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ABSTRACT:   
 

Green areas play an important role within urban agglomerations due to their impact on local climate and their recreation function. For 

detailed monitoring, frameworks like the flora fauna habitat (FFH) classification scheme of the European Union’s Habitat Directive 

are broadly used. By date, FFH classifications are mostly expert-based. Within this study, a data-driven approach for FFH classification 

is tested. For two test areas in the municipality of Vienna, ALS point cloud data are used to derive predictor variables like terrain 

features, vegetation structure and potential insulation as well as reflection properties from full waveform analysis on a 1 m grid. In 

addition, Sentinel-1 C-Band time series data are used to increase the temporal resolution of the predicting features and to add 

phenological characteristics. For two 1.3 × 1.3 km test tiles, random forest classifiers are trained using different combinations (ALS, 

SAR, ALS+SAR) of input features. For all model test runs, the combination of ALS and SAR input features lead to best prediction 

accuracies when applied on test data. 

 

 

1. INTRODUCTION 

Green areas within urban agglomeration provide space for 

recreation and have considerable impact on local climate (Aram, 

et al., 2019, Tyrväinen, et al., 2005). Monitoring of green areas 

and biotope type mapping in the municipality of Vienna is 

required by nature conservation laws and national and 

international agreements on monitoring and reporting. 

The habitat types listed in Annex I of the Habitats Directive 

(European Union’s Council Directive 92/43/EEC on the 

conservation of natural habitats of wild fauna and flora, 

classification, see European Commission, 2006) constitute a 

particularly relevant and prominent classification scheme. The 

scheme described therein comprises nine flora fauna habitat 

(FFH) groups and several sub-groups. To date, classification and 

mapping is mainly conducted by expert-based identification of 

general habitat types and plant species. It is labour-intensive, and 

therefore only conducted in a coarse temporal resolution. Data-

driven approaches represent a less labour-intensive alternative 

that in addition may provide the possibility for a more detailed 

temporal monitoring. To implement such an approach, it is 

necessary to find features, which reflect the different FFH types. 

Morphological characteristics are known to be good predictors 

for different plant species (Hollaus, et al., 2009, Koenig and 

Höfle 2016, Puliti, et al., 2017). Additionally, phenological 

attributes and the temporal and spatial dynamics of the 

morphological parameters have been shown to be required to 

achieve a comprehensive classification (Martínková, et al., 2002, 

Dostálová, et al., 2018, Dostálová, et al., 2021). 

The municipality of Vienna provides an extensive geodatabase 

and uses state-of-the-art methods for collecting geodata by 

surveying, airborne imaging and airborne laser scanning (ALS). 

Due to their limitations in terms of spatial resolution, satellite 

data have not been included in monitoring projects of the 

municipality of Vienna so far. 

                                                                 
*   Corresponding author 

High-resolution earth observation (EO) data, especially point 

cloud data from airborne campaigns (e.g., ALS) provide valuable 

information for deriving structural parameters to describe 

morphological characteristics of vegetation (Hollaus, et al., 2006, 

Wagner, et al., 2008, Eysn, et al., 2012) and underlying terrain. 

Due to their low temporal resolution (for Vienna, there are 

currently only two comprehensive ALS data sets available – 2007, 

2015), the dynamics of structural parameters and the 

phenological characteristics cannot be extracted. The present 

study explores the possibility to fill this gap with satellite-based 

data. The two-satellite Sentinel-1 (S-1) constellation, operated as 

part of the European Copernicus programme, offers a 

combination of high spatial resolution in interferometric wide 

swath (IW) acquisition mode combined with a high temporal 

coverage of up to four acquisitions within a 12-days interval (two 

satellites and along ascending and descending orbits). As S-1 

operates in the microwave portion of the electromagnetic 

spectrum, the data acquisition is not hampered by cloud cover.  

