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ABSTRACT: 
 
Forest spatial structure describes the relationships among different species in the same forest community. Automation in the 
monitoring of the structural forest changes and forest mapping is one of the main utilities of applications of modern geoinformatics 
methods. The obtaining objective information requires the use of spatial data derived from photogrammetry and remote sensing. This 
paper investigates the possibility of applying light detection and ranging (LiDAR) point clouds and geographic information system 
(GIS) analyses for automated mapping and detection changes in vegetation structure during a year of study. The research was 
conducted in an area of the Ourense Province (NWSpain). The airborne laser scanning (ALS) data, acquired in August 2019 and 
June of 2020, reveal detailed changes in forest structure. Based on ALS data the vegetation parameters will be analysed. 
To study the structural behaviour of the tree vegetation, the following parameters are used in each one of the sampling areas: (1) 
Relationship between the tree species present and their stratification; (2) Vegetation classification in fuel types; (3) Biomass (Gi); (4) 
Number of individuals per area; and (5) Canopy cover fraction (CCF). Besides, the results were compared with the ground truth data 
recollected in the study area.  
The development of a quantitative structural model based on Aerial Laser Scanning (ALS) point clouds was proposed to accurately 
estimate tree attributes automatically and to detect changes in forest structure. Results of statistical analysis of point cloud show the 
possibility to use UAV LiDAR data to characterize changes in the structure of vegetation. 
 
 
 

 
*  Corresponding author 
 

1. INTRODUCCTION 

Forest constitutes the most biologically diverse terrestrial 
ecosystem on Earth and are imperative for maintaining the 
balance of terrestrial ecosystems (Dandois, Olano, and Ellis 
2015). To promote and support sustainable forest management 
an accurate monitoring in timely fashion is required (Timilsina 
et al. 2013). In this context, forest structural parameters (e.g., 
tree height, volume, and biomass) are key components for 
effectively quantifying forest structure and are vital for 
accurately monitoring forest dynamics (Fu et al. 2021). 
Assessing changes in forest structure over time is crucial for 
monitoring forest resources. The generation of spatially explicit 
detailed maps of forest structure, and its dynamics, has multiple 
implications in forest managing wildfire risk reduction, carbon 
sequestration assessment, timber resources availability or 
wildfire habitat analysis may benefit from such high-resolution 
information. Forest structural diversity is the physical 
arrangement and variability of the living and non-living biotic 
elements within forest stands that support many essential 
ecosystem functions (LaRue et al. 2019). Forest structural 
diversity arises from the complex interactions of a range of 
abiotic and biotic factors that influence the growth and the 
quality of vegetation (Fotis et al. 2018). A wide variety of 

structural diversity metrics can be estimated using methods that 
range from traditional forest inventory approaches to next-
generation remote sensing techniques (Fahey et al. 2019). The 
complex and dynamic nature of forest structure has proven to be 
challenging to measure accurately across scales and forest 
structure types (Atkins et al. 2018). 
 
The forestry management process is based on the use of a large 
amount of information which must be stored, managed, 
analyzed, simulated, and visualized in a dynamic and flexible 
way. Geographic Information Systems (GIS) and remote 
sensing are complementary technologies that, when combined, 
enable to improve monitoring, mapping and management of 
forest resources (S. E. Franklin 2001).  
 
Automation in the monitoring of the structural forest changes 
and forest mapping is one of the main aspects of applications of 
modern geoinformatics methods. The obtaining of objective 
information requires the use of spatial data derived from 
photogrammetry and remote sensing. Generating the spatial 
characteristics of vegetation in an automated way undoubtedly 
provides new possibilities in modelling the structure of 
vegetation, including defining biometric features and biomass, 
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which determines the developmental stage of trees and shrubs 
forming the succession process. Information about the spatial 
structure of vegetation provides a basis for studies of 
biodiversity, or spatial analyses that require up to date and 
precise information about land cover classes (Szostak 2020). 
 
