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ABSTRACT:

Spatiotemporal geomorphological mapping of intertidal areas is essential for understanding system dynamics and provides inform-
ation for ecological conservation and management. Mapping the geomorphology of intertidal areas is very challenging mainly be-
cause spectral differences are oftentimes relatively small while transitions between geomorphological units are oftentimes gradual.
Also, the intertidal areas are highly dynamic. Considerable challenges are to distinguish between different types of tidal flats,
specifically, low and high dynamic shoal flats, sandy and silty low dynamic flats, and mega-ripple areas. In this study, we harness
machine learning methods and compare between machine learning methods using features calculated in classical Object-Based
Image Analysis (OBIA) vs. end-to-end deep convolutional neural networks that derive features directly from imagery, in automated
geomorphological mapping. This study expects to gain us an in-depth understanding of features that contribute to tidal area classi-
fication and greatly improve the automation and prediction accuracy. We emphasise model interpretability and knowledge mining.
By comparing and combing object-based and deep learning-based models, this study contributes to the development and integration

of both methodology domains for semantic segmentation.

1. INTRODUCTION

1.1 Background

Geomorphological mapping of intertidal areas in space and
time is essential for understanding system dynamics and
provides information for ecological conservation and manage-
ment (Bouma et al., 2005). Ecological quality of intertidal areas
is important because of the European Water Framework Dir-
ective and as they are designated as Natura 2000 areas, which
is the implementation of the European bird directive and the
European habitat directive. Mapping the geomorphology of in-
tertidal areas is a considerable challenge mainly because spec-
tral differences are oftentimes relatively small while transitions
between geomorphological units are oftentimes gradual. Also,
the intertidal areas are highly dynamic (Kleinhans et al., 2019).
Surface water, saltmarsh, and tidal flats are relatively simple to
distinguish but considerable challenges remain for distinguish-
ing between different types of tidal flats, specifically, low and
high dynamic shoal flats, sandy and silty low dynamic flats,
and mega-ripple areas (Douma et al., 2019). In this study, we
harness machine learning methods in automated geomorpho-
logical mapping and extend object-based methods with deep
neural network-based semantic segmentation methods. We fo-
cus on distinguishing between 5 classes: sandy low dynamic
flats, silty low dynamic flats, mega-ripples, high dynamic shoal
flats, and hard substrates. We evaluate the methods used with
an extensive data set of visually interpreted photos.

1.2 Objective

The objectives of this study is to compare between the methods
that are based on ensemble tree-based modeling on features of
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segments from classical OBIA vs. deep neural networks-based
methods.

1.3 Impact

This study is both application- and method-driven. It provides
us with an in-depth understanding of features that contribute
to tidal area classification and is expected to greatly improve
the automation of the procedure and the prediction accuracy.
We emphasise model interpretability and knowledge mining.
By comparing and combining object-based and deep learning-
based models, this study contributes to the integration of thus
far largely separate approaches for semantic segmentation.

2. METHODOLOGY

The study is mainly developed in Western Scheldt, the Neth-
erlands (fig. 1), where a detailed manually delineated expert
classification map is available. Figure 1 (b) shows our classi-
fication scheme. Importantly, we distinguish between the sandy
and silty areas within the shoal flat low dynamics. We used aer-
ial imagery with red, green, and NIR bands (0.25 m resolution),
DEM from laser altimeters (2 m resolution), and derived in-
dices. Imagery and DEM are acquired within the same year and
season. Two methods are developed and compared in terms of
the priors integrated, model interpretability, and the prediction
accuracy and patterns. The first method firstly applies OBIA
(Object-based Image Analysis) for segmentation and then uses
an emsemble tree-based method, XGBoost (Chen and Gues-
trin, 2016), for classification, this method is referred to (OBIA-
XGB) in this study. The challenges of this method lie in the
identification of the optimal spatial unit of objects. The second
method applies an encoder-decoder deep neural network archi-
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tectures, U-net (Ronneberger et al., 2015), for end-to-end clas-
sification.

2.1 Preprocessing

We focus on distinguishing between 5 classes and for conveni-
ence, we assign a code to each of them:

e Plal: sandy low dynamic flats

Pla2: silty low dynamic flats

P2b: mega-ripples

P2c: high dynamic shoal flats

e HI: hard substrates

For the definition of the classes please refer to Douma et al.
(2019). We also refer to the Plal, Pla2, P2b, and P2c classes
as the "P” class and the H1 class "H” class. The other classes
(i.e. classes that do not belong to the P and H1 classes) are
removed.

