
SUPERVISED CLASSIFICATION METHODS FOR AUTOMATIC DAMAGE 
DETECTION CAUSED BY HEAVY RAINFALL USING MULTITEMPORAL HIGH 

RESOLUTION OPTICAL IMAGERY AND AUXILIARY DATA 
 

 
A. Cerbelaud 1,2,3 *, L. Roupioz 1, G. Blanchet 2, P. Breil 3, X. Briottet 1 

 
1 ONERA, DOTA, Université de Toulouse ; F-31055 Toulouse, France - arnaud.cerbelaud@onera.fr 
2 Centre National d’Etudes Spatiales (CNES), EO Lab ; 31400 Toulouse - arnaud.cerbelaud@cnes.fr 

3 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UR RiverLy ; 69100 Villeurbanne 
 

Commission III, ICWG IVa 
 
 

KEY WORDS: optical remote sensing, rainwater runoff, damage, vegetation index, change detection, supervised classification 
 
 
ABSTRACT: 
 
In the context of climate change and rising frequency of extreme hydro-meteorological events around the world, flood risk management 
and mapping of heavy rainfall-related damages represent an ongoing critical challenge. For decades now, remote sensing has been 
largely used to investigate spatial and temporal changes in land use and water resources. Today, different satellite products provide 
fast and crucial knowledge for the study of hydrological disasters over large areas, possibly in remote regions, with high spatial 
resolution and high revisit frequency. Yet, until now, few works have sought to detect the full range of extreme rainfall-related damages 
with optical imagery, especially those caused by intense rainwater runoff beyond the direct vicinity of major waterways. The work 
presented in this paper focuses on the Aude severe weather event of October 15th, 2018, in the South of France, for which more than a 
thousand claims for agricultural disaster were registered, both related to river overflowing and rainwater runoff. 
The full resources of ground truths, contextual information, land use as well as digital elevation model (DEM) combined to high 
resolution and high frequency optical imagery (Sentinel-2, Pléiades) are used to develop an automatic damage detection method based 
on supervised classification algorithms. Through the combination of several indicators characterizing heterogeneous spectral variations 
among agricultural plots following the event, a Gaussian process classifier achieved various classification accuracies up to 90% on a 
large comparable and independent photo-interpreted validation sample. This work builds great expectations for applications in other 
areas with contrasted climate, topography and land cover. 
 
 

1. INTRODUCTION 

Floods arise in the aftermath of extreme (either in magnitude, rate 
or duration) rainfall events. Depending on the territories, they 
appear and persist over different time scales from hours to weeks, 
mainly triggered by surface and subsurface runoff. During such 
events, overland flow occurs under various configurations such 
as in high damp slopes, lowlands and floodplains, small channels 
or dry thalwegs (Cerdà et al., 2021). Rainwater-related damages 
can thus take many forms and emerge in multiple places. Because 
of their intensity and often dramatic social and economic 
consequences, the vast majority of research and operational 
activities on flood damage detection mainly focuses on 
overflowing of major waterways (e.g. Copernicus EMS Rapid 
Mapping activity in particular through SERTIT). In this context, 
assessing flood extent from satellite images has been a pressing 
topic in remote sensing of natural disasters for decades (Rahman, 
Di, 2017). Many studies have established methods to identify 
flooded and flood-prone areas from satellite imagery through 
direct identification of water bodies, either with optical 
instruments like Landsat (Yamagata, Akiyama, 1988; Swain et 
al., 2020) and Sentinel-2 (Pulvirenti et al., 2020; Goffi et al., 
2020), or with SAR products (Hostache et al., 2007; Matgen et 
al., 2011, Rambour et al., 2020). Yet, very few studies have 
undertaken the detection of the full range of heavy rainfall-
related damages, especially those caused by intense rainwater 
runoff. These disturbances often take place during short, hardly 
observable time periods, potentially anywhere with little 
topography and outside the direct vicinity of major waterways. 
                                                                 
