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ABSTRACT: 
 
Understanding building area in agricultural land is important since arable land area in Taiwan is limited. One of the practical ways is 
manual digitization on high resolution satellite imagery, which can avoid field investigation and achieve satisfying results. However, 
such practice is tedious and labor intensive. Past researches have shown that deep learning methods are useful to segment buildings in 
different cities using satellite imagery. In this study, ENVINet5 model was trained and used to segment buildings from high resolution 
Pleiades pansharpened imagery. The training images (with the size of 2500 pixels × 2500 pixels) were randomly selected from 9 
counties/cities to increase diversity since each county/city has different building patterns. The performance of ENVINet5 model 
reached 0.977, 0.814, 0.847, and 0.829 respectively on accuracy, precision, recall, and F1 score. Since evaluation by pixels can be 
difficult to show geometry of buildings, we evaluated the model by counting the number of inference building segments, which was 
post-processed from inference result of ENVINet5 trained model. Further analysis by counting the inference building segments is 
discussed in this study. 
 
 

1. INTRODUCTION 

Building segmentation in agricultural land is an important issue 
in Taiwan since arable land area can be influenced by building 
area. One of the practical ways to estimate building area in 
agricultural land is to digitize them manually on high resolution 
satellite imagery, which is rich in spatial information and helpful 
for building visual interpretation. However, manual digitization 
is time-consuming and labor intensive. Deep learning approaches 
have been applied to segment buildings automatically on satellite 
imagery in many studies (Boonpook et al., 2018; Maltezos et al., 
2017; Vakalopoulou et al., 2015). Results on building 
segmentation can be different depending on various building 
patterns, and deep learning models (Zhang et al., 2020).  
 
In this study, ENVINet5 (built in ENVI version 5.6, and ENVI 
Deep Learning version 1.1) is used to segment buildings in 
agricultural land in Taiwan from high resolution Pleiades 
imagery, which includes multispectral and panchromatic images. 
The resolution is 2 meters for colour and near-infrared bands 
(Figure 2a), and the resolution is 0.5 meter for panchromatic band 
(Figure 2b). ENVINet5 is an encoder-decoder fully 
convolutional network. Its architecture (Figure 1) is based on U-
Net with some modifications on layers of convolution and the 
size of input and output. The input of ENVINet5 is patch with 
agricultural buildings. And the output is a probability map, where 
the pixel values range from 0 to 1. The architecture has the 
characteristic of U-Net, which can work on few training images 
and yield precise segmentations (Ronneberger et al., 2015).  
 
ENVINet5 is special with four proprietary hyperparameters that 
can improve the performance of model. First, Class Weight 
introduces a biased selection of patches, so the model extracts 
patches that contain more feature pixels. Second, Patch Sampling 
Rate can control the density of sampling. Since feature pixels are 
often sparse comparing to background pixels, high density of 
sampling rate can generate more patches with more feature pixels. 

 
*  Corresponding author 
 

Third, Loss Weight biases loss function to make more adjustment 
on identifying feature pixels. Fourth, Blur Distance helps the 
model to learn building borders by blurring the edges and 
decreasing the blur during training. 
 

 
Figure 1. ENVINet5 architecture. 

 
2. METHOD 

2.1 Data Pre-processing 

In this study, nearest-neighbor diffusion-based (NNDiffuse) pan 
sharpening technique was applied to fuse multispectral and 
panchromatic image since the algorithm can preserve sharp 
spatial features from panchromatic images and spectral 
information from multispectral images (Sun et al., 2013). 
Pansharpened image with high resolution (0.5 meters) and 
multispectral bands (R, G, B, NIR) was obtained after fusion. 
Next, Non-agricultural mask (Figure 2c), provided by Taiwan 
Agricultural Research Institute, was overlaid with pansharpened 
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image to extract agricultural land area. Image masking technique 
can restrict analysis to a subset region instead of using whole 
image scene (Kastens et al., 2005). The pansharpened image with 
only agricultural land is shown in Figure 2d. Then, the pixel value 
of non-agricultural mask in pansharpened image was set as the 
maximum value for the byte type of the image in case that 
agricultural land area has similar pixel value to non-agricultural 
mask. 
 

