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ABSTRACT: 

Accurate inversion of vegetation biochemicals using the PROSPECT model mostly depends on a proper inversion approach, 

including a suitable optimizing algorithm, appropriate dependent variables, and different properties from spectra of reflectance (R) 

and transmittance (T). In this paper, we propose a special inversion method using PROSPECT-5 and then explore its effectiveness in 

inverting chlorophyll, carotenoids, equivalent water thickness, and dry matter per area data from the ANGERS database. The 

inversion strategy includes (i) an optimal algorithm with constrained bounds (fminsearchbnd) to replace the common function 

fminsearch, (ii) and four parameters are considered together and separately as dependent variables of models, (iii) Using properties 

from the spectra of R, T and combined R&T to invert the above four biochemical parameters. The results show that fminsearchbnd 

can improve the model's R2 based on a field-measured database. Moreover, using the entire set of parameters together as the model 

inputs is more effective than using single parameters separately. T spectra are favoured for all parameter inversions in the model 

database while being inapplicable in the ANGERS database. These findings provide an appropriate inversion strategy for the 

PROSPECT-5 model in vegetation biochemical parameters analysis and suggest further research to develop an accurate inversion 

process for vegetation based on various physical models. 

* Corresponding author

1. INTRODUCTION

Vegetation is a significant aspect of the earth's ecosystems that 

strongly impact humans' daily lives. Dense and green vegetation 

on land offers a natural source of oxygen, a comfortable living 

environment, and absorption of greenhouse gases, such as CO2

(Krupa, S.V. and R.N. Kickert., 1989；Kimball, B.A., et al., 

1992). The situation of vegetation is an important 

comprehensive index to measure the ecological environment 

(SUN H Y, LI B., 1998). Timely and accurately grasp the 

situation of vegetation growth has important practical 

significance for the sustainable development of city and natural 

environment. The monitoring information of vegetation 

situation has been mainly achieved by combination of field 

measurements, which  plays excellent performance in terms of 

high accuracy and low error in a small area. But the monitoring 

of vegetation growth often involves a wide range, many 

contents and complex topography, it is easily influenced by 

subjectivity of human and heterogeneity of ground spatial 

(Wang Qiao.,2021). These impacts lead to the requirement of 

accuracy of vegetation monitoring information are difficult to 

meet in a large area. Remote sensing monitoring technology can 

be uesd as wide coverage and continuity of time and space 

(XIONG J N, PENG C, CHENG W M, et al.,  2018; LI C X, 

GONG J, DENG F, et al., 2019). To a certain extent, these 

advantages can make up for the shortcomings of field 

measurement methods in large-scale regional monitoring  (LI C 

X, DENG F, ZHANG J H, et al., 2019). In recent years, the 

research of monitoring information of vegetation situation based 

on remote sensing technology has been drawn widely attention 

by scholars of remote sensing. Data on vegetation research 

primarily focuses on passive remote sensing technology, which 

is based on the different spectral characteristics of reflectance 

(R) and transmittance (T) related to different environmental

stresses (Adam, E., O. Mutanga, and D. Rugege., 2010;

Semeniv, O.V., 2016). These differences can be utilized to

analyse the growth status of vegetation. In this paper, we

employ the PROSPECT-5 model for biochemical parameter

analysis using a special inversion strategy.

Several parameters affect the growth status of vegetation and 

are detectable as differences in R and T spectra  ( Semeniv, 

O.V., 2016). These parameters include biochemical parameters,

such as chlorophyll (Cab), carotenoids (Car), and water, and

structural parameters, such as leaf structure index (N) and leaf

area (Yansong, B., L. Liangyun, and W. Jihua., 2008). Accurate

inversion of these parameters, especially biochemical

parameters, plays an important role in vegetation analysis (Pu,

R. and P. Gong., 2011). Researchers typically analyse the

relationship between R and T spectra and biochemical

parameters by using statistical methods and optimization

algorithms (Adam, E., O. Mutanga, and D. Rugege.,  2010;

Okin, G.S., et al., 2018), however, although some satisfactory

results have been obtained, the conclusions obtained in

particular environments are inapplicable to new environments.

Hence, studies to design a universal method for analysis of

vegetation growth status are needed. In this regard, the leaf

model PROSPECT proposed by Jacquemound (Jacquemoud, S.

and F. Baret, PROSPECT., 1990) is the most successful way to

invert the biochemical parameters of vegetation.

