Ref.: reference site; Imp.: 

impacted site). 

 

On the HS image, the most represented classes were Platanus, 

with a total of 21258 pixels followed by Populus and Rubus 

(more than 5000 pixels), Grass mixture, Reynoutria, Quercus, 

Salix (more than 1000 pixels) and finally Acer with only 375 

pixels. MS pixels per class were far below these numbers. Only 

Platanus and Populus classes were represented by more than 

100 pixels. Other species only had a maximum of 48 pixels 

(Rubus) and a minimum of 16 pixels (Acer and Reynoutria). 

Even if Acer trees were only found in the reference area, this 

class was kept to evaluate false alarms. 
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4. METHOD DESCRIPTION 

Non-parametric machine learning algorithms which usually 

performed well for species classification (Burai et al., 2015; 

Fassnacht et al., 2016; Erudel et al., 2017; Macyntre et al., 

2020), such as Support Vector Machine algorithm (SVM), 

Random Forest (RF) and Regularized Logistic Regression 

(RLR) classifier, were compared. Feature extraction and 

selection methods, such as Principal Component Analysis 

(PCA) and Vegetation Indices (VI) were considered to solve the 

Hughes phenomenon and to increase species specificity 

(Hughes, 1968). Evaluation metrics (confusion matrix, overall, 

user’s, producer’s accuracies) were compared to define the most 

performant method. The analyse was led by class to characterize 

the contribution of each kind of information (spectral or 

temporal).  

All classifications were performed using Python scikit-learn 

package (Pedregosa et al., 2011). The different stages of the 

method are detailed in sections 4.1 to 4.4  

 

4.1 Training and testing sets build 

It was proven that dependent training and testing sets led to 

biased results (Gewali et al., 2018). To ensure independence, 

three subsets were considered according to their corresponding 

area (reference site, impacted site, or entire area representing 

reference and impacted sites). This division allowed confronting 

different classification scenarios (Table 3). 

First, training and testing sets were defined at the polygon scale, 

to ensure better independence, over the entire site with a ratio of 

50%. Since polygons were different in number of pixels and 

illumination conditions, these classification scenarios were 

performed 5 times (Pelletier et al., 2019). Then, training was 

computed on polygons of the reference site and evaluation on 

those of the impacted site.  

 

4.2 Feature selection 

Feature selection was suited for each data type (MS and HS).   

Principal component analysis (PCA) is a feature extraction 

method often used for the reduction of spectral bands. PCA 

reduces redundancy across features by projecting them into a 

lower-dimensional space in which the variance over the dataset 

is preserved (Jolliffe, Cadima, 2016). In our case, PCA was 

exploited both on time series of MS images, by computing it for 

each date, and on the HS image. The resulting features were a 

group of virtual bands highlighting variance over vegetation. 

Their variations underlined phenology changes with 

multitemporal exploitation (Macyntre et al., 2020). Components 

with higher noise levels were removed by visual inspection. 10, 

20 or 40 principal components were retained for the HS image. 

The PCA applied on the MS multitemporal images led to 2 

components to explain 98% of variance.  

Spectral vegetation indices are arithmetic operations on spectral 

bands or their transformations. They provide information on 

vegetation characteristics, such as its physical state or its 

biochemistry, due to bands sensitivity to specific traits 

(chlorophyll content, biomass…) (Xue, Su, 2017). Exploited 

from a temporal perspective, they also allow to identify 

differences in phenology across vegetation (Beck et al., 2007). 