Remote sensing has demonstrated its importance for the 
characterization of vegetation structure in sparsely dense 
forests, the greatest challenge being those with medium-high 
density (J. Franklin 2010). Light Detection and Ranging 
(LiDAR) is a remote sensing technology for characterizing the 
surface of the earth using a cloud of georeferenced points. 
LiDAR is a useful tool for the multi-dimensional 
characterization of forest structure because it has a strong 
capability to penetrate dense forest canopies and detect 
understory vegetation, thereby, obtaining high-precision three-
dimensional (3D) forest structure information. Over more, there 
are versatile terrestrial and aerial deployment platforms. 
Terrestrial laser scanning (TLS) and aerial laser scanning (ALS) 
have both been shown to be effective at quantifying components 
of forest structural diversity (LaRue et al. 2020). The 
development of airborne digital cameras and unmanned aerial 
vehicles (UAV) has promoted cost-effective methods for 
enhancing monitoring forest dynamics. In the forest sector, 
LiDAR has the potential to reduce the need for intensive 
ground-based measurement of stand structure, making it a 
valuable tool. LiDAR data have been recently used to quantify 
complexity and diversity in vegetation structure in a successful 
way (Atkins et al. 2018; Bakx et al. 2019; Guo et al. 2017; 
LaRue et al. 2020). 
 
The present manuscript explores the accuracy of airborne 
LiDAR data to support, automatically map, and monitoring the 
forest structural changes, in a more efficient way than 
traditional forest methods do such as human field data 
collection. 
 
The aim of this work is to analyze the potential of automated 
mapping and detection changes in vegetation structure using 
LiDAR technology and Geographic Information System (GIS) 
analyses. In this way, human work would not be necessary for 
field data collection and the methodology could be extended to 
large or inaccessible areas, being able to map and analyze the 
vegetation evolution whose data are necessary in forest 
management. Firstly, the LiDAR data are collected with a year 
of difference between first and second flight. Moreover, the 
ground truth collected by human methods coincide with the 
second fly date. Then, data are recollected in two square plots of 
2 m size within the study area. The LiDAR data are processed 
to be compared with ground truth data and the results accuracy 
is calculated in both study plots. Finally, the methodology is 
extended to the whole study area, and combustible fuel types 
and their evolution are mapped. In particular, the main 
contributions of this study are summarized as: 
 

- Design of a methodology to group tree points by 
height, Prometheus classification, and heights 
established in ASPRS classification. 
 

- Development of an algorithm to automatically 
calculate the height distribution of vegetation and 
their Canopy Cover Fraction (CCF). 
 

- Calculate the accuracy of the methodology 
compared with the one for the ground truth. 
 

- Analyse the forest changes in the whole study 
area, supported by hight parameters, biomass 
estimation, individual tree detection, CCF and fuel 
types of classification. 

 
 

2. MATERIAL AND METHODS 

2.1 Area of study 

The study area is located in the northwest of Spain. It belongs to 
the Natural Park of Baixa Limia Serra do Xurés, which has been 
catalogued as an Area for Special Conservation (ASC). The 
protected areas are ideal settings for research. The subject of 
study is an area of 0.30 Ha in the central part of the municipality 
of Lobios (Figure 1). The study area contains two sampling 
subareas corresponding to the ground truth data. One four 
square meter plot was stablished in each subarea to carry out 
field-based data collection. The climatic type existing in the 
Baixa Limia is called sub-Mediterranean oceanic temperate, 
which indicates a certain aridity during summer. This means 
that a large part of vegetation is adapted to dry periods. Under 
this climatic type, the potentially dominant vegetation in most 
of the territory is Quercus pyrenaica and Quercus robur. The 
main tree species are, Betula alba, Quercus suber, Arbutus 
unedo, Pinus sp., Ulex sup, Cytisus scoparius and Erica sp. 
These are several endemic plants, including Portugal laurel and 
Prunus lusitanica, a species that colonizes the ravines and other 
areas that have high humidity. The biogeographical location of 
Baixa Limia greatly favours the diversity of the flora in this 
territory. 
 

 
Figure 1. Location of study area. 

 
2.2 Materials 

The experimental data for this work were collected using a 
Phoenix system, which is based on a Velodyne LiDAR model, 
the Alpha AL3-32. It shows survey-grade centimetric accuracy 
and intensity calibration. Their 32 lasers emit 700,000 pulses 
per second and record up to two returns per pulse. The system 
includes a global navigation satellite system (GNSS) that 
provides real-time kinematics and post-processing options with 
an accuracy specification up to 1cm in horizontal and 2.5 cm in 
vertical positioning. The raw point cloud of the first flight was 
collected on 30th August 2019 and the second flight was 
performed on 25th June 2020. Data were collected with a density 
of 350 points/m2 and an average point spacing of 0.05 m. The 
point cloud collected in 2019 is composed by a total of 
1,074,390 points, while the total points of the 2020 point cloud 
are 705,852. 
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ALS point clouds were first preprocessed filtering vegetation 
points using the command Lasground from the LAStools 
software (Isenburg 2012). This process was done to remove the 
noise and ground points. Then, data were normalized by using 
the command Lasheight. 
 