The PROSPECT model is developed from the plate model 

( Richardson, A.J., et al., 1969) and is based on the interaction 

between solar radiation and the pigments or inner structure of 
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leaves. One of the latest versions of this model is PROSPECT-5, 

which can simulate the R and T spectra of leaves using N, Cab, 

Car, equivalent water thickness (EWT), and dry matter per area 

(LMA) ( Feret, J.B., et al., 2008; Féret, J.B., et al., 2017; Sun, J., 

et al., 2018). By running this model in forward mode, a large 

synthetic spectral database encompassing the wavelengths of 

400 to 2500 nm can be generated. The common inversion 

process of PROSPECT-5 requires R and T spectra as model 

inputs, but the spectra of R and T over wide wavelength bands 

are closely correlated with each other and are sensitive to 

certain parameters. Thus, an appropriate inversion strategy, 

such as analysing each parameter at a multi-stage process 

according its sensitivity, is significant for the efficient inversion 

process. We designed a strategy to study the effect of different 

spectral properties derived from R and T on inversion results. 

With synthetic spectra or field measured data, the biochemical 

parameters of vegetation can be inverted using optimal 

algorithms, proper cost functions, and appropriate dependent 

variables. These conditions constitute an inversion strategy for 

biochemical parameters, which is important for the accurate 

analysis of vegetation growth status. 

 

In this paper, an inversion strategy for the PROSPECT-5 model 

is designed as follows: (a) a derivative function of fminsearch 

called fminsearchbnd is used to study whether the constrained 

bounds are effective and sensitive to the inversion results; (b) 

four biochemical parameters (Cab, Car, EWT, and LMA) are 

inverted simultaneously, and the result is compared with 

separately inverting each parameter; and (c) spectra of R, T and 

R&T are separately selected as inverting parameters. 

 

2. MATERIALS AND METHODS 

2.1  Materials 

The quantity and quality of analysis samples determine the 

accuracy and reliability of our experimental results. Data used 

in this paper are from two sources: ANGERS database and 

Modelled database. 

 

2.1.1 ANGERS database 

 

Catalogue ANGERS 

Date 2003 

Number of sample 276 

Number of species 49 

Spectrophotometer/ 

spectroradiometer 
ASD FieldSpec 

Spectral range 400–2450 nm 

Spectral sampling 
1.4 nm (350–1050 nm) 

2 nm (1000–2500 nm) 

Solvent Ethanol 95% 

Method for pigments Lichtenthaler (1987) 

 

Table 1 summarizes the main characteristics of the ANGERS  

database including  information of time, Number of sample, 

Number of species, Spectrophotometer/spectroradiometer, 

Spectral range, Spectral sampling and Solvent Method for 

pigments ( Feret, J.B., et al., 2008). 

Catalogue degree Measured value 

Chlorophyll a 

(μg/cm2) 

Min 0.4 

Max 76.8 

Mean 25.4 

Chlorophyll b 

(μg/cm2) 

Min 0.3 

Max 29.9 

Mean 8 

Carotenoids 

(μg/cm2) 

Min 0 

Max 25.3 

Mean 8.7 

Water (cm) 

Min 0.0044 

Max 0.0340 

Mean 0.0116 

Dry matter 

(g/cm2) 

Min 0.0017 

Max 0.0331 

Mean 0.0052 

 

Table 2 summarizes the main measured value information of the 

types of biochemical constituents. The types include five types: 

chlorophyll a (Ca), chlorophyll b (Cb) and total carotenoid (Car) 

content, water depth (Cw or EWT for equivalent water 

thickness), and dry matter content (Cm or LMA for leaf mass 

per area) ( Feret, J.B., et al., 2008). 

 

One source is the ANGERS database, established in June 2003 

in Angers, France (Feret, J.B., et al., 2008). This database 

includes 276 leaf samples representing a large variety of typical 

plant species. The data of transmittance spectra and leaf 

directional–hemispherical reflectance measured in the optical 

range(b2 nm step) with laboratory spectrophotometers or field 

spectroradiometers equipped with integrating spheres was used 

to making the datasets of ANGERS database. The types of 

biochemical constituents include five types: chlorophyll a (Ca), 

chlorophyll b (Cb) and total carotenoid (Car) content, water 

depth (Cw or EWT for equivalent water thickness), and dry 

matter content (Cm or LMA for leaf mass per area) ( Feret, J.B., 

et al., 2008). In ANGERS, R and T spectra of leaves were 

measured using laboratory spectrophotometers or field 

spectroradiometers with a spectral interval of 1 nm. Table 1 and 

table 2  summarizes the main characteristics of the ANGERS 

database. 