 
Figure 2. Data pre-processing. (a) multispectral image; (b) 
panchromatic image; (c) non-agricultural mask shown as black 
area; (d) pansharpened image with agricultural area. 
 
2.2 Manual digitization 

Since building patterns in agricutural land are complicated, 
manual digitization results can be unstable depending on 

difference of human interpretation. Therefore, consistent 
digitization is necessary for our model to correctly identify and 
segment the buildings. In this study, each building pattern was 
digitized in a building polygon as follows. Firstly, shadow is 
excluded from digitization (cf. Figure 3a and 3f). Next, some 
buildings cut by the non-agricultural mask (Figure 3b) were kept 
several pixels inside the building for the digititization. Because 
the pixel value of the non-agricultural mask was set as the 
maximum value for the byte type of the image, the model can be 
confused if non-agricultural mask is digitized in the building 
polygons (Figure 3g). Then, adjacent buildings with no space in 
between (Figure 3c) or buildings in close proximity (Figure 3d) 
were digitized as one signle large building polygon since it was 
challening to digitize each building separately. Finally, when the 
buidings were occluded by vegetation (Figure 3e), the occlusion 
part is kept out for digitization (Figure 3j). 
 
2.3 Model Training  

The study area covered 9 counties/cities in Taiwan, from Miaoli 
to Taitung (Figure 4). Since each county/city has different  
building patterns, 500 sub-images (with the size of 2500 pixels × 
2500 pixels) were randomly selected (Figure 4) to increase 
diversity in the training data. The buildings in each sub-image 
were manually digitized. The 500 sub-images were randomly 
divided into training sets and validation sets with the proportion 
of 8:2. 
 
ENVINet5 is trained using patch-based convolutional neural 
network. A patch is a certain region in sub-image (Figure 5a), and 
a batch is number of patches being trained during iterations 
(Figure 5b). In this study, the patch size was set as 512 × 512 
pixels, and the batch size was set as 64. During every epoch, 
entire 10,000 patches are trained batch by batch. The parameters 
are learned and updated every iteration. ENVINet5 model was 
trained on a workstation with NVIDIA GeForce RTX 2080 Ti 
GPU. 
 
 

 

 
Figure 3. Examples of manual digitization results from different building patterns. (a) A building with shadow; (b) A building cut by 
non-agricultural mask; (c) Adjacent buildings; (d)Buildings in close proximity; (e) Buildings occluded by vegetation; (f)(g)(h)(i)(j) 
Manual digitization results of above building patterns. 
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Figure 4. Study area and locations of training images. 

 

 
Figure 5. Illustration of patch and batch: (a) sub-image with several patches (in red frame); (b) a batch of 64 patches. 

 
 
2.4 Model Evaluation 

In this study, confusion matrix and assessment indices are used 
to evaluate the model. The assessment indices include accuracy, 
precision, recall, and F1 score. The model is evaluated by pixels 

within each image using validation sets. In confusion matrix 
(Table 1), correctly predicted building and non-building pixels 
are defined as true positive (TP) and true negative (TN); 
incorrectly predicted building and non-building pixels are 
defined as false negative (FN) and false positive (FP).  
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Table 1. Confusion matrix. 

 
In assessment indices, accuracy is overall correctness including 
building pixels and background pixels. Precision is the ratio of 
correctly predicted building pixels within all positive prediction. 
Recall shows the proportion of reference building pixels being 
predicted. F1 score is a harmonic combination between precision 
and recall, which keeps the correctness of precision and 
completeness of recall value (Prathap et al., 2018). The equations 
of assessment indices are listed below: 
 

Accuracy =  TP+TN
TP+FP+FN+TN

                    (1) 
 

Precision =  TP
TP+FP

                              (2) 
 

Recall =  TP
TP+FN

                                  (3) 
 

F1 score =  2×Precision×Recall
Precision+Recall

                    (4) 
 

2.5 Data post-processing 

The inference result is a probability map from the output of a 
trained ENVINet5 model. Each pixel in probability map indicates 
the probability of being a building pixel. Higher probability is 
likely to be a building pixel. The values of pixels range from 0 to 
1 in the form of floating-point numbers (Figure 6b). In this study, 
four post-processing steps are carried out as follows. 
 