In this work, filed based inventory data are used as ground truth 
for their comparison with the LiDAR data. The ground truth 
data were collected in two subareas within the study area. Plot 1 
has an average “x” and “y” coordinates of 574037.3 m and 
4633978.6 m, respectively. Plot 2 shows an average “x” 
coordinate of 573999.4 m and “y” coordinate of 4633973.3 m. 
In both cases EPSG:25829 ETRS89/UTM zone 29N.  
 
That validation data was collected by setting a four-square 
meters plot. For the computational analyses, a two-meter ratio 
influence area (buffer) was generated around each plot taking 
the average “x” and “y”coordinates as reference. The field data 
collection consisted of the characterization of canopy surface 
fuel strata. For the canopy strata, top canopy height, height of 
living crown and canopy closure were recorder. A Haglöf 
Vertex Hypsometer was used to measure vertical heights. This 
instrument uses ultrasonic signals to obtain the distance. For the 
surface fuel stratum, a quadrat sampling method was applied, 
where height and coverage measurements were taken each 25 
cm. Average height of ligneous species (shrubs), coverage of 
herbaceous species, coverage of shrubs and percentage of plot 
without vegetation cover was derived from that sampling. Each 
sampling plot was classified according to Prometheus fuels 
classification according to measured data and visual inspection. 
 
2.3 Data processing 

This study was developed using QGIS software (QGIS 2018) 
and Python language (Van Rossum 2007) for mapping and 
spatial analysis. The computer on which the data processing was 
carried out is a DELL G5 5500, with the following technical 
characteristics:  Processor: Intel(R) Core (TM) i7-1070 CPU @ 
2.60GHz, installed RAM:16.0 GB and 64-bit operating system, 
x64-based processor. 
 
Data processing begins with the heigh distribution functions of 
the point cloud. The heigh information is synthesizing thought 
raster layers generation and an algorithm was developed in 
python language to carry on the transformation of 3D points 
into the 2D space. The pixel value is related with the z 
coordinate from the point cloud.  
 
First, the ground points were identified using lasground, while 
the height of each point above the ground was computed using 
lasheight. It removes low and hight outliers that are often just 
noise. Therefore, each point of the point cloud contains its X, Y, 
and normalized Z coordinates. 
 
First phase of the transformation of LiDAR data into plots was 
the segmentation of point clouds in circular segments of 2 m of 
radius. Once the data of each plot were separated, next step was 
the automatic classification of vegetation points according to the 
following height intervals, the same as in the field data 
collection (Figure 2): 
 

- Low vegetation: 0.15 - 0.5 m 
- Medium vegetation: 0.5 - 2 m 
- Medium- hight vegetation: 2 - 4 m 
- High vegetation: > 4m 

 

 
Figure 2. Classification of vegetation points in both plots study  
 
Once the vegetation was grouped by height the statistical 
variables were calculated by GIS static analysis. The average 
height for each established vegetation stratum has been 
calculated, as well as for the entire vegetation in both years of 
study. In addition, the subtraction of heights in both years gives 
the characteristics of evolution and changes in the forest 
structure both in total area and in study plots. 
 
The CCF has been calculated for each stratum of vegetation and 
for the entire vegetation in both years of study. The CCF 
indicates the proportion of ground covered by vertical 
projection of each vegetation stratum. Figure 3 shows the binary 
images of CCF calculated in Plot 1 and Plot 2. All the 
parameters involved in this study were also applied to the whole 
study area in both years of study. It was divided in cells of 2 m 
to achieve a better characterisation of the fuels on the vegetation 
structure. 
 

 
Figure 3. CCF calculated for vegetation stratum in both years 

of study. 
 
Next step was focused on grouping the vegetation into 
Prometheus classes. In the European environment, a 
classification of particular interest for its adaptation to regional 
conditions and its suitability for a remote-sensing based 
production process is proposed in the European project 
Prometheus. This classification simplifies and adapts the NFFL 
(Northern Forest Fire Laboratory) (Albini 1976) system to the 
characteristics of Mediterranean vegetation. The main 
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classification criterion in Prometheus is the type and height of 
the propagating element, divided into three well differentiated 
groups: grass, shrub, and tree. The information extracted from 
the LiDAR data corresponds with the number of points in each 
generated interval. Moreover, the percentage of vegetation 
points of the study area have been estimated. An algorithm 
developed in Python language performs the automated process. 
Once the percentage of points in each band was calculated the 
next step was the application of the classification conditions 
carried out to found out the fuel model. Figure 4 shows the fuel 
models according to Prometheus in the study area.  
 