The current study aims to gain insight of the potential of EO data 

for FFH type mapping. Therefore, the replication of the FFH 

type-based classification of chosen study sites of the most recent 

biotope types mapping of the municipality of Vienna (Stadt Wien 

– https://data.wien.gv.at, 2020) using data-driven approaches is 

targeted. For this purpose, different features are derived from 

both ALS- and synthetic aperture radar (SAR) data. This data is 

then analyzed in an explorative manner with reference to already 

existing FFH type-based classification of the selected areas of 

interest. In the next step, random forest (RF) models are trained 

using different combinations of predictors, including ALS-based 

predictors only, SAR-based predictors only and a combination of 

both. The accuracy of this fully-automated, supervised 

classification, and especially the added explanatory power of the 

S-1 data is investigated. Based on the derived results, the 

potential usage of S-1 data for future biotope mapping campaigns 

is discussed.  
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2. DATA 

2.1 Habitats Directive classification 

For the classification within this study, the targeted groups are 

the FFH types according Annex I of the Habitat Directive. The 

classification scheme differentiates a total of 229 FFH types: nine 

major groups with up to 31 subgroups per group (European 

Commission, 2006). Of the nine different major groups, five exist 

within the selected study areas in the municipality of Vienna. The 

research area comprises a total of 22 different FFH types. The 

mapping of the FFH classification for green areas within the 

municipality of Vienna is available as open data (Stadt Wien – 

https://data.wien.gv.at, 2020). The most recent mapping was 

conducted in 2008. A comprehensive representation of the 

occurring types is shown in Table 1.  

 

2.2 Study Sites  

For this preliminary study, two major green areas within the 

municipality of Vienna are chosen for further investigation.  

The two test sites cover two main green area types in Vienna: (A) 

hilly, mainly forested areas in western Vienna and (B) riparian 

areas with river meadows and riparian forest vegetation along the 

Danube River. The five major groups in the areas are freshwater 

habitats (3), natural and semi-natural grassland formations (6), 

raised bogs and mires and fens (7), rocky habitats and caves (8) 

and forests (9). 

The first area (study site A) is located in the southwest of Vienna 

in the Vienna Woods. It covers 28.3 km². The area is hilly and 

cut by three major valleys in the south, north and northeast. The 

altitude is between 214 m and 515 m above the Adriatic (AA) 

with a mean value of 337 m AA. Study site A is dominated by 

forests (77.6% of the area). The major occurring forest types are 

Galio-Carpinetum oak-hornbeam forests (48.3%) and Asperulo-

Fagetum beech forests (24.1%). 9.3% of the area are covered by 

natural and semi-natural grassland formations with lowland hay 

meadows (5.9%) semi-natural dry grasslands and scrubland 

facies on calcareous substrates (2.6%) as dominant types. 13.9% 

of the area is not assignable to any FFH type. 

The second area of interest (study site B) is situated in the 

southeast of Vienna in the riparian forests along the Danube 

River within the Donau-Auen National Park. The area covers 

22.9 km². The area is mainly flat with indications of a former 

dominant and now partly regulated braided river system and a 

Main habitat 

groups 

NATURA 2000 

Code  
(numerical representation for 

processing) 

Name 

 (9999) no FFH type 

Freshwater 

habitats 

3130 
Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea 

uniflorae and/or of the Isoëto-Nanojuncetea 

3140 Hard oligo-mesotrophic waters with benthic vegetation of Chara spp. 

3150 Natural eutrophic lakes with Magnopotamion or Hydrocharition — type vegetation 

Natural and 

semi-natural 

grassland 

formations 

6210 
Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-

Brometalia) (* important orchid sites) 

6230 
* Species-rich Nardus grasslands, on silicious substrates in mountain areas (and 
submountain areas in Continental Europe) 

6240 * Sub-Pannonic steppic grasslands 

6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) 

6430 Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels 

6510 Lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis) 

Raised bogs and 

mires and fens 
7230 Alkaline fens 

Rocky habitats 

and caves 
8130 Western Mediterranean and thermophilous scree 

Forests 

9110 Luzulo-Fagetum beech forests 

9130 Asperulo-Fagetum beech forests 

9150 Medio-European limestone beech forests of the Cephalanthero-Fagion 

9160 Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli 

9170 Galio-Carpinetum oak-hornbeam forests 

9180 * Tilio-Acerion forests of slopes, screes and ravines 

91E0 (9181) 
* Alluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion 

incanae, Salicion albae) 