*  Corresponding author 
 

Some authors have developed change detection techniques to 
detect areas affected by flood and erosion from a heavy rainfall, 
but over long time intervals and with medium spatial resolution 
(30 m from Landsat, Dhakal et al., 2002), or with higher 
resolution but strictly limited to overflowing (4 m from Kompsat-
2, Byun et al., 2015). In addition, these works have no real aim 
at replicability (only one study area and over a single event). 
Numerous related topics and methodologies mostly relying on 
multitemporal analysis have been investigated for years in the 
remote sensing community, including the study of gullies (Fadul 
et al., 1999) and soil erosion (Dwivedi et al., 1997; Begueria, 
2006; Sepuru, Dube, 2018), landslides (Danneels and Havenith, 
2007; Mwaniki et al., 2015), or agricultural losses and crop yields 
(Pantaleoni et al., 2007). Beyond the traditional pixel-oriented 
methods, object-oriented change detection approaches have 
recently become more popular to detect land cover changes 
(Huang et al., 2018). 

In France, around 85% of natural disaster claims between 1982 
and 2010 were flood-related. However, only half of them were 
likely to be associated with river overflowing (Breil et al., 2016). 
Cerbelaud et al. (2020) laid out the potential of a combined use 
of multitemporal multispectral high resolution images (Sentinel-
2), very high resolution (VHR) optical imagery (Pléiades) and 
contextual information (plot-based approach) to detect different 
types of damages on a large area, including far from waterways, 
resulting from extreme weather events. Using two Sentinel-2 
images acquired 10 days before and after the storm and focusing 
on a small-sized sample of flooded agricultural lands, they found 
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that most damaged plots present distinctive intra-plot variability 
for the relative difference of specific spectral indices in 
comparison to unaffected areas. 

Because of its transient nature and potential to appear anywhere 
in a given territory, intense rainwater runoff is very difficult to 
observe and detect per se. Its various consequences in the form 
of erosion, mudslides, deposits and uprooting are on the other 
hand usually sizeable and durable, although damages caused to 
human infrastructures are generally quickly cleaned up. The main 
assumption at the heart of this study is that these scars 
(deterioration of vegetation, exposed bare soil, sediment deposit) 
can be traced back to specific signatures through spectral 
variations in time and in space. However, detecting these 
signatures requires to be able to control for the unique and 
distinctive reactions of each land cover to intense precipitations 
and seasonal changes. 

The originality of this work is thus built upon (i) a contextual 
plot-based approach so as to work with piecewise constant land 
cover areas and (ii) a change detection method relying on the 
combined search for spectral (use of indices involving several 
bands), temporal (before and after the event) and spatial (intra-
plot heterogeneities) variations. A supervised classification 
method for automatic damage detection caused by heavy rainfall 
is thus developed so as to efficiently identify recently flooded 
areas, not only nearby but also far away from waterways, where 
intense rainwater runoff can be accountable for. The strength of 
the methodology also resides in deriving classification capability 
from a large sample of certified ground truths, change images 
only twenty days apart and with a 10 m spatial resolution, along 
with validation data based on very high resolution post-event 
images from Pléiades satellites. 

After presenting the materials and detailing the approach, results 
are interpreted and discussed in the context of future studies on 
the robustness and replicability of the methodology to different 
times of the year and contrasted regions in terms of climate, land 
use and topography. 
 

2. MATERIALS AND METHODS 

2.1 Study area, territorial subdivision and land use 

This study focuses on the Aude flooding event of October 15th, 
2018, in the south-west part of France. Within a 24h-period, close 
to 300 mm of rainfall was measured around the city of 
Carcassonne, and up to 250 mm fell locally in only 6 hours 
(Lebouc et al., 2019), leading to both flooding by river 
overflowing and intense rainwater runoff. For this work, the 
region of interest extends over roughly 1 150 km2 in the Fresquel, 
Orbiel and Aude watersheds (Figure 1). 

 
Figure 1. Study area in Aude Department, France (l-itinéraire). 

As this study’s design relies on operating at a plot scale, the 
department official land cadastre dataset was retrieved under 
QGIS 3.6 to obtain the most natural territorial subdivision with 
piecewise constant land use. The area of interest thus comprised 
more than 200 000 plots under the 2018 version of the land 
cadastre, with an average area of 0.5 ha and a high standard 
deviation of 1.7 ha due to the disparities between urban and rural 
territories. The OSO French land cover product available at a 
10 m spatial resolution was used to determine the main land use 
(LU) category within each plot. According to the OSO 2018 
raster, most of the study zone is covered up with grasslands (30% 
of pixels), vineyards (24%), forests (20%), built-up (14%) and 
other types of cultures (cereals, protein crops, sunflower etc., 
12%). 
 
