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ABSTRACT: 

 

Operational monitoring of complex vegetation communities, such as the ones growing in coastal and wetland areas, can be effectively 

supported by satellite remote sensing, providing quantitative spatialized information on vegetation parameters, as well as on their 

temporal evolution. With this work, we explored and evaluated the potential of Sentinel-2 data for assessing the status and evolution 

of coastal vegetation as the primary indicator of ecosystem conditions, by mapping the different plant communities of Venice lagoon 

(Northeast Italy) via a rule-based classification approach exploiting synoptic seasonal features of spectral indices and multispectral 

reflectance. The results demonstrated that coastal and wetland vegetation community type maps derived for two different years scored 

a good overall accuracy around 80%, with some misclassification in the coastal areas and overestimation of salt marsh communities 

coverage, and that virtual collaborative environments can facilitate the use of Sentinel-2 data and products to multidisciplinary users. 

 

 

1. INTRODUCTION 

Coastal lagoons and wetlands are natural environments of great 

ecological and functional value, and are subject to numerous 

pressures of natural and anthropogenic origin. Because of their 

high dynamism, these ecosystems need frequent monitoring, in 

particular dealing with vegetation cover and diversity. 

Monitoring coastal and wetland vegetation requires a 

multidisciplinary approach (from ecology to hydrodynamics), 

that satellite remote sensing can support by providing 

quantitative information on vegetation features and dynamics 

(Ozesmi and Bauer, 2002, Adam et al., 2010; Klemas, 2013).  

Approaches based on spectral indices derived from multispectral 

optical satellite data have demonstrated an effective solution for 

monitoring complex ecosystems, due to their 

straightforwardness, efficiency (e.g. by reducing data 

redundancy), and ease of direct interpretation of results. 

Approaches based on spectral indices derived from mid-

resolution multispectral satellite data as input (e.g. Landsat 

series) have been successfully used for different applications 

covering terrestrial and aquatic vegetation groups in freshwater 

and brackish systems, such as mapping cover and distinguishing 

plant community types (Davranche et al., 2010, Villa et al., 

2015), assessing their functional status (Dronova et al., 2012; 

Villa et al., 2013; Hestir et al., 2015), assessing the impact of 

natural hazards (Villa et al., 2012), and monitoring tidal wetlands 

(Ozesmi and Bauer, 2002; Ghosh et al., 2016).  

The availability of dense time series of Sentinel-2 data 

(Copernicus EO programme), provides new capabilities for 

deriving vegetation community. Sentinel-2 constellation is a step 

forward in terms of spatial (10 m resolution), spectral (13 spectral 

bands) and temporal (5 days revisiting time) coverage 

capabilities required for effective, operational monitoring of 

coastal ecosystems, in terms of reliability (i.e. thematic accuracy) 

and information content (i.e. semantic classification level) 

compared to what has been so far operationally feasible. 

The objectives of this work, part of the costeLAB project (Tapete 

et al., 2021) supported by the Italian Space Agency (ASI), were 

to evaluate the potential of Sentinel-2 data for assessing the status 

and evolution of vegetation communities, as a primary indicator 

of lagoon ecosystem conditions, and to outline the potential of a 

virtual lab environment for collaborative coastal research. 

 

2. MATERIALS AND METHODS 

Coastal and wetland vegetation communities of Venice Lagoon 

(Northeast Italy) were mapped following the approach developed 

by Villa et al. (2015). Venice Lagoon is the largest lagoon in 

Italy, covering an area of around 550 km2, with average depth 

around 1 m. It is characterized by a semidiurnal tidal regime with 

an average value of ±0.7 m. Its heterogeneous morphology is 

characterized by a mixed pattern of major (navigable) and minor 

channels, salt marshes, tidal flats and islands, which have been 

artificially modified by man throughout the centuries. The lagoon 

consists of a complex mosaic of different vegetation, depending 

mainly on land elevation, water salinity and freshwater input. The 

salt marshes are dominated by different halophytic species (e.g. 

Spartina maritima, Suaeda maritima, Salicornia fruticosa), 

while marginal freshwater sectors are dominated by herbaceous 

helophytes, in particular Phragmites australis, with Juncus 

maritimus as dominant species at intermediate conditions. 

Coastal dunes and areas along the shoreline of the Adriatic Sea 

are mainly populated by short herbaceous species, either shifting 

or fixed, with some small patches of coastal forest dominated by 

Pinus pinea. 