91F0 (9182) 
Riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus minor, Fraxinus 
excelsior or Fraxinus angustifolia, along the great rivers (Ulmenion minoris) 

91G0 (9183) * Pannonic woods with Quercus petraea and Carpinus betulus 

91H0 (9184) * Pannonian woods with Quercus pubescens 

91M0 (9185) Pannonian-Balkanic turkey oak –sessile oak forests 

Table 1. FFH types occurring in the research areas in the municipality of Vienna, according to Annex I of the European 

Union's Council Directive 2006/105/EC natural habitat types of community interest, whose conservation requires the 

designation of special areas of conservation, see European Commission (2006). The sign * prior to the name indicates 

priority habitat types. (Stadt Wien – https://data.wien.gv.at, 2020) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-567-2021 | © Author(s) 2021. CC BY 4.0 License.

 
568



floodplain landscape on a mean altitude of 153 m AA, stretching 

from 147 m to 163 m AA. Study site B is dominated by forests 

as well (45.6% of the area). The most prominent FFH type is 

riparian mixed forests of Quercus robur, Ulmus laevis and Ulmus 

minor, Fraxinus excelsior or Fraxinus angustifolia, along the 

great rivers (41.1%), followed by the priority habitat type 

alluvial forests with Alnus glutinosa and Fraxinus excelsior 

(4.6%). 9% of the area is covered by semi-natural grassland 

formations with semi-natural dry grasslands and scrubland 

facies on calcareous substrates (4.6%) and lowland hay 

meadows (3.5%) as the most common types. 6.8% of the area is 

classified as freshwater habitat, with 6.5% natural eutrophic 

lakes with Magnopotamion or Hydrocharition - type vegetation.  

The shares of the different FFH types for both study sites are also 

shown in Figure 1. 

 

 

2.3 ALS data 

The ALS data used was collected between November 9th and 

November 24th 2015 under leaf-off conditions in eight flight 

campaigns and covers the entire area of the municipality of 

Vienna. For the data acquisition, two different sensors were 

used: a Riegl LMS-Q680i and a Riegl LMS-Q560 (RIEGL 

Laser Measurement Systems, Horn, Austria). Both scanners 

provide full waveform analysis (Riegl, 2010, Riegl 2012). The 

acquisition resulted in a point density of > 16 echoes/m² for 

97% of the whole city area.  

 

2.4 Sentinel-1 data 

The SAR features used are derived from data from S-1 in C band 

at a pixel spacing of 10 m. In detail, the Level 1b high resolution 

ground range detected (GRDH) and Level 1a single look 

complex (SLC) scenes acquired in the Interferometric Wide (IW) 

swath mode were used. The data from the relative orbits 22 

(descending) and 146 (ascending) was used separately. 

 

3. METHODS 

3.1 ALS features 

All ALS features were derived directly or indirectly from the 

ALS point cloud described in 2.3 to 1 m resolution raster files.  

Terrain parameters such as aspect, slope, topographic positioning 

index (TPI) and topographic wetness index (TWI) describe the 

absolute as well as the relative position of a pixel in the 

surrounding terrain. The parameters were calculated using a pre-

derived digital terrain model (DTM) from the ALS point cloud 

and gdaldem (Perry, et al., 2021) and SAGA Wetness Index 

(Conrad and Böhner, 2001). Aspect and slope give information 

about exposition and the inclination of the terrain. The TPI 

measures the difference of a central pixel and the elevation of a 

defined neighborhood. Positive TPI values imply a pixel location 

higher than the neighborhood. The pixel is therefore situated on 

a local peak or hilltop, or upslope. Negative values indicate a 

pixel location lower in comparison to its neighborhood. It can be 

seen as a sink or hill bottom (De Reu, et al., 2013). The TWI 

combines the upstream contribution area and the local slope. 

High TWI values indicate a high potential runoff (Sørensen, et 

al., 2006). 

The insulation parameters give information about potential 

duration and intensity of insulation and incoming solar radiation. 