Here, different indices were tested on the time series of MS 

images. Vegetation indexes suited for Sentinel-2 temporal series 

and efficient for vegetation characterization in an impacted area, 

namely the Normalized Difference Vegetation Index (NDVI), 

the Plant Senescence Reflectance Index (PSRI), and the 

Inverted Red-Edge Chlorophyll Index (IRECI) were computed 

alone and combined (Fabre et al. 2020). Since only vegetation 

was classified in this study, two NDVI variations, the Green 

Normalized Difference Vegetation Index (GNDVI) (Gitelson, 

Merzlyak, 1998) and the Wide Dynamic Range Vegetation 

Index (WDRVI) (Gitelson, 2004), and an index linked with 

chlorophyll content in leaves (Lichtenthaler et al., 1996) were 

also tested. GNDVI is more sensitive to chlorophyll 

concentration than NDVI and adapted to tall and dense 

vegetation like trees (Gitelson, Merzlyak, 1998). WDRVI is 

another NDVI variation designed to be sensitive to changes in 

leaf area index (LAI) under conditions of high density. This led 

to several classification scenarios summarized in Table 3. 

 

Images 

(number) 

Training Test Data input 

HySpex  

(1) 

Reference Impacted Spectral  

sig. 

PC 

 

Entire 

area 

(50% of 

polygons) 

 

Entire 

area 

(50% of 

polygons) 

Spectral  

sig. 

PC 

Sentinel-2  

 

- monthly  

(12) 

 

-seasonal 

(4) 

 

Reference Impacted Spectral  

sig. 

PC 

 

VI 

 

Entire 

area 

(50% of 

polygons) 

Entire 

area 

(50% of 

polygons) 

Spectral  

sig. 

PC 

VI 

Table 3. Scenarios of classification (PC: Principal Components, 

Spectral sig.: Spectral signature, VI: Vegetation Index). 

Individual or combined VI are used.  

 

4.3 Algorithms and parameters 

A part of the pixels extracted from the training polygons was 

used to set parameters with grid search by 10-fold cross-

validation. These pixels represented 20%, 50%, 80% of the 

training polygons and are called in the next “sample size”. 

Because of unbalanced classes, training weights were defined as 

inversely proportional to class frequencies to penalize mistakes 

on the minority classes.  

 

4.3.1 Support Vector Machines (SVM) 

SVM is a non-parametric classifier that relies on constructing a 

hyperplane that maximizes the margin of separation between 

two classes. To create that hyperplane, the original feature space 

is projected on a higher dimensional space where classes are 

linearly separable by a kernel function. Since these algorithms 

are designed for binary classifications, multiple class problems 

are managed with one-against-rest or one-against-one and 

voting strategies (Vapnik, 1998).  

Two kernels were tested (linear, Gaussian (rbf)) with a 

multiclass strategy of one-against-rest. Many values of the C 

parameter, which corresponds to the regularization strength, 

were evaluated: C ∈ {1, 10, 100, 500, 1000, 5000, 10000}. The 

kernel size, defined by the γ parameter, was tested for γ ∈ 

{0.0001, 0.001, 0.01, 0.1, 1}. 
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4.3.2 Random forest (RF) 

RF is a non-parametric ensemble algorithm. The main idea 

consists of using a set of regression trees, a weak classifier with 

high variance and low bias, created with a bagging approach 

(multiple draws of training samples with replacement) to 

improve classification performance. Nodes within a tree are 

defined to split data using the best predictor possible among a 

defined number of features. Then, the class decision is taken by 

averaging probabilities obtained within all trees (Breiman, 

2001).  

The number of decision trees in the forest was here set among 

{100, 200, 500, 1000, 2000, 5000} with a number of considered 

features equal at maximum to the square root of the number of 

features and a maximum depth of the tree varying in {2, 3, 5, 

10, 15, 20, 25, 30, 40} (Belgiu, Dragut, 2016).  

 

4.3.3 Regularized logistic regression (RLR) 

RLR classifier is based on logistic regression with an additional 

regularization term, called the penalty. In this study, the 

penalties confronted were the ℓ1-norm and the ℓ2-norm. 

Logistic regression with ℓ1 regularization, also called lasso 

regression, controls the selection of variables used during 

classification whereas ℓ2 logistic regression, or ridge 

regression, handles collinearity between variables (Prospere et 

al., 2014). Many values of the C parameter, which corresponds 

to the regularization strength, were tested: C ∈ {0.01, 0.1, 1, 5, 

10, 50, 100, 500, 1000, 5000}. 