2.2 Multispectral satellite optical imagery products 

Two complementary types of satellite products were acquired for 
this work (Table 1). First, the earliest post-event very high 
resolution (VHR) Pléiades image (ortho product) from 
November 3rd was used to confirm and/or to identify traces of 
overflowing and rainwater runoff on agricultural lands, 
grasslands, roads and other diverse works. With a 0.5 m 
multispectral resampled spatial resolution, this product was a 
valuable tool to differentiate damaged from non-affected areas by 
photo-interpretation. Different types of damages were thus 
identifiable: landslides and mudslides, gully erosion, sediment 
deposit and vegetation uprooting. 
Secondly, multiple images from one Sentinel-2 tile (T31TDH 
from Sentinel-2A satellite, level 2A treatment, Flat Reflectance 
data, corrected for atmospheric effects and with cloud and 
shadow masks) were acquired at different dates and cross-
corrected for spatial offsetting. Along with a medium to high 
spatial resolution of 10 m for visible and near infrared bands, 
Sentinel-2 (S2) data was the key asset to this work through its 
great revisit frequency (around 5 days) allowing to closely 
monitor spectral variations before and after the event (Table 1).  
 

Satellite 
product 

Acquisition 
dates for 
this study 

Central 
wavelengths 

Spatial 
resolution 

Pléiades 

Post event: 
 

2018/11/03 
2019/02/22 

Panchromatic 
470-830 nm 

Blue (B0) 490 nm 
Green (B1) 550 nm 
Red (B2) 660 nm 
NIR (B3) 850 nm 

0.7 m 
(panchromatic) 

2.8 m 
(multispectral) 
Resampled to 

0.5 m (all bands) 

Sentinel-2 

Pre event 
16/08/2018 
25/09/2018 
05/10/2018 
Post event 
25/10/2018 
24/11/2018 

Blue (B2) 490 nm 
Green (B3) 560 nm 
Red (B4) 665 nm 
NIR (B8) 842 nm 

10 m for bands 
B2, B3, B4 and 

B8 

Table 1. Imaging capabilities of Pléiades and Sentinel-2 
instruments in the visible and near infrared bands (NIR). 

 
2.3 Selection of ground truths and photo-interpreted plots 

Following this hydrological catastrophe, around 900 claims for 
agricultural disaster were registered and certified by the local 
authorities (DDTM 11). From these declarations, more than 
1 000 damaged lands were geo-referenced and the corresponding 
plots were tagged on the department land cadastre. After visual 
inspection of the complete sample thanks to the Pléiades image, 
310 plots with clearly identifiable damages were selected to form 
the ground truths training sample (hereafter referenced as DGT 
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class). In addition, 362 damaged but yet unclaimed plots were 
hand-picked independently by photo-interpretation in the 
surrounding areas for validation purposes (hereafter referenced 
as DPI class). Lastly, 480 undamaged lands were chosen close-
by as well as further away for the control group (hereafter 
referenced as UDPI class). The resulting tagged plots can be seen 
in Figure 2. The visual approval of only 310 out of 1 000 claimed 
damaged plots for this study can be explained through multiple 
rationale. First, without a very high resolution prior image close 
enough in time, a fair amount of damages could not be 
unquestionably certified at the given spatial resolution of 0.5 m. 

 
Figure 2. Identifiable damages (DGT and DPI, in red), 

unidentifiable claimed damages excluded from the study (in 
green) and undamaged plots (UDPI, in blue) over Pléiades 

image from 2018/11/03. Aude, France. 

Second, when the damage was mainly related to ponded water 
and did not involve modifications in the structure of the field (e.g. 
vineyard), the absence of noticeable marks on the ground after 
water had receded between the time of the event and acquisition 
of the image made it hard to confirm the damage. Moreover, 
during this same time interval (3 weeks), small damages were 
likely to have been repaired by land owners. Finally, various 
areas either contained or were surrounded with built-up, high 
trees and shadows at their edge that made it hard to discriminate 
the spectral signature of the environment from a possible damage. 