In a first step, a DSM was derived from the ALS point cloud 

using OPALS (Pfeifer, et al., 2014), and in a following step, the 

insolation features were derived using SAGA Potential Incoming 

Solar Radiation (Conrad, 2010). 

In combination, the features described above represent location 

characteristics for different habitat types.  

To get information about the vertical and horizontal structure of 

the vegetation, structure features were derived. To get the 

absolute vegetation height, the normalized DSM (nDSM) was 

calculated by subtraction of the DTM from the DSM. For a 

detailed vertical structure description voxel-based analysis was 

applied. The voxel size was set to 1x1x1 m³. The understory 

height was set to the height of the voxel column above ground 

level, in which each voxel contains continuously at least one 

point. For the horizontal structure, a stand density index was 

calculated. Therefore, all pixels with a nDSM height < 0.2 m 

were defined as gaps, and the proportion of gaps within a 10 m 

radius neighborhood was calculated. 

The features described above are all based on point coordinates 

and the relative location. In addition to the location, the sensors 

used for the ALS campaign record the complete waveform of the 

backscattered echo, i.e., full-waveform lidar. This enables range 

measurements and the acquisition of additional information on 

the physical properties of the recorded objects (Wagner, et al., 

2008). In order to obtain surface reflectance, a ratio between the 

amplitude of the ground echo and the surface echo was calculated. 

To extract roughness information for the terrain and the surface, 

Feature 
group 

Feature name ∑ 

Terrain 

metrics 

Aspect [deg] 1 

Slope [deg] 1 

Topographic positioning index (TPI) 1 

Topographic wetness index (TWI) 1 

Structure 

metrics 

Normalized DSM (nDSM) [m] 1 

Understory height [m] 1 

Stand density [% of gap on a 10 m kernel] 1 

Insolation 

Duration of insolation [h/a] 1 

Diffuse insolation [kWh/m²a] 1 

Direct insolation [kWh/m²a] 1 

Total insolation [kWh/m²a] 1 

Full wave 

data 

Amplitude – ratio surface/terrain (mean, 

median, RMS) 
3 

Pulse width [nm] – surface (mean, 

median, RMS) 
3 

Pulse width [nm] – terrain (mean, 

median, RMS) 
3 

Total number of products used 20 

Table 2. Metrics derived from ALS data used as predictor 

variables, exported as 1 m resolution raster data.  

represents the number of data products. 

 

 
 

Figure 1. The proportional coverage of different FFH 

classes of the two research areas. A: research area in the 

Vienna Woods (study site A). B: research area Donau-Auen 

National Park (study site B). The description of the different 

classes is shown in Table 1. The class "others" refers to FFH 

types with a coverage of less than 1% of the total research 

area. 
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separate metrics for the surface pulse width of the ground and 

surface echoes were derived. While low surface pulse width 

values indicate smooth surfaces, higher values indicate higher 

surface roughness and can vary between different types of 

vegetation. 

The structure features as well as the full waveform features were 

calculated from the point cloud using OPALS (Pfeifer, et al., 

2014). An overview of the metrics derived from ALS is shown in 

Table 2.  

 

3.2 SAR features 

From the SAR data, input features sensitive to forest canopy 

structure and phenological characteristics were derived. 

Therefore, seasonally averaged backscatter with VV (vertically 

polarized sent and vertically polarized received), VH (vertically 

polarized sent and horizontally polarized received) polarization 

and VH/VV cross ratio were calculated. Interferometric 

coherence was estimated between subsequent acquisitions with a 

temporal baseline of six days. Higher contributions of VH 

backscatter are typically seen as an indicator for volume 

scattering in vegetation canopies. The products were obtained 

separately for the relative orbits 22 (descending) and 146 

(ascending). The sensitivity of the derived features to vegetation 

monitoring was already shown in several studies (e.g. 

Vreugdenhil, et al., 2018, Bruggisser, et al., 2021). Detailed 

information on the data processing is shown in Dostálová, et al. 

(2018). The data was harmonized by reprojecting and 

interpolated to a 1 m grid using gdalwarp (Warmerdam, et al., 

2021) with bilinear resampling. Table 3 shows a detailed 

overview of the derived SAR features. 