We filtered out water by firstly using eCognition (De-
veloper 9.4.0) to do segmentation, and then using the NDWI
(NDWI = %) with a threshold of 0.44. Mega-
ripples naturally consist of water. In this study, we also filtered
out water in the P2b (mega-ripple) class to gain an initial under-

standing of the behaviour of machine learning models.
2.2 Sampling scheme

As the unit of method OBIA-XGB is OBIA segments and
method U-net image pixels, we develop different sampling
schemes for each of them. For method OBIA-XGB, it is ne-
cessary to develop a sampling scheme that accounts for the
object size for the tree classifier. We evaluated two sampling
schemes: 1) random sampling and 2) stratified sampling ac-
cording to the size of OBIA segments. For 1), we used ran-
dom under-sampling to sample the majority class(es), without
replacement, to ensure the classes have balanced samples. For
2), we firstly divided the objects into 5 categories, cut at each
20th, 40th, 60th, 80th, 100th percentiles of the object size of
the minority class (i.e. class with the least number of objects).
These percentiles are used so that the number of objects in these
categories are similar. Within each category, 70% of the objects
form the training set and the rest forms the test set. Then within
the training set of each category, random under-sampling is ap-
plied.

For OBIA-XGB, we selected three tiles that are abundantly
covered by the focused classes (i.e. P and H1 classes) for identi-
fying the optimum spatial unit and model training. For the
method based on U-net, we selected 80 500 pixels x 500 pixels
tiles for training (42 tiles) and validation (18 tiles). Three 4000
x 4000 tiles are used for testing both of the methods and calcu-
lating the accuracy metrics. The train-test splitting is shown in
fig. 2.

2.3 Accuracy assessment

We focus on the precision (True Positives)/(True Positives +
False Positives) and recall (True Positives)/(True Positives +
True Negatives) as indicators of the prediction accuracy. For
OBIA-XGB, the precision and recall are weighted by the area
size of each object for the final recall and precision. In addi-
tion, we present the precision and recall based on objects (i.e.
not weighted by the area size). This serves to inspect how the
objects with various sizes are identified.

3. EXPERIMENTS

3.1 Method OBIA-XGB

The inputs of the OBIA-XGB method are aerial imagery (with
NIR, red, green bands) and DEM, as well as slope (Zevenbergen
and Thorne, 1987), NDVI, and aspect ((Horn, 1981)) derived
from eCognition.

We firstly use eCognition for object segmentation at various
spatial units. Then, we combine segmentation levels to get
sub-objects and related features. We export the objects with
in total 48 features describing the spectral and texture (using
Harralick’s grey level co-ocurrence matrices) features of objects
and sub-objects.

Then, to determine the optimal spatial unit for each class, we
each time regroup the five classes into the “’target class” and the
“other class” and iterate over all the five classes. The XGBoost
is applied to classify the OBIA calculated object features and
select the best spatial unit for each class based on the prediction
accuracy.

We found no considerable differences in the optimal spatial unit
for each class (will be described in section 4.1, fig. 3), therefore,
we used a single optimal spatial unit for all classes. The iden-
tified optimal spatial unit is used for multi-class classification.
The loss functions for the binary and multi-class classifications
are respectively the logistic loss and softmax loss (i.e. a softmax
activation followed by a cross-entropy loss).

The hyperparameters we tuned for XGBoost are learning rate,
maximun tree-depth, number of estimators, and the Lasso reg-
ularisation term «, using 5-fold cross-validation. The modeling
process using XGBoost and deep neural networks is implemen-
ted in the Python environment (version 3.6).

3.2 Method based on U-net

The input for the U-net is the aerial imagery, DEM, and derived
slope (Horn, 1981), NDVI, and Brightness layers. The slope
was calculated in QGIS3.18 using the same Horn’s formula
(Horn, 1981) as in eCognition, and is expressed in degrees. The
NDVI and brightness are calculated in Python. The Brightness
is defined as Brightness = (NIR + red + green)/3.

The loss functions we tested are categorical cross-entropy loss,
ToU loss (van Beers et al., 2019), FocalTverskyLoss (Abraham
and Khan, 2019), and Lovasz Hinge Loss (Berman et al., 2018).
In the end, we chose to use the IoU loss as it provides the best
cross-validation results with the training set. The hyperpara-
meters we tuned are learning rate, batch size, and image size.
The image size tested are from 2° (64) to 29 (512) and is optim-
ised at 128. The batch size tested are from 8 to 32 and is optim-
ised at 16. The learning rate are tested with various scheduling,
ranging from 0.0001 to 0.01 at various epochs.

4. RESULTS

4.1 Spatial unit optimisation for OBIA-XGB

Figure 3 shows the precision and recall of different sampling
schemes and cross-validation methods for the binary classi-
fication in the Western Scheldt study area. The stratified
sampling greatly improves the prediction accuracy, comparing
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Figure 1. The Western Scheldt study area. Figure (a): false color aerial image with the red, blue, and Near-Infrared bands, 0.25 m
resolution. Figure (b): the expert map and classification schemes.
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Figure 2. Training, validation, and test areas used by the machine learning methods, Western Scheldt.

the cross validation between applying our Stratified Sampling
(SS) scheme to random sampling of the objects (object).