 

4.4 Classification accuracy evaluation 

For each classifier, parameters with best overall accuracy (OA), 

which evaluates the number of correct classifications over all 

classifications, across the 10-fold cross-validation were selected 

and evaluated on the test set with several metrics based on a 

confusion matrix.  

User’s accuracy (UA), also called precision, can be defined as 

the fraction of relevant classes retrieved when produce’s 

accuracy (PA), or recall, is the fraction of retrieved classes that 

are relevant. Both scores could be resumed with the F1 score 

(1). In the case of entire area scenarios, mean and standard 

deviation scores were calculated.  

 

                                  (1) 

 

Results were then analysed regarding spectra derived from 

polygons. For each class, median spectra, and mean spectra 

were calculated.  

 

 

5. RESULTS 

5.1 HS classifications 

5.1.1 Training performance 

The overall accuracies over the training sets are given in Table 

4. High accuracies were obtained for all scenarios using spectral 

signatures and with all classifiers. Changing sample sizes did 

not change parameters returned by the 10-fold cross-validation. 

Random forest was outperformed by other algorithms in these 

scenarios even with optimized parameters (Figure 2). Other 

classifiers were statistically similar in terms of accuracies and 

variance. The PCA led to a decrease of around 2 % of the global 

score regardless of the retained component number.  

 

 

Figure 2. Mean performance with RF for different parameters 

(sample size = 20%; training: entire area).  

 

Training Entire area 
(mean of 5 iterations) 

Reference area 

Classifier Spectral  

sig.   

Spectral  

sig.   

RF 92 91 

SVM-linear 96 98 

SVM-rbf 97 98 

RLR-ℓ1 97 98 

RLR-ℓ2 96 97 

Table 4. Mean overall accuracies obtained during cross-

validation for the different classifiers with sample size of 20%  

 

5.1.2 Performance assessment 

The overall accuracies over the testing sets are given Table 5. In 

all scenarios, RLR provided the best results in terms of accuracy 

whatever the training set. PCA led to a small decrease in 

classification performance (decrease between 2 and 5 % 

according to the classifier).   

 

Site Entire area 
(mean of 5 iterations) 

Impacted area 

Classifier Spectral  

sig. 

Spectral  

sig. 

RF 87 61 

SVM-linear 93 76 

SVM-rbf 93 74 

RLR-ℓ1 93 87 

RLR-ℓ2 93 80 

Table 5. Overall accuracy of different classifiers for different 

HS scenarios. 

 

With training on the entire area, all algorithms provided high 

accuracies. The main misclassifications were for the Quercus 

class, for which approximatively 30 % of pixels were classified 

as Populus. Figure 3 shows the intraclass standard deviation for 

the two classes furthest apart in Euclidean distance, Populus 

and Reynoutria (distance of 0.11 in reflectance) and the closest, 

Populus and Quercus (distance of 0.006 in reflectance). Due to 

the high intra-class variance (Figure 3), many overlaps were 

observed between classes, explaining the remaining errors. 
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Figure 3. Mean spectrum and intra-class standard deviation for 

the two most distant classes and the two closest classes in 

Euclidean distance. 

 

Training algorithms over the reference area and evaluating them 

over the impacted one led to a general decrease of classification 

accuracy (ranging from 6% with RLR- ℓ1 to 26% with RF). The 

most impacted classes were Salix, Populus, and Rubus (Table 

6).  
 

 Plat Sal Pop Ace Que Rey Rub Gra 

Plat 17656 0 348 6 0 15 285 14 

Sal 3 107 882 0 0 0 133 0 

Pop 92 10 1477 27 24 0 46 2 

Ace 0 0 0 0 0 0 0 0 

Que 19 0 569 0 675 0 2 0 

Rey 36 1 45 4 2 784 125 25 

Rub 108 23 117 16 75 81 3572 20 

Gra 0 0 541 0 0 16 0 782 

Table 6. Confusion matrix obtained with RLR- ℓ1 for 

assessment on the impacted area. See species in Table 1. 