 

3.3 Exploratory statistics 

For a first assessment of the usability of different predictor 

variables for supervised classification, the distribution of the 

values of the different SAR and ALS products was analyzed. 

Therefore, boxplots grouped by the present FFH classification 

were created for each of the two research areas separately. The 

potential of selected features as predictions for a FFH type-based 

classification is discussed. 

 

3.4 RF training and prediction 

Using multiple predictors, the supervised reproduction of the 

FFH classification was realized with a RF-model (Breiman, 

2001). The model is trained and tested using the ‘ranger’ – 

Package (Wright, et al., 2020) implemented in R. The calculated 

features were imported, cropped and combined to raster stacks. 

For a first test, two tiles of 1.3 km × 1.3 km (one within each 

study site) were defined. The tiles were further spatially split in 

75% training and 25% test area. Cases including missing values 

in at least one of the features were excluded. 

The performance of the model is controlled by several parameters, 

including the number of trees (num.trees), the number of 

variables used for splitting at each node (mtry) and the maximal 

depth (max.depth) of the trees. In order to tune the model, the 

number of trees [250, 500] and the maximum depth [5, 10, 15, 

20] were varied. For each of the settings, three RF models were 

trained using different sets of predictors: the ALS features, the 

SAR features and both the ALS and SAR features.  

The trained RF were subsequently applied on the test data sets to 

predict the FFH types. The total prediction accuracy for each 

model was extracted by comparing the predicted values and the 

actual values for each pixel of the test data sets. For the chosen 

models, contingency tables were created to gain a more detailed 

overview of prediction accuracies on different classes. For a 

visual interpretation, the prediction and reference data was 

retransformed to a raster stack, exported as a GeoTIFF and 

plotted. 

 

4. RESULTS AND DISCUSSION 

4.1 Exploratory statistics 

For the FFH classification two research areas were investigated 

using descriptive statistics. The extent of the occurring FFH types 

varies widely among and within the research areas (Figure 1). 

Figure 2 shows chosen results of the exploratory statistical 

analysis of the derived ALS and SAR products. The distribution 

of the feature values on all occurring FFH types is plotted, but 

further, only the dominant types covering more than 1% of the 

area are considered (Figure 1). Henceforth, the Natura 2000 

Codes are used for addressing the different FFH types. The 

corresponding names can be looked up in Table 1.  

Within the study site A, the insulation differentiates between the 

groups of 6210, 6510 and 91F0 and the group of 9130 and 91E0. 

While the median potential annual solar insulation is between 

43 kWh/m² and 47 kWh/m² for the first group, for the second 

group of areas, the potential energy input varies between 

33 kWh/m² and 35 kWh/m². The stand density shows a perfect 

feature for distinguishing between forests and natural and semi-

natural grassland formations. While the median gap fraction 

(stand density) varies between 0.7 and 1.0 for grassland, the gap 

fraction of forest areas is close to zero. Within the grassland, the 

median values of the types 6210 and 6510 differ by about 10 

percentage points with type 6510 having higher gap fraction 

close to one. The biggest differences of the median TWI values 

within the observed FFH types is apparent between 91E0 and 

91F0. 

Both VH and VV backscatter show at first sight differences in 

backscatter intensity between the groups of grassland and forest 

areas. Within the groups, slight differences are discernible 

between the FFH types, with 6510 pixels showing a slightly 

lower median for both the mean summer VH backscatter of orbit 

146 and VV backscatter of orbit 022 values. Within the group of 

forest types, the differences in the distribution are minimal. 

