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ABSTRACT: 

The increasing availability of EO data from the Copernicus program through its Sentinel satellites of the medium spatial and 

spectral resolution has generated new applications for risk management and disaster management. The recent growth in the 

intensity and number of hurricanes and earthquakes has demanded an increase in the monitoring of landslides. It is necessary 

to monitor large areas at a detailed level, which has previously been unsatisfactory due to its reliance on the interpretation of 

aerial photographs and the cost of high-resolution images.  

Using the differential Bare Soil Index for optical imagery interpretation in combination with cloud-computing in Google Earth 

Engine is a novel approach. Applying this method on a recent landslide event in Oaxaca in Mexico around 62% of the landslides 

were detected automatically, however, there is a big potential for improvement. Including NDVI values and considering images 

with a higher spatial resolution could contribute to the enhancement of landslide detection, as the majority of missed events 

have a size smaller than half a pixel. Landslide detection in Google Earth Engine has become a promising approach for big 

data processing and landslide inventory creation. 

1. INTRODUCTION

A landslide is a movements of rocks, earth or debris down-

hill categorized on the basis of material and type of move-

ment (European Soil Data Centre (ESDAC)). Statistics re-

veal that landslides caused almost 30.000 fatalities and 40 

billion dollars of economic losses in the period of 2000 to 

2014 (Valerio Lo Bello, 2017). Several factors have an in-

fluence on the occurrence of landslides and are classified 

whether the trigger is natural like ground vibrations, 

groundwater pressure or wildfires or human activities be-

ing mining, pipe leakages, constructions and soil excava-

tion (Mohan et al., 2020). Landslides are needed to be con-

sidered as an important threat, which is growing due to 

population growth, urbanization in unstable areas of high 

slopes, deforestation and rising occurrence of weather ex-

tremes that could trigger such events. 

The Detection of landslides and landslide inventories have 

been in discussions among scholars for a while. The meth-

ods range from geomorphologic field survey and visual 

analysis of aerial images to remote sensing based ap-

proaches like satellite imagery (Mohan et al., 2020). Re-

mote sensing techniques further include Deep Learning 

and Machine Learning being promising in the subsequent 

years (Mohan et al., 2020).  

The increasing availability of EO data from programs like 

Copernicus enhance the possibilities to develop new appli-

cations of change detection, landslide inventories or the 

use of Artificial Intelligence. Image classification and the 

automation of workflows is a great way to detect changes 

in the land cover.  

* Contributing author

Considering such changes the Differential Bare Soil Index 

is a well-known indicator used in studies about mapping 

drought affected areas or urbanizing settlements (Li & 

Chen, 2014; Ma et al., 2016; Nguyen et al., 2021).  

High soil brightness and low vegetation coverage help to 

identify uncovered soil areas that could be the result of 

landslides (Ma et al., 2016). It is crucial to detect such 

changes in a reliable way, considering the temporal reso-

lution of such images. Abrupt changes in the land surface 

and land cover are indeed a great way to detect landslide 

events. 

Converting the DBSI into a workflow, data processing in 

Google Earth Engine (GEE) is realized for enhancing land-

slide detection by acceleration through higher computa-

tional power. 

2. MATERIALS AND METHOD

2.1 Study area 

The study zone is located in one of the world's hotspots 

affected by intense earthquakes and hurricanes that oc-

curred in 2020 in the districts of San Pedro Totolapa and 

San Francisco de Ozolotepec in the State of Oaxaca in the 

state of Mexico (Fig. 1).  

2.2 Data Sources 

We used the online geospatial and remote sensing cloud 

computing platform called Google Earth Engine (GEE) 

(Gorelick et al., 2020), to create Sentinel-2 mosaics. We 

selected only images between 2020-05-01 and 2020-05-30 

for the pre-landslides mosaic, and between 2020-06-20 

and 2020-06-28 for post-landslides mosaic in order to 
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avoid clouds and cirrus, and yet attempt to include a large 

enough search window for full spatial coverage of the area. 

In order to validate the methodology applied to Sentinel-1 

data, a landslide inventory was constructed base on SPOT-

7 images (1.5 m resolution) acquired from May before the 

earthquake. This product implies a fusion process between 

a high panchromatic resolution (1.5m) and the multispec-

tral imagery (Table 1). 

 

 

Figure 1. Oaxaca State in Mexico 

 

 

Table 1.  Details of the satellite data used in this study. 