In order to make sure that the resulting dataset is representative 
of the study area and that damaged classes are somewhat 
comparable, Table 2 presents the main characteristics of each 
class. In addition, Figure 3 shows the distribution of plots’ major 
land use, overall and by class, excluding the built-up category. 
Logically, vineyards are over-represented within the DGT class 
because of their high economic value, with land owners usually 
awaiting consequent financial compensations for harvesting 
losses. 

Sample class 
Number 
of plots 

Total 
surface 
(km2) 

Median 
plot area 

(ha) 

Mean 
slope (°) 

UDPI (Undamaged 
photo-interpreted) 

480 11.6 1.3 3.2 

DGT (Damaged 
ground truths) 

310 5.5 1.0 3.1 

DPI (Damaged 
photo-interpreted) 

362 8.8 1.3 2.1 

Table 2. Characteristics of sample classes. 
 

Mean slope was derived from the RGE ALTI ® DEM (5 m 
spatial resolution) from French National Institute of Geographic 
and Forest Information (IGN). Overall, the complete tagged area 
adds up to around 26 km2, i.e. 2.3% of the total study region. 

 

Figure 3. Land use distribution of plots by class (OSO) 
 
2.4 Selection of spectral indicators, auxiliary data and 
supervised classification algorithms for damage detection 

Following the work of Cerbelaud et al. (2020), this study focuses 
on information derived from soil and vegetation-specific spectral 
indices based on the visible and near infrared 10 m bands of 
Sentinel-2 images: NDVI for Normalized Difference Vegetation 
Index, NDWI for Normalized Difference Water Index (Gao, 
1996), BI for Brightness Index and SAVI for Soil Adjusted 
Vegetation Index (Qiu et al., 2017; see Table 2 from Cerbelaud 
et al., 2020 for details). Two formulations of the BI were tested 
here, using either the red and NIR bands, or including the green 
band as well. Physics-wise, this study’s core assumption is that 
river overflowing and intense rainwater runoff can be traced back 
in the form of erosion, mudslides, various deposits and uprooting, 
to specific signatures (presence of vegetation, sediments, barren 

 
Figure 4. 𝑅𝐷ே஽௏ூ between October 5th and 25th, 2018. Aude, 

France. Sentinel-2 (S2) data. 

Overall UDPI 

DPI 

DGT 

-1                           0                             1 
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soils) through spectral variations in time and space. Therefore, 
new images (called change images) were produced for each 
spectral index k by computing the pixel-by-pixel relative 
difference (RD) between the closest cloud-free Sentinel-2 images 
before and after the event (October 5th and 25th), written 𝑅𝐷௞. 
Particular attention was thus paid to the correction applied to the 
Sentinel-2 tiles for spatial offsetting (see Figure 4 for the final 
NDVI change image). 

In order to work at a plot scale, intra-plot pixel statistics θ - mean, 
maximum, minimum and standard deviation - were estimated on 
each change image to produce plot-specific vectors of 
characteristics (𝑅𝐷௞)ఏ (Figure 5). The underlying goal was to 
highlight singular spectral variations within damaged plots with 
high values of 𝑅𝐷௞, implying a decrease in the index and thus a 
deterioration in vegetation cover, as well as the presence of 
spatial heterogeneities. Because some land covers react in 
distinctive ways to intense precipitations, having the most natural 
territorial subdivision with piecewise constant land use was 
crucial in this approach. These vectors were then completed with 
other characteristics such as mean and maximum slope (in °) and 
major land use category. 

 
                        (a) Pléiades True colors (Nov. 3rd) 

  
          (b) OSO land cover            (c) S2 𝑹𝑫𝑵𝑫𝑽𝑰(Oct. 5th - 25th) 

Figure 5. Erosion lines caused by intense rainwater runoff on 
agricultural plots. South of Carcassonne. Oct, Nov. 2018. 

Summary statistics were first performed on the damaged ground 
truths DGT class and the undamaged photo-interpreted UDPI 
class to determine the potential of each (𝑅𝐷௞)ఏ variable to 
discriminate the two classes. In order to make the best of and 
determine the optimal combination of variables to detect 
damages, a Pearson correlation matrix was then computed on the 
same dataset. Indeed, the association of non collinear indicators 
is likely to lead to the highest explanatory power and finest 
classification capacity. 