 
Figure 4. Fuels classified by Prometheus model. 

 
The next step consists of testing the parameters calculated for 
study plots with the field data. Besides, the study was 
complemented with the calculation of the following parameters: 
biomass estimation and number of trees detected in the study 
area. The biomass value was estimated by GIS analysis. A 
digital vegetation model is a normalized surface model in which 
the ground values are subtracted. A Canopy Height Model 
(CHM) was computed as a difference between Digital Surface 
Model (DSM) and Digital Terrain Model (DTM). At first, DTM 
is created from the ground returns and a DSM from the first 
returns. They were calculated from the tool las2dem selecting 
the last pulse, which represents the ground, and the first pulse 
representing other elevated features on the ground as trees. 
CHM was generated containing the information of tree heights. 
To calculate the volume occupied by trees the CHM was 
multiplied by the area of each pixel (0.10 m × 0.10 m = 0.01 
m2). The sum of all volumes (m3) in the study area was 
calculated using a zone statistics tool. 
 

 
Figure 5. CHM of study area in 2019 and 2020 

To estimate the tree points in the study area, a CHM derived 
from LiDAR was used to detect Individual Tree Crowns (ITC). 
Two pre-processing steps prepare a watershed segmentation 
approach: (1) Gaussian filtering and (2) inversion of CHM. The 
processing toolbox type smooth with gaussian filtering of Orfeo 
toolbox was used to stablish a circular structuring element of a 
radius of 2 pixels. In the next step, the smoothed CHM was 
inverted by the toolbox invert grid of SAGA. Finally, the 
watershed segmentation toolbox of SAGA was used to calculate 
the geolocation of points. The height of each individual tree was 
estimated through the CHM using the QGIS point sampling 
plugin. 
 

 
Figure 6. Individual tree crowns detection 

 
3. RESULTS AND DISCUSSION 

Table 1 shows the results obtained in LiDAR data processing 
and the ground truth between plot 1 and plot 2 in the study area.  
 

 PLOT 1 PLOT 2 

 LiDAR Ground 
truth LiDAR Ground 

truth 
HERBACEOUS 
HEIGHT (CM) 21 17 21 26.5 

SHRUB HEIGHT 
(CM) 165 150 - 57 

MAXIMUM 
HEIGHT (M) 9.56 6.0 10.81 8.0 

% WITHOUT 
CCF 0.11 0 0.33 0 

% 
HERBACEOUS 

CCF 
0.03 0.05 0.14 0.9 

% SHRUB CCF 0.01 0.05 - 0.05 
FUEL TYPE 5 5 5 - 6 5 

 
Table 1. Comparison results of LiDAR data and ground truth 

 
The total height in Plot 1 of study detected by LiDAR data in 
herbaceous stratum was 21 cm in comparison with the 17 cm of 
the ground truth collected. The result of LiDAR was 4 cm 
highest in plot 1, while in plot 2 was the contrary, the total 
height in herbaceous stratum was 21 cm in comparison with the 
26.5 cm of the ground truth used. On the one hand, the height 
shrub detected by LiDAR analyses was 165 cm for shrub in plot 
1, in comparison with the 150 cm collected in the field. On the 
other hand, in plot 2 no shrub stratum was detected in the 
LiDAR analyses, while the ground truth showed a 57 cm 
present in the plot 2 study. The maximum height parameters 
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showed higher differences between LiDAR data and ground 
truth, being the Lidar height calculation higher than the ground 
truth collected by a vertex instrument. In the plot 1 of study the 
maximum height detected was of 9.56 m, while in the ground 
truth was 6 m. The maximum height detected in plot 2 was 
10.81 m while in ground truth was 8 m. There is a 
correspondence of approximate 2 m between plots height in 
both data. Except for herbaceous and shrub height of LiDAR 
data in plot 2, generally the LiDAR data was higher than the 
ground truth data.  
 
The percentage of CCF calculated by LiDAR data processing 
showed a lower result than CCF estimated in the field. The 
ground truth data showed no percentage without CCF in both 
study plots, while LiDAR data results detected a 0.11% of plot 
1 without CCF and a 0.33% in plot 2. Herbaceous and shrub 
CCF calculated by LiDAR data showed a lower percentage than 
in ground truth, besides there is no result of shrub CCF in plot 2 
of study.  
 