 

2.1.2 Modelled database 

 

The other database is composed of spectra modelled using 

PROSPECT-5. Four biochemical parameters (Cab (chlorophyll 

a and chlorophyll b), total Car (carotenoid content), EWT 

(water depth) and LMA (dry matter content)) are selected to 

validate the inversion strategy employed in this paper, and their 

bounds are set using measured maximum and minimum values 

in the ANGERS database. We assume that parameter values 

follow a Gaussian distribution within the range of [Minx, Maxx] 

(x represents the biochemical parameters) then establish the 

database by generating different parameter sets. 
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2.2 Methods 

The inversion strategy of using the PROSPECT-5 model to 

generate biochemical parameter sets is carried out with an 

optimizing algorithm called Nelder-Mead (N-M) method. The 

study evaluates whether simultaneously or separately inverting 

the four parameters (Cab (chlorophyll a and chlorophyll b), and 

total Car (carotenoid content), EWT (water depth), and LMA 

(dry matter content)) yields the most effective results. The 

spectral properties from R and T spectra are treated respectively. 

The N-M method with no limitation bounds is a commonly 

applied method for finding the minimum or maximum of 

nonlinear optimization problems, the derivatives of which may 

be unknown in n-dimensional space. This method is also called 

the downhill simplex method or the amoeba method ( Nelder, 

J.A. and R. Mead., 1965), proposed by Nelder and Mead ( Press, 

W.H., 1992) as a development of the method of Spendley et al.  

( Spendley, W., G.R. Hext, and F.R. Himsworth., 1962). 

 

The N-M method uses a polyhedron (having n+1 vertexes) to 

approach the optimal point by updating the worst vertex xn+1 

with a new best point. Assuming that x1, …, xn+1 are the 

vertexes of a polyhedron and satisfy, and the worst vertex is the 

maximum point of a function f (x), then 

 

f (x1) ≤ f (x2) ≤... ≤ f (xn + 1) x∈Rn     (1) 

 

There are four updated settings for this method: reflection, 

expansion, external contraction, and internal contraction. If 

these four processes cannot reach an optimal solution, the 

search intervals will be successively contracted to find the 

optimal point. This optimization process can be resolved 

depending on several coefficients that control its search speed 

and direction ( Kolda, T.G., R.M. Lewis, and V. Torczon., 2003; 

Lewis, R.M., A. Shepherd, and V. Torczon., 2005; Yu, W.C., 

1979). This method is carried out using Matlab 2014b and, 

based on a function called fminsearch from which a derived 

function with constrained bounds, fminsearchbnd ( Luersen, 

M.A. and R.L. Riche., 2004), is then applied to estimate the 

sensitivity and effectiveness of constrained bounds on the 

inversion results of the PROSPECT-5 model. 

 

3. RESULTS AND DISCUSSION 

Different inversion strategies yield different inversion results, 

and sometimes the differences between these results are not 

close. Therefore, choosing an appropriate inversion strategy will 

help improve the reliability of the experimental results. The 

optimal algorithm, named fminsearchbnd, improves inversion 

results and the calculation efficiency of measured field data. 

Using biochemical parameters (Cab(chlorophyll a and 

chlorophyll b), and total Car (carotenoid content), EWT (water 

depth), and LMA (dry matter content)) as separate dependent 

inputs for the inversion process is compared with inverting all 

of the parameters simultaneously, which is the main inversion 

strategy for biochemistry parameters in this paper. Different 

spectra, including R and T, containing abundant, diverse but 

relevant information, have been correlated to all of the 

parameters (Cab(chlorophyll a and chlorophyll b), and total Car 

(carotenoid content), EWT (water depth), and LMA (dry matter 

content)) to estimate sensitivity and effectiveness for special 

parameters inversion. The results of this inversion strategy are 

described below. The databases are from ANGERS and the 

synthesized values generated using the PROSPECT-5 model. 

 

3.1 Parameters inversion using the N-M method with 

bound constraints  

In general, the R2 of simultaneously inverting four parameters 

with the N–M method is greater than 0.6, except in the case of 

Car contents in the ANGERS database. Even so, by using the 

spectra of R+T, the R2 of Car can be increased to 0.5988 

(Figure. 1). Compared with the function without bound 

constraints, the fminsearchbnd function generally improves 

inversion results based on the ANGERS database except for 

LMA using T spectra, in which case the method of fminsearch 

yields a R2 of > 0.9, which is considerably higher than that 

obtained using fminsearchbnd. 

 

 
 

Figure 1. Values of coefficient of determination (R2) using the N-M method to invert biochemical parameters based on the spectra 

of reflectance (R), transmittance (T) and both (R&T). The data are from ANGERS database. 
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Figure 2. Values of coefficient of determination (R2) using the N-M method to invert biochemical parameters based on the spectra 

of reflectance (R), transmittance (T) and both (R&T). The data are from modelled database. 