For the study site B, a different combination of FFH types is at 

focus. The total annual insulation differs between the three main 

FFH type groups in the area. The dominant freshwater habitat 

3150 shows the highest values of total annual insulation with a 

median value of 47 kWh/m² potential annual incoming solar 

radiation. The values for the grassland areas are slightly lower 

with 41 kWh/m² for 6210 and 45 kWh/m² for 6510. For the two 

forest types 91E0 and 91F0, the values are clearly lower with 

median of the potentially incoming annual insulation radiation of 

Feature name 
Temporal 
aggregation 

Separate for 
each orbit 

∑ 

VV backscatter FM, JJA, ON, yes 6 

VH backscatter FM, JJA, ON yes 6 

Cross ratio VH/VV FM, JJA, ON yes 6 
Coherence FM, JJA, ON yes 6 

Slope VV year no 1 

Slope VH year no 1 
Correlation VV year no 1 

Correlation VH year no 1 

Total number of products used (Sentinel-1 SAR) 28 

Table 3. Annual and seasonal S-1 time series products 

(SAR) used as predictor variables. FM, JJA, ON refer to 

the time span aggregation February-March, June-July-

August and October-November. Slope and Correlation 

refer to the backscatter-incidence angles. Table adapted 

from Bruggisser, et al. (2021). 
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31 kWh/m² to 33 kWh/m². The values of the gap fraction 

distinguish again strongly between forests and grassland. The gap 

fractions of the forest areas are, like in the Vienna Woods, close 

to zero, while the grasslands and the water habitats show higher 

numbers. The median value of the class 3150 is about 0.5. The 

two grassland classes differ again strongly, with 6210 showing a 

median gap fraction of about 0.6 and 6510 showing a median 

value close to one. For the TWI, no clear differences are evident. 

In flat areas like the Donau-Auen National Park, the significance 

of the TWI to describe hydrological and topographic conditions 

is limited comparing to hilly areas, as the flow directions are 

rather undefined (Grabs, et al., 2009). The mean values of the 

forest classes are slightly lower than for the grasslands and the 

freshwater habitats.  

The clearest differences in SAR backscatter values are again 

found between forest and grassland areas, with forest areas 

showing higher values for the mean summer backscatter of VH 

orbit 146 as well as for VV orbit 022. The differences between 

the two forest types are negligible at the current scale of data 

analysis. The two grassland groups differ slightly, with 6120 

showing higher reflectance values for both considered SAR 

features. The freshwater habitat 3150 shows values in between 

the two grassland classes for both SAR features. 

 

4.2 Test tiles 

For first tuning and testing of RF models, two tiles of the research 

areas were extracted. For an independent performance validation 

of the models, each tile was spatially split in 75% training area 

and 25% test area. The tiles were chosen by visual inspection of 

the research areas. The choice was based on heterogeneity of the 

mapped shapes in the tiles and a great variety of size and 

coverage of different FFH types. An overview of the chosen tiles 

is given in Figure 3. 

 

4.3 RF-model on test tiles 

After the definition of training and test areas, several test runs on 

RF tuning were performed using different parameter settings for 

the number of trees and the maximal depth of the trees. The 

models were trained with the input features cropped to the 

described training areas. With regard to the tiles, every single 

pixel was considered to be a discrete, unique entity. Thus, about 

1.27 million pixels were used for training for each tile. The 

models were applied on 422 500 pixels of test data for each 

research area (the numbers might be slightly lower due to 

exclusion of missing values). The results of the model tests are 

summarized in Table .  

The prediction accuracy of models trained using a combination 

of both, ALS and SAR data was found to be slightly superior to 

 

Figure 2. Boxplots of the distribution of chosen predictors on the different FFH types for each research area. 

 

 

 
Figure 3. Tiles (1.3 km × 1.3 km) for first training and 

testing of RF models for FFH type classification. The 

tiles are spatially split in 75% training area for training 

of the model and 25% test area for validation of the 

predictions. A: tile within research area Vienna Woods 

(study site A). B: tile within research area Donau-Auen 

National Park (study site B). The left side shows the 

results of the application of the trained models on the 

test data using different set of input features for model 

training. 
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those that are based on either ALS or SAR data alone. 

Considering the model parameters, for Tile A, 500 trees with a 

maximum depth of five lead to the largest amount of correctly 

predicted pixels when used on the test data. For Tile B, 500 trees 

with a maximum depth of 15 brought the highest correct 

classification output when used on the test data. These two results 

are chosen for more detailed investigations. 