Step 1: Set the threshold for the probability map. The probability 
map is converted to a binary map with the probability threshold 
of 0.6 (Figure 6c). If a pixel value is more than or equal to 0.6 in 
probability, it is considered as a building pixel. Otherwise, it is a 
non-building pixel. 
 
Step 2: Vectorize the binary map. The binary map is vectorized 
to obtain building segments with outlines. (cf. Figure 6c and 6d) 
 
Step 3: Remove the overlapping polygons. Overlapping polygons 
were generated from the vectorization of non-building pixels as 
shown in figure 6d. 
 
Step 4: Fill up the polygon holes. Inference building segment was 
left with several holes after removing the overlapping polygons 
(Figure 6e). The appearance of the polygon holes is noise mainly 
caused by shadow or occlusions, but they are still part of the 
building. The polygon holes were filled up using threshold of 
area. If the area of each hole is 25 percent less than the whole 
inference building segment, the hole will be filled up.  
 

At last, the inference building segment is obtained after four post-
processing steps as shown in figure 6f. 
 

 
Figure 6. An example of adjacent buildings in post-processing. 
(a) Buildings shown in pansharpened image. (b) Probability map 
from ENVINet5. Brighter pixels denote higher probability. (c) 
Binary map with building and non-building pixels after applying 
the probability threhold of 0.6. (d) Vectorization result from 
binary map, where overlapping polygons were due to non-
building pixels. (e) Inference building segment wih holes after 
removing overlapping polygons. (f) Inference building segment 
overlaid on the pansharpened iamge after filling holes in (e). 
 
2.6 Evaluation of inference building segments 

In this section, inference building segments are analysed by 
counting their numbers since evaluation by pixels can be difficult 
to display the geometry of each building. In addition, a large 
number of TNs case inflated the accuracy of the inference result. 
In order to conduct the accuracy assessment based on counting 
the numbers of inference building segments, the following cases 
were considered: 
 
Case 1. Omission building. Omission building is defined as the 
building our model miss to predict and find out (Figure 9a). 
 
Case 2. Commission building. Commission building is defined 
as the building our model overpredict (Figure 9b). 
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Case 3. One-to-one correspondence. One inference building 
segment overlap with one reference building polygon (Figure 9c). 
 
Case 4. Many-to-one correspondence. Many inference building 
segments overlap with one reference building polygon (Figure 
9d). 
 
Case 5. One-to-many correspondence.  One inference building 
segment overlap with many reference building polygons (Figure 
9e). 
 
Case 6. Many-to-many correspondence. Many inference building 
segments overlap with many reference building polygons (Figure 
9f). 
 
For easy understanding, case 1 and case 2 are the non-
overlapping situations, and case3, 4, 5, 6 are the overlapping 
situations in this study. 
 

 
Figure 9. Six different cases for the non-overlapping and the 
overlapping situations. Inference building segments are denoted 
as blue and reference building polygons are denoted as red. (a) 
Omission building; (b) Commission building; (c) One-to-one 
correspondence; (d) Many-to-one correspondence; (e) One-to-
many correspondence; (f) Many-to-many correspondence. 
 
The analysis starts with the calculating the number of omission 
buildings and commission buildings by overlaying inference 
building segments and reference building polygons. Then, 
omission error rate (OER) and commission error rate (CER) were 
calculated using the formula below. Note that the overlapping 
cases are considered as correct predictions as long as reference 
building polygons and inference building segments are 
overlapped. 
 

OER  =  number of omission buildings
number of reference buildings 

  × 100%              (5) 

 

CER = number of commission buildings
number of reference buildings 

  × 100%            (6) 

 

Through calculating OER and CER, it is obvious to understand 
whether our model can localize and segment all buildings on high 
resolution satellite images. 
 
Next, IoU is utilized for the evaluation of the overlapping cases 
(case 3 to case 6) because not every of them are segmented 
properly. IoU, intersection over union, is the most common 
metric to compare similarity between two arbitrary shapes 
(Rezatofighi et al., 2019). Values of IoU range from 0 to 1 in 
floating point numbers. If the value is closed to 1, it represents 
that two shapes have higher similarity. The formula of IoU is 
shown below.  
 