In order to develop an automatic damage detection method, two 
samples, one for training and the other for validation, were thus 
put together. First, the UDPI class of 480 plots was split in half 
with a random seed under Python 3.7 both for training and 
validation (later referenced as UDPI*) purposes. The ground 
truths DGT class then completed the learning sample (550 plots 
total, 11.3 km2) while the damaged photo-interpreted DPI class 
filled in the validation sample (602 plots, 14.6 km2). 

Lastly, plot-wise supervised classifications were achieved based 
on the combination of LU, mean slope as well as (𝑅𝐷௞)஘ with 

three different classification methods: (i) the k-nearest neighbors 
algorithm (k-NN); (ii) the Multi-Layer Perceptron neural 
network (two hidden layers and 100 neurons per layer); (iii) the 
Gaussian process classifier (squared-exponential kernel). 
 

3. RESULTS 

Descriptive statistics (Figure 6) performed on the DGT and the 
UDPI classes, involving almost 800 plots and covering a 
17.1 km2 area, confirm while slightly revise the findings of 
Cerbelaud et al. (2020). 

 
(a) θ = Mean 

 
(b) θ = Minimum 

 
(c) θ = Maximum 

 
(d) θ = Standard deviation 

Figure 6. Boxplot of (𝑅𝐷௞)ఏ by spectral index k and class type 

-1        0           1 

⎝

⎜
⎛

𝑹𝑫𝑵𝑫𝑽𝑰
𝒎𝒆𝒂𝒏

𝑹𝑫𝑵𝑫𝑽𝑰
𝒎𝒊𝒏

𝑹𝑫𝑵𝑫𝑽𝑰
𝒎𝒂𝒙

𝑹𝑫𝑵𝑫𝑽𝑰
𝒔𝒕𝒅 ⎠

⎟
⎞

 

downhill 

forests 
built-up 

sunflowers 
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roads 
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First of all, substantial overlaps between the two classes for all 
statistics of both formulations of the brightness index (BI 1 using 
the red and NIR bands, BI 2 including the green band as well) 
indicate their lack of relevance to identify traces of intense 
rainwater runoff. On the contrary, NDVI, NDWI and to a lesser 
extent SAVI seem to be suitable candidates for efficient 
detection. For all indices, the large overlap observed for the 
minimum statistics between undamaged and affected plots 

reveals the metric’s inadequacy. On the other hand, the mean, the 
maximum and the standard deviation turn out to be promising 
candidates for discrimination and confirm the physical 
explanation and methodology chosen in this study. Indeed, 
damaged plots show greater spatial heterogeneity and higher 
average values of the relative difference for every index, 
indicating noteworthy reactions inside affected and likely 
deteriorated lands.

Index k – Statistics θ 
NDVI - 
Mean 

NDVI - 
Maximum 

NDVI - 
Standard 
deviation 

NDWI - 
Mean 

NDWI - 
Maximum 

NDWI - 
Standard 
deviation 

SAVI - 
Mean 

SAVI - 
Maximum 

SAVI - 
Standard 
deviation 

NDVI - Mean 1,00         
NDVI - Maximum 0,37 1,00        
NDVI - Standard deviation 0,19 0,64 1,00       
NDWI - Mean 0,97 0,40 0,29 1,00      
NDWI - Maximum 0,49 0,95 0,73 0,54 1,00     
NDWI - Standard deviation 0,34 0,61 0,94 0,43 0,75 1,00    
SAVI - Mean 0,98 0,36 0,16 0,94 0,48 0,32 1,00   
SAVI - Maximum 0,69 0,82 0,67 0,70 0,91 0,75 0,69 1,00  
SAVI - Standard deviation 0,13 0,47 0,95 0,22 0,58 0,90 0,11 0,60 1,00 

Table 3. Pearson correlation coefficients between (𝑅𝐷௞)ఏ over DGT class (310 plots) and UDPI class (480). 

The Pearson correlation matrix between the remaining promising 
indicators was computed on the same dataset in Table 3. All 
coefficients are statistically significant at the 0.1% significance 
level (from Student table with degree of freedom around 800). 
Greener boxes point out lower correlation coefficients (chosen 
arbitrarily below 0.3) between indicators, implying that rather 
independent information can be extracted from them. 