 

While Salix trees were well-classified in the first scenario, only 

10% were then recognized, mainly due to confusion with 

Populus. This confusion can be explained by spectral 

differences observed between areas for these species (Figure 4). 

  

 

Figure 4. Mean spectral signatures of Salix and Populus over 

the reference area (unfilled points) and over the impacted area 

(filled points). 

 

Indeed, in the NIR domain (750-1300 nm), Salix average 

spectrum was under the one of Populus on the reference area. 

On the impacted area, their relative positions were exchanged. 

Salix’s mean spectrum was then above the Populus one. 

Moreover, Salix average spectrum corresponding to the 

impacted area was superimposed on that of Populus on the 

reference area for the entire SWIR domain. Same variations 

were observed for Reynoutria and Rubus on the whole 

spectrum. While the mean reflectance of Reynoutria was lower 

than the one of Rubus in the reference area, it was higher in the 

impacted one. Some false alarms were observed for Acer, which 

was only present in the training area (Table 1). Finally, 

Quercus’s mean spectrum was extremely close to the Populus 

one on the reference area, explaining misclassifications obtained 

in all scenarios (average Euclidean distance of 0.0045 in 

reflectance while it was 0.015 on the impacted area). 

 

5.2 MS classifications 

Since numerous combinations were tested for multitemporal 

scenarios, only those with important results are presented in this 

section.  

 

5.2.1 Training performance 

Even if overall performance was under those obtained with HS 

scenarios, training still led to high accuracies (Table 7). 

However, changing the sample size and the classifier strongly 

impacted the results. In contrast to the HS scenario, 

classification based on logistic regression was less effective 

than those based on SVM and RF. To reach a performance of 

the order of those obtained with HS (around 90 % with a sample 

size of 20 %), it was necessary to use the RF or SVM classifier 

and an important training set size. Parameters returned during 

cross-validation were systematically the same as those issued 

from HS only with a sample size of 80 %.  

Nonetheless, due to the small number of pure pixels available 

on Sentinel-2 spatial resolution, variance in term of parameters 

and scores were far more important than that of the HS training 

set while applied on 50 % of polygons of the entire area.  

 

 

Training Reference area 

Training 

size 

20% 50% 80% 

RF 70 86 91 

SVM-linear 65 78 83 

SVM-rbf 66 86 89 

RLR- ℓ1 58 70 71 

RLR- ℓ2 54 59 61 

Table 7. Mean overall accuracy obtained during cross-

validation on reference area for different training sizes with 

monthly spectra. 

 

5.2.2 Performance assessment 

Application to all classes  

The overall performance was greatly increased by limiting the 

date number to build the time series or extracting spectral 

characteristics.  

The seasonal time series was created by selecting one date per 

season (03/10 for spring, 06/18 for summer, 09/23 for autumn 

and 12/25 for winter). During classification over the entire area, 

this date selection provided results 22 to 28% higher than those 

obtained with monthly time series. The progress achieved by 

extracting spectral features led to even better results, reaching 

up to 38 %. However, no progress was observed by combining 

temporal selection and spectral extraction (seasonal PCA, 

seasonal indices) on the entire dataset. 

Neither spectral feature extraction method outperformed the 

other. Nevertheless, combining spectral vegetation indices 

conducted to higher accuracies than exploiting a single 

vegetation index (performance increase around 10 %).  

This phenomenon was explained by the high differences across 

vegetation. The best combination was found with GNDVI, 

WDRVI, PSRI, and IRECI. GNDVI and WDRVI are general 
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vegetation indices, performing well on dense vegetation, with 

different dynamics. Also, IRECI is defined to estimate the slope 

of the red edge, a spectral characteristic directly linked to 

chlorophyll content (Frampton et al., 2013). On the contrary, 

PSRI is an index specifically designed for senescent vegetation 

(e.g., grass mixtures) sensitive to the ratio between carotenes 

and chlorophylls (Fabre et al., 2020). Using these 4 indices, 7 

Sentinel-2 bands were exploited to highlight vegetation 

differences. 