The comparison in the analysis of Prometheus classification 
showed the accuracy in the classification of LiDAR height 
stratums. Results of vegetation classification detected a fuel 
type 5 in both plots. Moreover, areas with presence of fuel type 
6 were detected in plot 2. 
 
These differences between LiDAR data and ground truth could 
result from the buffer analysis around the plots. The exact same 
portion of plots has not been extracted, so there is an 
overestimation in the results. As a result, the most highlighted 
error detected was in the height shrubs with an absolute error of 
15 cm in plot 1 and 57 cm in plot 2, while the highest accuracy 
in results was in the CCF shrubs with an absolute error of 0.04 
% in plot 1 and 0.05 % in both 2. 
 
Focused on the analysis of structural forest changes in whole 
area of study there was analyzed the average height of each 
stratum. The vegetation was divided in 4 classes and the 
following parameters were calculated: CCF, biomass, number 
of individual trees, area occupied for each fuel type and the 
average height. These parameters were analyzed in both years 
of study. To carry on the study of structural changes the area 
was divided in cells of 2 x 2 m for an exhaustive analysis.  
 
Results of average height are shown in Figure 7 in both years of 
recorder LiDAR data in this study, 2019 and 2020. 
 

 
Figure 7. Average height stratums 

 
In the first vegetation group, herbaceous group (low vegetation: 
0.15 m - 0.5 m) is 0.03 m lower in 2020 than in 2019, although 
show similar values in both years. With respect to low shrubs 

(medium vegetation: 0.5 m - 2 m), the average height in 2020 is 
6 cm higher than in 2019. In the group of high shrubs (2 m - 4 
m), the average height is similar in both years, showing 6 cm 
higher vegetation in 2019 than in 2020, contrary to the high 
vegetation group (> 4 m), whose results show an increment of 
50 cm in the tree height between the period of 2019 and 2020. 
The total average height in the study area was also increased, 
registering a total of 8.95 m in 2019 and 9.58 m in 2020, so the 
increment of height was of 63 cm.  
 
Figure 8 shows the results of CCF obtained for each stratum. In 
all groups is appreciable the decrease of CCF in both years, 
which represents a 5% in tree groups and a 3% in low and 
higher shrubs groups. The area without CCF is increased in a 
6% in 2020.  
 

 
Figure 8. Fraction canopy cover in both study years.  

 
The analysis of fuel types showed lower cover area in year 2020 
than in 2019 with exception of fuel type 6, which covers a total 
of 10 m2 more in 2020. The fuel type 6 covered 178 m2 lower in 
2020. 
 
The results obtained for biomass parameter shows an increment 
with a result of 27,644 m3 for 2019 and 28,227 m3 for 2020. A 
total of 583 m3 in a study area of 0.30 Ha was increased during 
the study year. 
 
The total number of points which represents the individual trees 
detection were 834 in 2019 and 573 in 2020, 771 of which are 
trees in 2019 and 531 in 2020. In conclusion 0.23% of trees 
increased in the study area during a year.  
 
 

4. CONCLUSIONS 

The present study showed a promising approach to characterize, 
classify, and temporally evaluate forest fuels on a woodland 
area. Some limitations, however, should be pointed out. The 
difference obtained between the ground truth in comparison 
with LiDAR processing is based on the different location of the 
square plots. This is caused by establishment of the buffer 
influence area on the average coordinates. Moreover, the 
difference could be related with the accuracy specification up to 
1cm in horizontal and 2.5 cm in vertical positioning of the UAV 
data recorder. 
 
CCF results for year 2019 were higher than CCF in 2020. This 
could be caused by the high number of points. Point cloud of 
first flight contains a total of 1,074,390 points, while a total of 
705,852 points come from the point cloud of second flight 
(2020). 
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The point cloud classification has been compared according to 
Prometheus system, obtaining the same results than in field 
measures, so it can conclude the accuracy of the method. The 
maximum error associated in LiDAR processing was in 
herbaceous and shrubs stratums, and it could be originated by 
the penetration limitation of LiDAR caused by dense canopy 
cover in the study area. 
 
Results of statistical analysis of point cloud show the possibility 
to use UAV LiDAR data to characterize changes in the structure 
of vegetation since the changes in a year also were significant. 
 
The results of this study have special interest for forest 
management. To generate the spatial characteristics of 
vegetation in an automated way undoubtedly provides new 
possibilities in modelling the structure of vegetation, including 
defining biometric features and biomass, which determines the 
developmental stage of trees and shrubs forming the succession 
process. 
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