First of all, each type of statistics is strongly correlated within all 
spectral indices. Combination of distinct types is thus considered. 
Because of larger overlap between classes for (𝑅𝐷ௌ஺௏ூ)௦௧ௗ 
(Figure 6) and greater correlation coefficients with other 
variables for (𝑅𝐷ே஽ௐூ)௦௧ௗ , (𝑅𝐷ே஽௏ூ)௦௧ௗ seems to be the most 
appropriate candidate in combination with the mean of any of the 
three indices. Maximum statistics appear to be self-explanatory 
for all indices. Figure 7 exhibits 2D scatter plots of the two 
classes in order to visualize classification potential of some 
indicators. Good candidates would induce almost separate data 
clouds for DGT and UDPI classes. 

Several sets of variables were thus tested. Comparable results 
were obtained with the three types of classifiers (not shown here). 
Therefore, the Gaussian process classifier was retained for its 
simplicity and because of the physical meaning it conveys. 
Beyond binary classification, probabilities can be derived from it 
to estimate confidence in each class (Figures 8 and 9). Table 4 
shows results from 2-variable classifications on the validation 
sample overall and by class. 

With potentially one pixel to induce detection, using indicators 
involving the intra-plot maximum of the RD pixels of NDVI or 

 
(a) [(𝑅𝐷ே஽௏ூ)௦௧ௗ  , (𝑅𝐷ே஽ௐூ)௠௘௔௡] 

 
(b) [(𝑅𝐷ே஽௏ூ)௠௔௫ , (𝑅𝐷ௌ஺௏ூ)௠௘௔௡]  

Figure 7. Scatter plots of training sample by class type. 

NDWI (lines 3 and 4) unsurprisingly leads to overestimation of 
damaged lands with smaller producer accuracy on UDPI* plots. 
In order to avoid false positives as much as possible, more stable 
scores across the two classes are obtained with the combined use 
of standard deviation and mean statistics (lines 1 and 2). As 
expected, the use of (𝑅𝐷ௌ஺௏ூ)௦௧ௗ brings lower results (lines 5 and 
6). 

Finally, inclusion of land use in the classification process proved 
beneficial with accuracies risen by around 2% and less false 
positives with better predictions of the UDPI* class (Table 5). 
The most satisfying classification obtained with a Gaussian 
process classifier, scoring 91.0 % accuracy, was thus with three 
variables: (𝑅𝐷ே஽௏ூ)௦ௗ௘௩ , (𝑅𝐷ௌ஺௏ூ)௠௘௔௡ and LU. Processing of 
the entire 1 150 km2 area then allowed to produce maps 
displaying probability of damage classification given by the 
Gaussian process classifier. Different close-ups can be seen in 
Figures 8 and 9. Both overflowing and intense rainwater runoff 
are thus easily identifiable in flagged plots (Figure 8). 

4. DISCUSSION 

This work mainly relied on the use of the closest cloud-free pre-
event and post-event Sentinel-2 images around October 15th, 
2018. In order to take advantage of the durable effects of intense 
rainwater runoff on soils’ spectral signatures, multiple post event 
images could be involved in the classification process. Similarly, 
because they do not make up for evidence of intense water runoff,
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Index k – Statistics θ         Two (𝑅𝐷௞)ఏ indicators 

Overall 
accuracy 

Producer accuracy User accuracy F-score 
 UDPI* DPI UDPI* DPI UDPI* DPI 
1 NDVI - Standard deviation SAVI - Mean 88,5% 87,9% 89,0% 84,1% 91,7% 85,9% 90,3% 
2 NDVI - Standard deviation NDWI - Mean 88,5% 87,1% 89,5% 84,6% 91,3% 85,8% 90,4% 
3 NDVI - Standard deviation NDWI - Maximum 88,9% 83,8% 92,3% 87,8% 89,5% 85,7% 90,9% 
4 NDVI - Maximum SAVI - Mean 88,9% 82,5% 93,1% 88,8% 88,9% 85,5% 91,0% 
5 NDWI - Mean SAVI - Standard deviation 86,9% 85,8% 87,6% 82,1% 90,3% 83,9% 88,9% 
6 NDVI - Mean SAVI - Standard deviation 85,7% 84,6% 86,5% 80,6% 89,4% 82,5% 87,9% 

Table 4. Best results from 2-variable supervised classifications by Gaussian process over validation sample (UDPI*: half of UDPI). 