It was difficult to retain a classification method because the best 

method changed according to the classification scenario: 

• RLR was retained with monthly indices, 

• RF led to the best results applying on PCA, 

• SVM and RLR- ℓ1 had similar performance. 

 

With training and evaluation on distinct areas, PCA results with 

RF and one image per month were slightly over those obtained 

with RF and monthly indices or RLR and dates selection. 

Exploited with spectral feature extraction, RF outperformed 

other algorithms while RLR provided the best results with all 

spectral features. As observed with HS classification, higher 

scores were obtained with evaluation over the entire area. 

Nonetheless, looking at the spectra and the training results 

(Table 7), it seemed that the reason was quite different and 

might be due to a lack of training pixels (Table 2). Classes 

represented by fewer pixels tended to be identified with lower 

precision in some classifications. For example, one of the five 

iterations of RF with monthly PCA applied on the entire area 

provided precision of 84% for Populus, 83% for Rubus, 80% 

for Platanus and grass mixture while the reached precisions 

were only 50% for Reynoutria, 35% for Salix, 25% for Quercus, 

and 12% for Acer. 

 

Entire area 
(mean of 5 iterations) 

Scenario Monthly 

spectra  

Monthly 

indices   

Monthly  

PCA 

Seasonal 

spectra 

RF 33 67 71 54 

SVM-linear 34 68 61 60 

SVM-rbf 33 65 68 61 

RLR-ℓ1 36 72 61 60 

RLR-ℓ2 32 67 68 56 

Impacted area 

RF 25 65 57 43 

SVM-linear 44 43 34 59 

SVM-rbf 22 35 39 45 

RLR-ℓ1 43 58 32 62 

RLR-ℓ2 45 39 40 60 

Table 8. Overall accuracy of different classifiers for different 

multitemporal MS scenarios. Combination of PSRI, GNDVI, 

WRDVI and IRECI indices. 

 

Application to a selection of classes  

To analyse if temporal information could improve performance 

for the most difficult classes to discriminate with HS data (F1-

score under 85%), supervised classification methods were 

applied on S-2 data to discriminate these classes in the case of 

training on the reference area and evaluation on the impacted 

one. The selected classes were Populus, Acer, Quercus, and 

Grass mixture.  

As observed with all species, both temporal selection and 

spectral feature extraction improved results. The temporal 

selection was still outperformed by spectral feature extraction 

(OA around 10 % higher). No algorithm stood out in these 

scenarios.  

In that case, combining selection on both dates and spectral 

features greatly improved overall accuracy in comparison to the 

performance obtained for all the classes, leading to OA ranging 

from 62 to 75 % (increase between 1 % and 23 %). Again, PCA 

results were slightly over those obtained with spectral indices 

(difference between 0 and 8 %). PCA had indeed the advantage 

of being more integrative than spectral indices.  

Encouraging results were obtained to distinguish Salix and 

Populus. For example, 69% (10% with HS) and 74% (88% with 

HS) of precision scores were returned with RLR-ℓ1 and 

monthly PCA on Salix and Populus, respectively (Table 9). 

Variations of the first principal component of different 

remaining classes on both areas are shown in Figure 5. As 

illustrated, 1-PC variations of Quercus and grass mixture 

appeared to be slightly affected by the change of area. While the 

trends of Quercus 1-PC were the same as in the reference area, 

Grass mixture 1-PC variations seemed affected from autumn to 

winter. During the same period, strong variations were 

constated for both Salix and Populus between the areas. 

Nevertheless, the respect of the global trend during other 

seasons seemed to allow distinguishing them correctly. 

 

 Sal Pop Ace Que Gra 

Sal 8 5 0 0 0 

Pop 0 24 0 7 0 

Ace 0 0 0 0 0 

Que 0 2 0 10 0 

Gra 0 0 0 8 16 

Table 9. Confusion matrix obtained with RLR- ℓ1 on reduced 

classification scenario with seasonal PCA  

 

 

Figure 5. Seasonal evolution of the first principal component 

for Salix, Populus, Quercus and Grass mixture. 