 

 

In Figure. 1, although the model R2 for results based on the T 

spectra is lower than that using R spectra, improvement of the 

inversion results resulted from adding R+T spectra as the input 

of the cost function of the inversion model. In contrast to the 

ANGERS database, use of the modelled database does not 

considerably improve the inversion results when the 

fminsearchbnd algorithm is applied; however, for the modelled 

database, the T spectra yield the highest R2 for all four 

parameters, regardless of the algorithm used (Figure. 2). The T 

spectra are generated after light penetrates into plant leaves or 

canopy, reacting with many pigments, such as Car and Cab, 

within their inner structure. This finding may explain why using 

T spectra for model inversion yields better results in the 

modelled database than in the ANGERS database. 

 

In Figure. 1 and Figure. 2, the N-M method with bound 

constraints can be considered the prior choice for biochemical 

parameter inversion. By taking the relationship between each 

parameter and spectral characteristic into account, variables of 

R, T, or R+T spectra can enhance the inversion ability of the 

physical model. According to the distribution range of the 

parameters, algorithms with bound constraints can reduce 

unnecessary calculations in the optimization process and 

shorten the search time. Different parameters are related or 

sensitive to some spectral variables; therefore, selecting the 

proper spectral characteristics and constrained conditions for 

the inversion model can improve the results. Thus, the inversion 

strategy described in this paper can provide effective guidance 

for biochemical parameter inversion based on the physical 

model. Certainly, there are many outstanding algorithms for 

optimize the cost function of PROSPECT-5, varying from 

common statistic regression to numerous intelligent algorithms. 

A worthy future work would be to find the proper ones for 

inversion of specific parameters, highlighting their advantages 

and then applying them to the inversion of biochemical 

parameters in practice. 

 

3.2 Separate inversion of parameters 

The parameters are sometimes correlated with each other, 

especially those that have close relationships in both the visible 

or near infrared bands. Selecting a single biochemical parameter 

as the input of the cost function, avoiding the mixed sensitive 

bands range, affects the inversion results. In this study, we 

employ an inversion strategy using fminsearchbnd to separately 

invert four biochemicals based on spectra of R, T, and R&T. 

The resulting R2 values are listed in Table 3. Unsatisfactorily, 

this inversion strategy does not improve the R2 considerably 

and yields poorer results in most cases, especially when using T 

spectra for all parameters. For the Cab, R2 is >0.9 when all four 

parameters are inverted simultaneously based on R spectra, but 

when the input of the cost function of the inversion model is 

Cab only, R2 is <0.9 and even drops to <0.3 when using T 

spectra. Moreover, the availability of the T spectra for model 

 inversion deteriorates gradually, and the R+T spectra become 

less advantageous for inversion of the parameters, especially for 

Cab and EWT in the ANGERS database. This result is 

inconsistent with that generated using the modelled database 

(Figure. 2). 

 

The inversion strategy in this study significantly improves the 

inversion model results for the biochemical parameters, 

especially when using the optimal algorithm with bound 

constraints to replace the fminsearch function. However, 

improvements in parameter inversion resulting from single-

parameter inputs to the cost function are suboptimum. In 

contrast, by combining the four biochemistry parameters 

together as the dependent variables of an inversion model, the 

results are improved. In fact, there are many factors that may 

affect the results as single-parameter inputs, such as vegetation 

type, and conditions of spectra collection, such as sites, and 

years. Such factors can be the subject of future work. Wide 

range spectral bands (e.g., 400-2450 nm for the ANGERS 

database) contain many useful information, but also possibly 

being redundant and noisy for parameters inversion. For this 

reason, sensitive band selection before generating models is 

another necessary and important inversion strategy. 
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Catalogue The types of variable 

Variable All variables used for inversion Single variable used for inversion 

Spectra R T R&T R T R&T 

Cab 0.9299 0.9044 0.8596 0.8696 0.2301 0.7167 

Car 0.5163 0.4199 0.5988 0.4704 0.1572 0.5116 

EWT 0.9303 0.8980 0.9196 0.7847 0.1660 0.5768 

LMA 0.4711 0.4258 0.9214 0.5437 0.1092 0.3430 

 

Table 3. Comparison of R2 values by using all variables and single variables for the inversion model based on the spectra of R, T and 

R&T. The database is ANGERS and optimal algorithm for cost function is fminsearchbnd.

 

4. CONCLUSIONS 

The PROSPECT model has been applied in many fields and has 

mostly achieved satisfactory results. In this paper, we employ 

the PROSPECT-5 model for biochemical parameter analysis 

using a special inversion strategy. The results show that a good 

inversion strategy is as significant as the classical physical 

model for vegetation analysis, and we can select a proper and 

effective inversion strategy for different goals. By choosing the 

optimal algorithm and proper input variables of the cost 

function for the inversion model, satisfactory results can be 

achieved. Although the results obtained after separating 

parameters into inversion function inputs are not ideal 

compared with using all parameters simultaneously, the 

proposed inversion strategy in this study may represent a 

valuable attempt to carry out vegetation analysis based on the 

PROSPECT-5 model. 
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