 
Index k – Statistics θ         Three (𝑅𝐷௞)ఏ indicators 

Overall 
accuracy 

Producer accuracy User accuracy F-score 

 UDPI* DPI UDPI* DPI UDPI* DPI 
1 NDVI - Standard deviation    SAVI - Mean Land Use 91,0% 92,5% 90,1% 86,0% 94,8% 89,2% 92,4% 
2 NDVI - Standard deviation    NDWI - Mean Land Use 90,2% 92,1% 89,0% 84,7% 94,4% 88,2% 91,6% 

Table 5. Best results from 3-variable supervised classifications by Gaussian process over validation sample (UDPI*: half of UDPI).  

  

  
Figure 8. Close-up of the output map displaying the probability of damage classification (on untrained plots) by Gaussian Process 

classifier over Pléiades image from 2018/11/03, based on: 

[(𝑅𝐷ே஽௏ூ)௦ௗ௘௩  ; (𝑅𝐷ௌ஺௏ூ)௠௘௔௡ ; Land Use]            

  
(a) DGT training (red), DPI validation (purple) and UDPI learning      (b) Probability of damage classification on land cadastre 
 and validation (blue) plots over elevation map and stream network          plots as detected by the classifier over Pléiades image 

Figure 9. Close-up from the north-west of Carcassonne displaying the probability of damage classification by Gaussian Process 
classifier, based on: 

[(𝑅𝐷ே஽௏ூ)௦ௗ௘௩  ; (𝑅𝐷ௌ஺௏ூ)௠௘௔௡ ; Land Use]             
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the various impacts of seasonal changes and local anthropogenic 
activities on spectral indexes between the pre and post event 
images need to be accounted for through several sensitivity 
analyses. To quantify this unwanted effect, the change detection 
approach could be tested using two images (more or less distant 
in time) between which no particular intense rainfall activity 
occurred. A plot-wise demeaning could be applied to all change 
images at the pixel level, allowing to get rid of the average 
evolution of all 𝑅𝐷௞ pixels associated with a given land use type. 
Once trained on the Aude learning sample from October 2018, 
applying the classification method to other extreme weather 
events in the same area at different times of the year (e.g. spring, 
summer) will also be enlightening. Further tests on other regions 
with contrasted climate, topography and land cover will also 
provide key elements as to the replicability of the approach. 
Inclusion of Sentinel-2 SWIR bands (B11 and B12) at 20 m 
resolution, which would allow to derive NDMI (moisture) 
change images, could also improve detection of rainwater-related 
damages, albeit downgrading spatial resolution. Several other 
improvements will also be investigated using hydrological tools 
involving topographical considerations as well as patch-based 
classification methods with post event VHR Pléiades images.  
Since it is based on optical imagery, it has to be acknowledged 
that this method would be arduously applicable to cloud-prone 
regions (e.g. small mountainous islands, tropics). Eventually, the 
output probability maps will further be used to evaluate and 
validate conceptual or physics-based intense rainwater runoff 
mapping models such as IRIP © (Indicateur de Ruissellement 
Intense Pluvial). 

5. CONCLUSION 

Considering that only half of flood-related damages are likely to 
be associated with river overflowing in France, this work focuses 
on the Aude 2018 heavy rainfall event to develop an automatic 
damage detection method not only nearby but also far away from 
waterways where intense rainwater runoff can be accountable 
for. A plot-based supervised classification method was thus 
achieved relying on the combined search for spectral, temporal 
and spatial variations in Sentinel-2 change images acquired only 
twenty days apart with a 10 m spatial resolution. For this, a large 
learning sample of certified ground truths along with validation 
data based on photo-interpretation from very high resolution 
(0.5 m) post-event images from Pléiades satellites were used. 
Following optimal selection of input indicators and training of a 
Gaussian process classifier, classification accuracy up to 90% 
was reached. These results emphasize the need for combined 
analysis of contextual, spectral, spatial and temporal information 
and thus confirm the great potential in multispectral 
multitemporal high resolution optical imagery to detect the full 
range of heavy rainfall-related damages. A replicable method 
would be very precious in order to enhance local hydrological 
knowledge and flood risk management, as well as to quickly 
identify post-event damages in the context of increasing extreme 
hydro-meteorological events around the world. 
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