Table 5 shows the prediction accuracy for the different FFH types 

for the two test tiles using the chosen models. The rows represent 

the number of test pixels in the test data for each occurring class, 

and the columns show the predicted values. The percentage 

values refer to the total number of test values for each class. The 

number of correctly classified pixels is highlighted. For both test 

tiles, the most misclassifications occur within the FFH type 

groups. To pick an example in Tile A, almost all pixels of class 

9130 are predicted as 9170 with both types being forests. In 

general, smaller number of cases for single classes, both in 

training and test data, tend to lead to misclassifications in the 

observed tiles. Dominant classes are prone to be overestimated 

when predicting the test data. This is the case for both Tile A and 

Tile B. For Tile A, the most frequently appearing class (9170) in 

the test set is overestimated in the predictions. The same applies 

for the class 91F0 in Tile B. 

The mapping of the model predictions is shown in Figure 3. 

Plotting the data gives additional information on the spatial 

distribution of correctly and incorrectly classified pixels. The 

results of Tile A confirm the dominance of class 9130 and the 

misclassification of 9170. Basically all values of 9170, which are 

located in the northwestern corner of the test area, are classified 

as 9130, both with ALS and SAR predictors only as well as when 

a combination of both predictor sets is used. While the borders 

between the forest and the more fragmented grassland area in the 

southern part are visible, the different segments within the 

grassland were not properly classified using the presented 

approach. While the dominance of 6510 is still visible, the 

delineation between the different grassland types cannot be found 

RF - model tuning 

Correctly predicted pixels [%] applying trained RF trained on test data 

Tile A (Vienna Woods) Tile B (Donau-Auen National Park) 

Number 

of trees 

maximal 

depth 
ALS-data SAR-data 

ALS+SAR-

data  
ALS-data SAR-data 

ALS+SAR-

data  

250 

5 86.51% 84.21% 88.17% 55.55% 54.31% 56.15% 

10 84.99% 81.41% 85.71% 58.96% 59.29% 61.55% 

15 84.10% 78.91% 84.90% 59.00% 59.79% 61.90% 

20 83.50% 78.70% 84.72% 58.60% 59.11% 61.69% 

inf 83.51% 79.12% 84.68% 58.12% 58.63% 61.40% 

500 

5 86.51% 84.07% 88.21% 55.63% 53.87% 56.08% 

10 85.03% 81.30% 85.86% 59.02% 59.34% 61.75% 

15 84.06% 78.96% 84.92% 59.11% 59.87% 62.04% 

20 83.48% 78.73% 84.68% 58.66% 59.23% 61.87% 

Table 4. Tuning of the RF and prediction accuracy when applying the trained models on the test data. The best 

prediction results are highlighted and used for detailed analysis in Table 5. 

 
A 

Predicted values relative (absolute) 

6210 6410 6510 9170 no FFH type ∑ 

T
es

t 
v
a
lu

es
 

6210 52.6% (1710) 8.6% (281) 38.8% (1262) 0.0% (0) 0.0% (0) 100% (3253) 

6410 7.1% (528) 20.44 (1518) 47.1% (3496) 25.1% (1865) 0.3% (21) 100% (7428) 

6510 8.9% (6742) 0.8% (609) 76.6% (58051) 8.3% (6312) 5.4% (4066) 100% (75780) 

9130 0.0% (0) 0.0% (0) 1.9% (229) 98.1% (11969) 0.0% (0) 100% (12198) 

9170 0.0% (0) 0.0% (0) 0.4% (1131) 99.6% (310893) 0.0% (54) 100% (312078) 

no 

FFH 

type 

0.0% (0) 0.1% (8) 21.6% (2546) 74.0% (8709) 4.3% (500) 100% (11763) 

∑  (8980)  (2416)  (66715)  (339746)  (4641)  (422500) 

 

B 
Predicted values relative (absolute) 

3140 3150 6210 6240 6510 91E0 91F0 no FFH type ∑ 

T
es

t 
v
a
lu

es
 

3150 4.6% (2265) 78.4% (38862) 2.1% (1020) 0.2% (115) 0.0% (0) 0.2% (113) 13.5% (6712) 0.9% (464) 100% (49551) 

6210 0.0% (1) 0.1% (35) 92.1% (37057) 2.3% (937) 0.0% (0) 0.0% (0) 2.5% (1002) 3.0% (1225) 100% (40257) 