 

2.1 Reference set 

Spatial distribution information included into habitat maps of 

Venice lagoon following Natura 2000 nomenclature was used to 

compile a reference dataset of vegetation community types 

(Table 1).  
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Level 1 Class L1 

ID 

Color Level 2 Class L2 

ID 

Dominant species Habitat  

(Natura 

2000) 

Optically shallow 

water 

1  water 10 - - 

Optically deep 

water 

2  mud/sand bottom 21 - 1140 

submerged vegetation 22 Zostera marina, Zostera noltii, Cymodocea nodosa 1140, 1150 

Herbaceous salt 

marsh vegetation 

3  pioneer marsh vegetation 31 Cakile maritima, Kali turgidum, Suaeda maritima, 

Salicornia veneta 

1210, 1310 

herbaceous marsh vegetation 32 Puccinellia festuciformis, Spartina maritima, Spartina 

x townsendii, Juncus maritimus, Juncus acutus 

1320, 1410 

shrub (short) marsh vegetation 33 Sarcocornia fruticose, Suaeda maritima, Halimione 

portulacoides, Limonium narbonense,  

1420, 1510 

Herbaceous 

coastal vegetation 

4  shifting herbaceous coastal 

vegetation 

41 Elymus farctus, Sporobolus pungens, Ammophila 

arenaria, Echinophora spinosa 

2110, 2120 

fixed herbaceous coastal 
vegetation 

42 Silene colorata, Vulpia membranacea, Cerastium 
semidecandrum, Eryngium maritimum, Tortula ruralis, 

Scabiosa argentea, Malcomia spp. 

2130, 2230 

Helophytes  5  helophytic (wetland) vegetation 50 Phragmites australis - 

Coastal forest 6  deciduous woody vegetation 61 Populus spp., Robinia pseudoacacia, Rubus ulmifolius 92A0 

evergreen woody vegetation 62 Pinus pinea, Pinus pinaster 2270 

Other grassland 7  grasses (including. areas subject 

to anthropogenic disturbance) 

70 Bromus sterilis, Dasypyrum villosum, Chenopodium 

album, Cynodon dactylon, Artemisia verlotorum, 
Melilotus alba, Silene colorata, Elytrigia atherica 

6420 

Barren land 8  sand beaches, rocks and exposed 
sediments 

80 - - 

Table 1. Thematic classification scheme adopted for mapping Venice lagoon vegetation community type, with corresponding Natura 

2000 habitat nomenclature and dominant species present for each class. 

 

Habitat types were first grouped into 11 classes (Level 2), which 

were then aggregated into 6 higher level classes (Level 1). For 

training and validating the classifier, we first randomly sampled 

1000 points (10x10 m pixels, consistent with Sentinel-2 

resolution) for each Level 2 (L2) class, and then we checked the 

1000 points against vegetation conditions in 2016 and 2017, by 

excluding points not covered by natural vegetation. Finally, we 

aggregated classes at Level 1 (L1) and divided the whole 

reference set into subsets to be used for different classification 

tests: test A - composed by training set (2/3 of points of 2016 set, 

for each L1 class), validation set (1/3 of points of 2016 set, for 

each L1 class), and transferability test set (all points of 2017 set); 

and test B - composed by training set (2/3 of points of 2016 and 

2017 merged sets, for each L1 class), and validation set (1/3 of 

points of 2016 and 2017 merged sets, for each L1 class). In the 

end, the L1 classification scheme featured 8 classes: optically 

deep water, optically shallow water, herbaceous salt marsh 

vegetation, herbaceous coastal vegetation, helophytes, coastal 

forest, other grassland, barren land. 

 

2.2 Satellite data processing and assessment 

Sentinel-2 (Sentinel-2A satellite) data for 2016 and 2017 seasons, 

with cloud cover less than 50%, were gathered and converted to 

surface reflectance using SEN2COR (Louis et al., 2016). From 

the dataset, time series of two spectral indices sensitive to 

vegetation features were derived, namely the Water Adjusted 

Vegetation Index (WAVI), developed specifically to maximize 

the sensitivity to the density and biomass of aquatic vegetation 

(Villa et al., 2014), and the Normalized Difference Flood Index 

(NDFI), providing information about soil moisture and flooding 

conditions of vegetated areas (Boschetti et al., 2014). Synoptic 

seasonal features of WAVI and NDFI - i.e. minimum, maximum, 

mean and standard deviation - were derived from the time series 

for the whole year as well as for three seasonal windows: i) early 

spring period, centred on April (DOY 85-125); ii) full summer 

period, ranging from mid-July to late August (DOY 190-250); iii) 

late autumn period, ranging from mid-October to mid-November 

(DOY 280-325).  

