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ABSTRACT:

Over the last decade, the French space agency (CNES) has designed and successfully operated high-resolution satellites such as
Pléiades. High-resolution satellites typically acquire panchromatic images with fine spatial resolutions and multispectral images
with coarser samplings for downlink constraints. The multispectral image is reconstructed on the ground, using pan-sharpening
techniques. Onboard compression and ground processing affect however the quality of the final product. In this paper, we de-
scribe our next-generation onboard/on-ground image processing chain for high-resolution satellites. This paper focuses on onboard
compression, compression artefacts correction, denoising, deconvolution and pan-sharpening. In the first part, we detail our fixed-
quality compression approach, which limits compression effects to a fraction of the noise, thus preserving the useful information
in an image. This approach optimises the bitrate at the cost of image size, which depends on the scene complexity. This technique
requires however pre- and post-processing steps. The noisy HR images obtained after decompression are suited for non-local de-
noising algorithms. We show in the second part of this paper that non-local denoising outperforms previous techniques by 15% in
terms of root mean-squared error when tested on simulated noiseless references. Deconvolution is also detailed. In the final part of
this paper, we put forward an adaptation of this chain to low-cost CMOS Bayer colour matrices. We demonstrate that the concept
of our image chain remains valid, provided slight modifications (in particular dedicated transformations of the colour planes and
demosaicing). A similar chain is under investigation for future missions.

1. INTRODUCTION

The use of high resolution (HR) remote sensing images has sig-
nificantly increased in the past years either for civilian (urban-
ism, disaster management, meteorology), scientific (hydrology,
bathymetry, vegetation oversight) and military uses. Space
agencies and private companies have therefore launched Earth
observation satellites providing high-resolution images to cover
this demand. The French space agency (CNES) has for instance
operated HR satellites such as Pléiades (Gleyzes et al., 2012) or
CSO over the last decade, and developed before that HR civilian
(SPOT) and military programs (HELIOS).

Current-generation CNES Earth observation satellites are
based on push-broom detectors. To obtain a sufficient signal
to noise ratio, high resolution images are often acquired using
large panchromatic bands (typically with wavelengths ranging
between 400 and 900nm). To recover the colour information
of the observed scenes, these finely sampled panchromatic im-
ages are coupled with coarser colour images (in general red,
green and blue bands) acquired with lower resolution detectors.
Under the assumption that most spatial high frequencies in the
colour bands are correlated, pan-sharpening techniques recover
a final colour image with the native panchromatic resolution
(Latry et al., 2012; Vivone et al., 2014).

A drawback of HR digital images is the overall size of the
information that needs to be downlinked to ground stations.
Despite efforts to reduce the total size, image demand requires
thousands of scenes to be acquired daily, closing the door to a
lossless downlink of images. This feature drives the recent im-
provements in data compression algorithms (Zhou et al., 2015).
It follows that the quality of the final image obtained on the
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ground is highly dependent not only on the hardware of the
satellite itself (in particular mirror diameter, satellite stability,
detector efficiency), but also on the overall image processing
chain applied to raw products on the ground, which provides
compression, radiometric and geometric corrections. In this pa-
per, we present the most recent in-flight and on-ground image
processing chain developed by CNES for its future satellite ap-
plications. In particular, solutions for compression, denoising,
image restoration and pan-sharpening are reviewed.

In Section 2, we present the onboard compression solution
retained for future CNES Earth observation satellites. Unlike
its predecessors, which operate on the image as a whole, this
technique takes advantage of the intrinsic complexity of a given
scene to provide a local compression rate driven by the image
quality (Camarero et al., 2012). It therefore adapts compres-
sion thresholds locally to maintain the same level of informa-
tion over the scenes, while obtaining an average compression
rate similar to previous fixed bitrate techniques. However, this
approach creates a variable size of compressed images and re-
quires additional pre- and post-processing steps.

Section 3 presents the radiometric restoration chain, which
needs to be adapted to the fixed-quality compression used on
board. In particular, a noise restoration step is needed before
denoising to recover the original noise distribution, followed by
denoising, deconvolution and pan-sharpening if needed. Ex-
amples of this restoration chain are provided.

Finally, future space missions are not likely to use the same
push-broom technology as the current satellites. The develop-
ment of cheap, low-noise CMOS matrices opens new possibil-
ities for HR imaging, as already demonstrated by constellations
such as Dove (Wilson et al., 2017), SuperDove (Pritchett et al.,
2020), or Skysat (Murthy et al., 2014) and even for astronomy
(CNES nanosatellite Eyesat, Carret 2018). In Section 4, we
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Figure 1. Pléiades images using the PAN detector (70cm) over
Venice obtained without (Left) and with (right) noise restoration.

extend the chain presented in this paper to the case of matrix
detectors, in particular colour filter arrays (CFAs). Examples
for Bayer CFAs (Bayer, 1975) are provided.