IoU =  Area of intersection
Area of Union 

                       (7) 
 
In this study, IoU is calculated for reference building polygons 
and inference building segments. Since not every overlapping 
case was one-to-one correspondence, several IoUs were 
calculated. Then, the largest IoU was kept to ensure one inference 
building segment overlap with one reference building polygon. 
Take many-to-one correspondence as example, several IoUs will 
be calculated since many inference buildings segments overlap 
with one reference building. Then, inference building segment 
with the largest IoU was kept, and the rest of the overlapping 
inference building segments were removed. Similar process was 
carried out in the case of one-to-many correspondence. The 
difference is reference building polygons with the largest IoU 
was kept, and the rest of the overlapping reference building 
polygons were removed. As for the case of many-to-many 
correspondence, both processes were executed. Overlapping 
inference building with the largest IoU was selected first, 
followed by overlapping reference building polygons with the 
largest IoU. The above analysis with six different cases of how 
OER and CER are calculated and how the selection of largest IoU 
works are shown in the pseudo code below. 
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3. RESULTS AND DISCUSSIONS 

It took 26 hours to train ENVINet5. To avoid overfitting problem, 
the training process was stopped at 100 epochs since training loss 
and testing loss tend to diverge. The training process is shown in 
figure 7. Performance of the model is evaluated by pixels with 
validation sets. The values of assessment indices are 0.977, 0.814, 
0.847, and 0.829 respectively for accuracy, precision, recall, and 
F1 score (Figure 8).  
 

 
Figure 7. Training process of ENVINet5. 

 

 
Figure 8. Evaluation of ENVINet5 using validation sets with 
accuracy, precision, recall, and F1 score indices. 
 
The result of OER and CER is shown in table 2. Among 100 sub-
images in validation sets, 5727 reference building polygons are 
digitized manually. Our model misses to predict 484 buildings 
and overpredicts 5044 buildings. OER and CER are 8.45% and 
88.07% respectively.  
 

 
Table 2. Statistics of omission and commission buildings with 
the calculation of OER and CER. 

OER and CER varied with the different settings of probability 
threshold from inference results. We intentionally kept OER low 
with the expense of high CER value because our goal is not to 
miss any buildings on the high resolution satellite image. 
 
After applying selection of the largest IoU within all the 
overlapping cases, 4770 buildings are kept as one-to-one 
correspondence. The IoUs of them are plotted as histogram 
shown in figure 10. In visual interpretation, we considered IoU 
more than or equal to 0.6 as acceptable predictions. For further 
understanding of similarity that different IoUs display, figure 11 
illustrates exanples of various IoUs with inference and reference 
results. 
 

 
Figure 10. Histogram for IoU, where number of buildings were 
reported for each IoU bin. 
 

CONCLUSION 

In this study, we demonstrated the feasibility of deep learning 
approach to segment buildings automatically in agricultural land 
using high resolution Pleiades pansharpened imagery. In order to 
cover various building patterns in different districts, ENVINet5 
was trained on random 500 sub-images (with the size of 2500 
pixels × 2500 pixels) from 9 cities/counties around Taiwan. To 
maintain the quality of manual digitization results, each building 
pattern is digitized in a consistent building polygon. The 
performance of our model was evaluated by pixels within sub-
images using validation sets. The result reached 0.977, 0.814, 
0.847, and 0.829 respectively on accuracy, precision, recall, and 
F1 score. However, evaluation by pixels can be difficult to show 
the geometry of the buildings. Therefore, we evaluate our model 
by counting the number of the inference building segments, 
which are post-processed from the inference result of ENVINet5. 
Post-processing includes four steps, which are 1. setting the 
threshold for probability map, 2. vectorizing the binary map, 3. 
removing the overlapping polygons, and 4. filling up the polygon 
holes. Next, the inference building segments were analysed with 
OER and CER to check the reliability of our model making 
correct predictions. Finally, the overlapping cases were analysed 
using IoU. To ensure every inference building segment 
correspond to single reference building polygon, the largest IoU 
was kept. The majority of building segments have IoUs over 0.6, 
which are seen as acceptable for visual interpretation. 
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Figure 11. Examples of inference results with various IoUs. Reference building polygons are denoted as red, and inference building 
segments are denoted as yellow. The first column is values of IoU; the second column is the pansharpened images; the third column is 
the reference building polygons digitized manually; the last column is the overlay of the reference building polygons and the inference 
building segments
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