Synoptic features were joined with multispectral reflectance at 

peak of season conditions (from Sentinel-2 acquired on 27 

August 2016 and 02 August 2017) and used as input for mapping 

vegetation communities in both years, using a supervised 

hierarchical set of cascade rules structured in a binary tree 

(Quinlan, 1996). For minimizing over-fitting issues, the 

minimum number of classified instances per each node was set 

to 100 for test A and 200 for test B, less of half the size of the 

smallest class in the training set. The rule-based classification 

tree was trained using the training set at L1 classes (7031 pixels 

for test A, 13404 for test B), and its accuracy calculated using an 

independent validation set (3515 pixels for test A, 6701 for test 

B).  

To this end, both overall metrics, i.e. Overall Accuracy (OA) and 

Cohen’s Kappa (Kappa), as well as per class metrics, i.e. F-

measure (CA), were calculated (Foody, 2002). 

For test A, the temporal transferability of the method calibrated 

with 2016 dataset was in the end evaluated by applying the 

approach to synoptic seasonal features derived from Sentinel-2 

time series of 2017, thus producing the 2017 map of vegetation 

communities and assessing its accuracy over the whole 2017 

reference set (9559 pixels). 

 

2.3 Virtual environment 

Tests were carried out within the Virtual Lab of costeLAB 

project, a virtual environment based on Docker containers meant 

to facilitate reproducible, multidisciplinary and collaborative 

research in sharing data and resources, developing novel 

applications and demonstrating products for coastal risk 

monitoring and management. The Virtual Lab is offered as a 

web-based interactive interface for live coding of Jupyter 

notebooks: it includes IPython development environment, and 

allows the use of Python, R and Fortran as programming 

languages.  
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Figure 1. Vegetation community type maps derived from Sentinel-2 time series using the integrated 2016-2017 data (test B), 

representing vegetation cover in Venice lagoon: a) 2016 season; b) 2017 season.  

 

 

Figure 2. Details of the vegetation community maps of the Venice lagoon for two sites (Site 1 and Site 2, locations shown in Figure 

1). Site 1 is located in the area of Punta Sabbioni, and Site 2 is located between Murano and S. Erasmo islands: colour infrared RGB 

composition of Sentinel-2 scene of 27 August 2016 (a, d); vegetation community type maps of 2016 (b, e) and 2017 (c, f).  
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Figure 3. Output of a Sentinel-2 product processing, as displayed in a Jupyter Notebook of the Virtual Lab. 

 

Therein, researchers can access satellite data, exploit computing 

resources, run predefined image processing routines, share or 

develop their own codes, e.g. to directly source Sentinel-2 

collections from Copernicus Open Access Hub and undertake 

spectral analysis across a selected time series. Further processing 

can be implemented by using the set of open source software 

packages that are available in the Virtual Lab (e.g. GDAL, ESA 

SNAP). 

 

3. RESULTS AND DISCUSSION 

The vegetation community classification algorithm was run 

under test A and test B conditions and vegetation community type 

maps of Venice lagoon were produced for 2016 and 2017 seasons 

(Figure 1). 

The comparison between the accuracy assessment results derived 

from the independent 2016 validation set and the 2017 (test A) 

shows a generally good accuracy for the 2016, with OA=80.6% 

and Kappa=0.771 calculated over the independent validation set. 

When the rules implemented starting from 2016 training set are 

applied to the same features derived from 2017 Sentinel-2 data, 

the overall accuracy decreases to 65.5%. This suggests that inter-

annual variations in the input features must be considered if 

temporal transferability of the method is targeted.  

The temporal inconsistency highlighted from test A outcomes 

was tackled by running the classification experiment under test B 

conditions.  

The accuracies of the vegetation community type maps produced 

for 2016 and 2017 were generally good and highly consistent 

(Table 2), i.e. with OA=78.9% (Kappa=0.751) and OA=79.1% 

(Kappa=0.754) for 2016 and 2017, respectively, and differences 

in per-class accuracies between the years lower than 0.10.  

The classes most accurately mapped, with CA higher than 80%, 

were barren land (CA>0.89), herbaceous salt marsh vegetation 

(CA>0.86), optically shallow water (CA>0.84). Coastal 

herbaceous vegetation (CA>0.77) and optically deep water 

(CA>0.69) were mapped with good reliability. 

Sub-par accuracies (CA>0.63) are scored for helophytes (mostly 

common reed patches in riparian areas) and coastal forest, while 

the most problematic class is grassland (CA<0.50). Even if the 

overall performance is slightly under 80% in OA, the consistency 

across two years suggests good chances of temporal 

transferability of the approach.  