Satellite data Spatial resolution (m) Date of acquisition 

Sentinel-2 A&B 10 m 03/05/2020, 08/05/2020, 13/05/2020, 

18/05/2020, 23/05/2020, 28/05/2020, 

22/06/2020, and 27/06/2020 

SPOT-7 1.5 m 06/27/2020 and 11/09/2020 

 

 

2.3 Pre-processing of satellite data 

 

The landslide detection that uses space-based data in such 

cloud platforms has changed the way to see the risk and to 

manage the disaster dramatically. It aims to facilitate 

working with big data in the cloud and is therefore an al-

ternative to the utilization of desktop software. The de-

tailed methodology involved in assessing of landslide de-

tection is presented in Fig. 2 

 

The pre-processing of the images involved the filtering of 

the original image collection by specific dates (pre and 

post), a cloud masking (mask2clouds) and, finally, the me-

dian values. Next, we will select the needed bands to build 

the spectral indices and to clip the scene images to the 

study area.  

To avoid clouds and cirrus clouds, we used more specifi-

cally cloud masks that are calculated from the three QA 

bands that are present. We used the QA60 band, which is 

a bitmask band with cloud mask information, where the 

bits 10 and 11 are clouds and cirrus, respectively. 
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Figure 2. Landslide mapping workflow  

 

 

2.4 Differential Bare Soil Index (dBSI) 

 

In this study for landslide rapid mapping, we propose to 

base the response on the Bare Soil Index (BSI) (Roy et al., 

1996; Rikimaru & Miyatake, 1997) for the detection of the 

traces of the soil movements. The BSI is a numerical indi-

cator that combines blue, red, near-infrared and short wave 

infrared spectral bands to capture soil variations (Figure 

3).  

These spectral bands are used in a normalized manner. The 

short wave infrared and the red spectral bands are used to 

quantify the soil mineral composition, while the blue and 

the near-infrared spectral bands are used to enhance the 

presence of vegetation. BSI can be used in numerous re-

mote sensing applications such as soil mapping, crop iden-

tification (in combination with NDVI), etc. To calculate 

the BSI, the following equation is used (Equation 1): 

 

                    𝐵𝑆𝐼𝑆2=
(𝑆𝑊𝐼𝑅+𝑅𝑒𝑑)−(𝑁𝐼𝑅+𝐵𝑙𝑢𝑒)

(𝑆𝑊𝐼𝑅+𝑅𝑒𝑑)+(𝑁𝐼𝑅+𝐵𝑙𝑢𝑒)
         (1) 

 

However, the use of the BSI index itself cannot character-

ize the landslide configurations on terrain, due to after 

landslide event, the spectral response changes shortly es-

pecially over zones with fast reactivation in the vegetation 

cover. Therefore, to improve the interpretation of the re-

sults we use a temporary version or dBSI. This index takes 

the spectral response before and after the events, to obtain 

better results of the values of a BSI date linked to the slip 

targets.  

Figure 3. The spectral signature of bare soils associated 
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This index is calculated by subtracting the subsequent val-

ues of the BSI from the initial values (Equation 2). In the 

end, the areas with the presence of landslides will appear 

with negative values. These results are scaled by a factor 

of 1000 to facilitate their interpretation and range detec-

tion. 

 
dBSI = (BSI pre Landslide) – (BSI Post Landslide) 

* 1000 

(2) 
 

2.5 Detection approach 

 

The first step is the calibration of the differential Bare soil 

index (dBSI), whose values were taken on areas of interest 

on the field (AOI) for calibration to extract the value of the 

interval of the related zones with landslides. Mapping is 

created by using a tree classifier that identifies areas of 

bare soil related to landslides (Fig. 2). 

 

In this way, we apply statistical analysis of the value of 

dBSI on the AOI zones, to extract the value of the interval.  

The value of the slip landslide thresholds will be deter-

mined by the mean of the dBSI over the AOI + and - one 

standard deviation (Equation 3): 

 
│Thrmax = MdBSI + SDdBSI; Thrmin = MdBSI – SDdBSI │

      (3) 

 
where Thrmax and Thrmin is the interval of detection, (MdBSI) 

is the mean of dBSI and (SDdBSI) standard deviation value 

on AIO zones respectively. 

 

2.6 Accuracy assessment 

 

The accuracy of the classification results derived from the 

proposed technique by the dBSI, can be expressed using 

an error matrix (Congalton, 1991), or in terms of branching 

factor, lack factor, detection percentage and quality per-

centage (Lee et al., 2003). While the first method is effec-

tive when the purpose is to evaluate the accuracy of the 

classification result of the whole image/area, the second 

method is effective when the goal is to detect only targets 

such as landslides from the image. Therefore, in this study, 

the latter method was selected to estimate the precision fig-

ures using the following equations (Lee et al., 2003; Tapas 

et al., 2012). 

 

𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐵𝐹) =  
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (4) 

 
𝑀𝑖𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑀𝐹) =  

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
        (5) 

 
   𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =

    
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
∗ 100          (6) 

 
   𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =

     
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
∗ 100

          (7) 

 
The branching and missing factors indicate two types of 

potential errors, that is, false positives and false negatives. 