 

 

6. DISCUSSION 

Obtained performance with both HS and MS images shows that 

classification at the species level is feasible in a heterogeneous 

ecosystem composed of various vegetation type. Former works 

on such an environment only used one kind of instrument and 

have resulted in a maximum overall accuracy of 76 % (Kamal, 

Phinn, 2011; Macyntre et al., 2020). 

Other species are present in both reference and impacted areas 

and should be considered in the following for mapping species 

over the entire site. Moreover, the number of samples must be 

raised at Sentinel-2 resolution to increase training set size 

(Burai et al., 2015). The management of class imbalance must 

be further explored (Zhu, 2005; He, Garcia, 2009; Erudel et al., 

2017). A rejection class will then be considered to treat the 

entire area (Aval, 2018).  

Many studies concluded that SVM and RF applied on HS data 

provided high-quality species mapping. Nonetheless, in our 

case, RLR led to better species identification used with HS 
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resolutions. If a similar study at the ground level led to the same 

conclusion (Erudel et al., 2017), to our knowledge, 

classification topics based on logistic regression are still rare 

and need more attention. The recent general trend in vegetation 

classification is focused on deep learning methods (Zhang, 

2020). However, these methods require a high number of 

samples, difficult to obtain on small areas with the usual metric 

to decametric spatial resolutions. RLR could be an alternative in 

such cases.  

Our results show that feature selection is a crucial step. If not 

considered in this study, several works have shown that using 

spatial information, by performing classification at polygon 

scale or by adding information from neighbouring pixels as 

virtual bands, greatly improved performance both with MS 

(Denisova et al., 2019) and HS images (Dian et al., 2015). If 

feature extraction obtained by PCA did not perform well with 

our HS scenario, several studies, both on tree species (Dabiri, 

Lang, 2018) and complex alkali vegetation (Burai et al., 2015) 

conducted to the contrary conclusion with metric spatial 

resolution. More spectral and spatial features should be 

investigated in future works. Spectral indices applied on HS 

images had proven in the literature to improve classification 

accuracy (Erudel et al., 2017; Maschler et al., 2018). In the next 

future, our work will consider optimised selection of spectral 

indices.  

On the contrary, feature reduction methods improved results on 

MS scenarios both temporally and spectrally. It was noticed 

during the study that changing the date or the selected 

vegetation indices could lead to significant changes. Thus, it is 

necessary to work not only on the type or number of features 

but also on their different combinations. Only seven spectral 

indices have been tested but it is not impossible that other 

indices could increase the performance of the classification. 

Specific metrics were designed to directly deal with phenology 

in a multitemporal way by calculating temporal correlation 

(Griegorova et al., 2020). In our study, only per-date features 

were computed. More works on spectro-temporal features may 

improve MS classification accuracies.  

This study indicates that using both HS and Multitemporal MS 

images could allow classifying species even in the case of high 

intra-class variance. The hierarchical classification scheme used 

greatly improved the final precision obtained for the different 

classes. A next step would be to use fusion methods to exploit 

both HS spectral and spatial information and multitemporal MS 

temporal information in the same classification scheme.  

When the reference and the impacted area were distinguished, 

the precision decreases. This proved that even if species were 

identical, different spectral characteristics, that might be related 

to their health status, were measured. Subsequently, the species 

will be related to the anthropogenic impacts to analyse the 

species distribution on impacted soil and their health status.  

 

 

7. CONCLUSION 

The results demonstrate that using both HS and Multitemporal 

MS images could help to distinguish different species in a 

complex environment.  

If HS classification performed well with training on both 

impacted and reference areas, changes in spectral signatures 

potentially due to anthropogenic impact led to a decrease in 

accuracy when training was done only on the reference area and 

evaluation on the impacted one. Regularized logistic regression 

showed higher performances than SVM or RF dealing with HS 

image.   

With the time series of MS images, feature selection was a 

necessary step to perform classification. No feature selection 

method stood out in this study. Provided multitemporal 

information allowed to distinguish potentially impacted species 

that remained difficult to classify under a single date study. 
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