Figure 2a-c shows an example of high detail extract of the 

vegetation community type maps over the coastal area of Punta 

Sabbioni (45°26’51’’ N, 12°25’31’’ E; see location in Figure 1), 

where natural vegetation is dominated by herbaceous-shrub 

communities growing on sand dunes and the coastal forest of the 

backshore area. The main vegetation classes (herbaceous coastal 

vegetation and coastal forest) are well delineated, as well as the 

beach sands correctly mapped as barren land. Some 

misclassification is evident in correspondence of camping sites 

where the presence of bungalows and tents intermingled with 

Pinus spp. Figure 2d-f shows another example of high detail 

extract of the vegetation community type maps of Figure 1, this 

time representing the salt marshes located in the north-eastern 

part of the lagoon, between Murano and S. Erasmo islands 

(45°27’29’’ N, 12°23’07’’ E), where dominant natural vegetation 
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is composed by herbaceous communities of halophyte species 

growing in the intertidal zone. The main vegetation class here, 

herbaceous salt marsh vegetation, is well delineated, together 

with some bare sediment areas correctly mapped as barren land. 

Moreover, the mosaic of trees and grassland of Certosa island, 

visible in the lower part of Figure 2e-f, is correctly classified. 

Finally, an example of the use of costeLAB Virtual Lab is 

provided in Figure 3, which shows the Sentinel-2 NIR RGB 

image and the WAVI map of the scene for one of the selected 

dates. The maps are obtained in a Jupyter Notebook, where 

SEN2COR has been used to obtain the atmospherically corrected 

L2A product, and the NIR RGB image and the WAVI map have 

been produced with the Python module of ESA SNAP available 

in the Virtual Lab. 

 

  Mapped class (2016)  

  W_d W_s Hb_s Hb_c Helo Fr Gl Bl CA 

R
ef

er
en

ce
 c

la
ss

 

W_d 257 83 0 0 0 0 0 0 0.75 

W_s 84 576 19 0 0 0 0 0 0.86 

Hb_s 0 9 756 7 15 59 5 3 0.86 

Hb_c 0 0 27 349 10 61 26 5 0.81 

Helo 0 0 34 2 172 21 34 0 0.64 

Fr 0 0 37 13 30 251 40 2 0.63 

Gl 0 0 18 16 43 28 103 3 0.49 

Bl 0 1 5 1 0 0 0 310 0.97 

 
 Mapped class (2017)  

  W_d W_s Hb_s Hb_c Helo Fr Gl Bl CA 

R
ef

er
en

ce
 c

la
ss

 

W_d 191 92 0 0 0 0 0 0 0.69 

W_s 77 469 4 0 0 0 0 0 0.84 

Hb_s 0 5 733 9 22 15 6 7 0.91 

Hb_c 0 0 30 304 14 18 40 38 0.77 

Helo 0 0 20 2 179 17 34 2 0.69 

Fr 0 0 10 9 21 249 70 11 0.73 

Gl 0 0 16 19 29 17 114 7 0.49 

Bl 0 0 5 0 0 0 0 281 0.89 

           

Table 2. Confusion matrix of the vegetation community type 

maps calculated on the independent validation sets for 2016 

(upper panel) and 2017 (lower panel). W_d: Water (opt. deep); 

W_s: Water (opt. shallow); Hb_s: Herbaceous (salt marsh); 

Hb_c: Herbaceous (coastal); Helo: Helophytes; Fr: Forest 

(coastal); Gl: Grassland; Bl: Barren land. 

 

4. CONCLUSIONS 

The findings presented demonstrate that spectral and temporal 

information summarized into synoptic seasonal features derived 

from Sentinel-2 time series – even with a reduced revisit, 

compared to the maximum nominal resolution of 5 days 

(Sentinel-2A plus 2B) – can be effectively used for assessing the 

status of coastal and wetland vegetation as primary indicator of 

ecosystem conditions. Retuning of classification rules, by 

incorporating training samples relative to different years, is 

needed in order to promote the temporal transferability of the 

method to different growing seasons, in particular for enhancing 

discrimination between open water and short salt marsh 

vegetation. 

Vegetation community type maps derived for the years 2016 and 

2017 have generally provided a reliable picture of Venice lagoon 

vegetation, with an overall accuracy around 80%, while some 

minor misclassification issues were registered for vegetation 

classes of more terrestrial habit (trees and grassland). 

Furthermore, the capabilities of the virtual collaborative 

environment developed within the costeLAB project proved 

useful for facilitating the use of Sentinel-2 data and products to 

multidisciplinary, non-expert users. 
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