It could be observed that when using both stratified sampling
and area-weighted cross-validation (SSAC), all the classes ob-
tained a very high precision with each of the tested spatial unit,
indicating that larger objects are better identified than the smal-
ler objects. The recall remains high for the H class but is lower
for the P classes, especially the Plal. Compared to SS, which
has a relatively high recall for all the classes but much lower
and diverse precision for different spatial units and classes, it is
found that objects with smaller sizes are more likely to mix with
other classes, especially for the Plal, P2c, and H class. As the
SSAC shows homogeneous recall and precision between spatial
units, to optimise the classification for small objects and ensure
the highest model generality, we use SS to identify the optimal
spatial unit. The optimal spatial unit identified for all classes
are 50_15 (object level 50, sub-object level 15).

4.2 Prediction accuracy

4.2.1 Method OBIA-XGB The accuracy metrics of the
OBIA-XGB are shown in tables 1 and 2. SSAC is used to indic-
ate the performance and SS for indicating how well the smaller
objects are classified. According to SSAC, the megaripple class
obtained the highest precision, indicating the method OBIA-
XGB is already promising in distinguishing it from other P
classes and the H1 class. The sandy and silty low dynamic flats
are not well separated.

Comparing tables 1 and 2, it is observed that small objects bet-
ter in the P2b and HI classes but are less satisfying in other
classes. From the spatial prediction maps, We can observe that
mis-classification mostly occur as classifying Plal, P1a2 and
P2b as H1, especially along some channel outlets or close to
water; and mis-classify Plal into P1a2 or p2b. The probability
map also shows a high uncertainty (indicated as low probabil-
ity) in separating between Plal and Pla2, as well as H1 and
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Figure 3. Cross-Validation results for all the classes, with the XGBoost classifier on OBIA objects. Objects: random sampling and

cross-validation based on objects. SSAC: stratified-area sampling with area-weighted cross-validation results. SS: stratified-area

sampling.
Plal Pla2 P2b P2c HI
Plal 70 42 12 91 01 Plal Pla2 P2b P2c HI
Pla2 8.0 33 4.9 26 1.1 Plal 4.2 4.4 1.4 5.4 0.1
P2b 52 20 242 80 0.8 Pla2 5.4 27 92 23 1.6
P2c 1.4 3.9 1.0 115 0.1 P2b 3.1 2.6 36.6 6.4 1.6
H1 0.0 00 01 01 00 P2c 0.8 29 13 73 02
precision 324 244 772 368 13 H1 0.0 00 02 02 0.1
recall 326 165 602 641 89 precision 30,7 21.6 751 338 19
overall accuracy ~ 46.1 recall 269 128 727 585 140
overall accuracy  50.8

Table 1. Accuracy assessed with the sampling and validation
scheme SSAC, on test tiles. Confusion matrix is normalised by
the entire area. Precision, recall, and overall accuracy (%) are
calculated using area-weighted accuracy assessment.

calculated using area-weighted accuracy assessment.

other classes.

4.2.2 Method based on U-net The U-net segmentation ob-

tained a considerably lower accuracy for P2b and P2¢ compared Plal Pla2 P2b  P2c HI
to the method OBIA-XGB (tables 1 and 3) but obtained a much Plal 17.0 4.4 3.6 5.8 0.0
better result for Plal. P2b again obtained the best result com- Pla2 5.8 1.8 05 12 00
pared to the other classes but is often confused with Plal. The ggb gg %é 122 22 88
model failed completely to predict the H1 class. H1 0.0 00 01 01 00
precision 463 147 670 282 0.0
5. CONCLUSION recall 550 19.1 528 27.8 0.0

overall accuracy  45.0

In this study, we compared machine learning methods that are
based on OBIA-derived features vs. end-to-end representat-
ive learning, for inter-tidal area classification, with respect-
ively XGBoost and U-net. The method that applies XGBoost
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Table 2. Accuracy assessed with the sampling and validation
scheme SS. Confusion matrix normalised by the number of total
objects. Precision, recall, and overall accuracy (%) are

Table 3. Confusion matrix normalised by the number of pixels,
precision, recall, and overall accuracy (%) of the U-net model.
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Figure 4. Maps of method OBIA-XGB. Figure (b) is a zoom-in of the figure (a). From left to right: predicted labels, predicted
probabilities of the class with highest value, ground truth (labels).

to OBIA-derived features (OBIA-XGB) outperforms the U-net
based methods in P2b and P2c, but the U-net method can bet-
ter separate between Plal and Pla2. The OBIA-XGB ob-
tained satisfying results in separating between the P2b and other
classes, which is sometimes more difficult to distinct manually
or basing on the rule-based OBIA methods alone. Therefore,
our study indicates that machine learning methods can help to
improve the rule-based OBIA method. Future studies aim at
improve over the basic U-net method we applied in this study.
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Figure 5. Map of the best U-net model. Figure (b) is a zoom-in of the figure (a). From left to right: predicted labels, predicted

probabilities of the class with highest value, ground truth (labels).
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