Those factors can be generated during the automatic detec-

tion process. The detection percentage indicates the land-

slides correctly identified by the proposed methodology. 

Percent quality, which is the strictest measure of precision 

among the four previous precision estimates, indicates the 

probability that a landslide identified by the methodology 

is true (Tapas et al., 2012). 

 

True positives, false positives and negatives were calcu-

lated by comparing the landslide inventories created semi-

automatically by the proposed methodology with the ref-

erence inventories, which were created manually using the 

visual interpretation technique on high resolutions images 

SPOT-7 (Fig. 4). 

Figure 4. Estimation of the precision: true positives (a), 

false positives (b) and false negatives (c), for assessing the 

accuracy of dBSI in landslides. 

 

 

3. RESULTS AND VALIDATION 

 

From descriptive statistics analysis of the AOI values ob-

served in the field, it was possible to determine the mean 

(-336.95) and SD (-336.95) values respectively. This indi-

cates that the majority of pixels related to landslides pre-

sents BSI values (> 0.7), and in consequence which deter-

mines that most of the areas where landslides occur show 

values between dBSI of -158.17 to 495.12 in the dBSI ap-

proximately (Fig. 5). 

The results of the accuracy assessment of the dBSI for 

landslide detection, were obtained for the total number of 

landslides detected by the decision tree based semi-auto-

matic classification. Wise accuracy figures for all land-

slides in the Oaxaca state area and their classification into 

the different precision types measures are provided in Ta-

ble 2. 

 

Table 2. Accuracy of dBSI landside detection classifier in 

the Oaxaca state for the four different precision types 

Analysis of area 3528,66 

Visual detection SPOT 7 (ha) 12,99 

dBSI detection Sentinel 2 (ha) 10,94 

Overlap Analysis (ha) % 

true positives 6,80 52,35 

false positives 6,19 47,65 

false negatives 4,14 37,86 

Differential bared Soil Index 

(dBSI) 

factor Value 

Branching factor BF 0.91 

Miss factor MF 0.61 

Detection percentage (%) DP 62.14 

Quality percentage (%) QP 39.69 
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Figure 5. Landslide thresholds of the dBSI   

 

The results obtained were validated through high-resolu-

tion images from SPOT 7. The total area analysed summed 

up to 3,528.66 ha, where 10.9 ha were detected by the dBSI 

semi-automatic method. Respectively a visual interpreta-

tion of the AOI using the SPOT 7 images a total amount of 

12.9 ha of landslide affected areas were found, evidencing 

that the proposed method is capable of detecting approxi-

mately 62% of landslides.  

The main omissions were those being less than approxi-

mately half a pixel wide. This demonstrates the potential 

implementation of the dBSI for rapid mapping of land-

slides in earthquakes or intense hurricanes. Using Sentinel-

2 images that are free of shadows, clouds and cirrus seem 

to provide enough information to reliably detect landslide 

events.  

 

The performance of the methodology for landslide detec-

tion is moderately good. Particularly Sentinel 2 images, 

both for the detection capacity, if not also for the Miss Fac-

tor (MF) are reliable data sources for applying the meth-

odology. The miss factor is further lower compared to 

other methodologies (see Tapas et al., 2011). This is 

mainly due to the identification of changes in vegetation 

as false positives. 

 

 

CONCLUSION 

 

The differential Bare Soil Index proposed (dBSI) in this 

study, was developed to detect the traces of the ground 

movements after earthquake. It can be seen as a comple-

mentary method to support traditional interferometric-

SAR analysis. 

 

The preliminary results showed that the use of dBSI is suf-

ficient to identify recent traces of soil movements which 

are useful for a rapid mapping response during a disaster 

event. In this case, the use of the dBSI index itself has not 

been able to characterize the landslide configurations on 

terrain, due to the short reactivation time of the vegetation 

cover in the study area and the rapid spectral changes re-

lated to this phenomenon. Research areas of quick vegeta-

tion recovery, like Mexico would therefore need to be con-

sidered in an additional study, whereas research areas in 

different vegetation zones of slower vegetation recovery 

could be a suitable AOI to validate the method. 

 

Therefore, to improve the interpretation of the results, we 

recommended the use of another remote sensing based in-

dex like the NDVI or SAVI in the analysis (each with im-

ages from pre and post events) to eliminate the vegetation 

change effects and get better outcomes of BSI values 

linked to landslide targets.  

 

Unfortunately, it also highlights certain clouds, cirrus 

clouds, making it difficult to separate areas of bare ground 

from other covers. These results are highly dependent on 

vegetation change, seasonal agriculture, and cloud-free 

images. Considering the study area certain measurements 

would need to be taken care of to assure detection reliabil-

ity. 
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