6240 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 38.1% (8) 61.9% (13) 100% (21) 

6510 0.0% (14) 2.1% (1071) 77.5% (39875) 1.4% (733) 0.3% (129) 0.2% (79) 2.1% (1066) 16.5% (8472) 100% (51439) 

91E0 0.0% (0) 1.4% (343) 0.9% (219) 0.0% (0) 0.0% (0) 6.5% (1555) 83.8% (20111) 7.4% (1778) 100% (24006) 

91F0 0.0% (35) 0.5% (523) 0.9% (1009) 0.0% (9) 0.0% (0) 1.7% (1854) 85.8% (92119) 11.0% (11779) 100% (107328) 

no 

FFH 

type 

0.0% (14) 0.8% (1253) 10.0% (14922) 4.5% (6785) 0.0% (0) 0.7% (1065) 22.3% (33361) 61.6% (92252) 100% (149652) 

∑  (2329)  (42087)  (94102)  (8579)  (129)  (4666)  (154379)  (115983)  (422254) 

Table 5. Prediction accuracy of chosen models for Tile A (top) and Tile B (bottom). For both models, ALS and SAR features 

were used as predictors. Model A (top) was trained with a maximum depth of 5 and 500 trees. For model B (bottom), a 

maximum depth of 15 and 500 trees were used. 
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in any of the three prediction results. Additionally, patches of 

9170 are enclosed in the grassland area.  

The test area of Tile B is in comparison to Tile A generally more 

segmented. The freshwater habitats can be reproduced in all three 

models, although there are some additional misclassifications in 

the SAR model. The majority of misclassifications can be 

assigned to the 6510 area, which was mostly predicted as 6210. 

When taking a look at the training data, this can probably be 

traced back to an underrepresentation of this FFH type in the 

training data set. 

The homogeneity of the 91F0 area is mostly reproduced in the 

ALS data set, but in the SAR data set, patches of 91E0 are found 

in the 91F0 area, which is finally reflected in the output of the 

model using both ALS and SAR data. 

In general, using only ALS data for model training leads to 

speckled results. For SAR data only, the classification results 

show a rather patchier spatial distribution of the different FFH 

types. In combination, both of these characteristics are still 

visible, but smoothened. 

 

5. REFLECTION AND OUTLOOK 

A main challenge in this study is the temporal mismatch of the 

used data. While the biotope type mapping was performed in 

2008, the ALS campaign was performed in 2015 and the used 

SAR data is from the year 2018. It is assumed that the major parts 

of the study sites did not change significantly within this 

timespan. For the two test tiles, 15 available orthophotos between 

2010 and 2020 were examined and no major visually detectable 

changes in land cover were found. 

The decision on which model to use for further investigation in 

this study was simply based on the prediction results. Although 

the amount of correctly classified pixels differs at a range of 

lower than 0.5 percentage points between 250 and 500 trees, the 

model using 500 trees was chosen. For future applications, 

especially on larger data sets, efficiency has to be considered as 

well, as the computation costs increase linearly with the number 

of trees when using RF-based algorithms (Scornet, 2018). 

Another challenge within this study occurs for the training and 

prediction of the type “no FFH type”. There are no distinct 

classification characteristics known for this class and it is 

assumed to be very diverse. For future model training, the class 

will be excluded. 

The model performances values on the test data shown in this 

paper must be reflected critically. The quality of a RF model 

strongly depends on amount and selection of training data, both 

spatially and considering the number of predictor variables. The 

choice of test and training data set was not randomized within 

this study, and the choice of input predictors has not been 

optimized so far. Additionally, issues regarding the down-

sampling of the SAR data to a 1 m resolution are not considered 

here. What can be shown is, that combining ALS data with high 

spatial resolution and SAR data with a high temporal resolution 

can, at least for the two chosen test sites, increase the prediction 

accuracy of a RF classifier for FFH type classification. Further 

model tuning, subsampling of predictors and potential smoothing 

effects due to down-sampled SAR data and variations of the 

minimum mapping unit are subject of ongoing investigations. 
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