2. FIXED-QUALITY COMPRESSION

2.1 Fixed-bitrate and fixed-quality compression

High-resolution images acquired by Earth observation satel-
lites count millions of pixels with high bit encoding (typically
10 to 16 bits). Compression becomes therefore needed to en-
sure a proper downlink of all image products. Typical com-
pression techniques use an orthonormal basis of functions of
the 2D plane (Zhou et al. 2015, e.g. discrete cosine functions
or discrete wavelet transforms, based on Cohen-Daubechies-
Feauveau 9/7 or Le Gall-Tabatabai 5/3 wavelets, see Dua et al.
2020 for a review). The idea for a N ×M image is to separate
it into smaller samples and apply the selected transform to pro-
ject the information onto a orthonormal basis of functions Ψi,j .
This decorrelation step is reversible. For a subset of the image
of size K ×K the projected sub-image is

IK×K(x, y) =
∑

i,j≤K

ai,jΨi,j(x, y) (1)

Once projected, ai,j coefficients can be downlinked. Each is
either transmitted directly (the orthonormal projection reduces
the image entropy, thus the total bitrate), or compared to a
threshold T and set to zero if smaller (series of zeros are ef-
ficiently coded and reduce the size of the bitstream). This is
the quantification step which makes the compression lossy and
non-reversible. Even when all coefficients are downlinked, if
floating point functions Ψi,j (typically 9/7 wavelets) are used,
the quantification causes a truncation error which introduces a
loss. For multiple colour planes, spectral decorrelation trans-
forms (Saghri et al., 2010) can be applied before compression
to exploit inter-band correlations and reduce the total bitrate.

Fixed-bitrate compression uses a threshold on the ai,j val-
ues. For instance, all high-frequency wavelet coefficients of

the image are set to zero, and only low-frequency ones are en-
coded. A bitrate regulation can also be applied on the encoded
ai,j values to enhance compression. Transmitted images then
have exactly the same size, regardless of the observed scene,
but without a certain level of high frequency information. This
compression is extremely efficient and simplifies interfaces by
providing images of exactly the same size once decoded.

A similar approach was used on Pléiades, whose com-
pressor divided images into blocks, each compressed over the
same fixed number of bits through bitrate regulation. Yet, this
has a disadvantage of not accounting for the local complexity of
the scene. Therefore, quasi-uniform landscapes will be encoded
with no losses, while complex scenes will be strongly affected
by compression (see artefacts on Figure 1). Instead, fixed-
quality compression computes a threshold locally (e.g. a local
average) and compares it to a fraction of instrumental noise.
Then, only coefficients ai,j which are statistically meaningful
(i.e. with high signal-to-noise ratio) are transmitted, while oth-
ers are set to zero. This technique is extremely flexible, as it
adapts compression locally and can be tuned over time. Com-
pression thresholds can also be adapted per block. For space
applications, encoding coefficients at the level of the noise is
sufficient, but any other fraction can in principle be used.

2.2 Detector noise and variance stabilising transforms

Measurements taken using optical detectors are affected by
multiple sources of noise. The total noise for a given signal S
(in digital counts) entering the compressor can be modelled us-
ing a random Gaussian process of mean µ = 0 and of standard
deviation σ =

√
a2 + bS. This model represents a combination

of a Poissonian shot noise characterised by the constant b, and a
white additive Gaussian noise, where a represents the standard
deviation related to the dark current and the readout noise of
the detectors. The latter is in fact dependent on integration time
and temperature of the detector.

Before compression, each pixel has an intrinsic noise which
depends on the signal S. This makes the comparison of coeffi-
cients ai,j to the noise level possible (e.g. by using the local av-
erage of IK×K) albeit imprecise. An elegant solution is to use
variance-stabilising transforms (VSTs), which transform the di-
gital counts of the image into a random variable with constant
variance. Values can therefore always be compared to this con-
stant. In our imaging chain, the Anscombe transform is chosen
as it is well adapted for Poisson processes such as photon detec-
tions. For a given number of counts S in a pixel, the new count
estimate S′ is obtained by:

S′ = AT (S) = 2

√
a2

b2
+
S

b
+

3

8
(2)

where a and b are the noise coefficients detailed previously.
After this operation, the new variance of the noise is σ = 1
across the image and becomes independent of the signal in the
pixel. This VST is performed on board before the compression
and can be reversed on the ground using the inverse formula:

S = AT−1(S′) = b

(
S′

2

)2

− 3

8
b− a2

b
(3)

2.3 Fixed-quality compression implementation

CNES has retained fixed-quality compression for its future mis-
sions (Camarero et al., 2012). Images are divided locally into
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Figure 2. Denoising using NL-Bayes. (Left) Input image over Venice observed by Pléiades using the PAN detector (70cm resolution)
with a zoom over the central parts of the image before (Middle) and after application of NL-Bayes (Right).

8× 8 9/7 wavelet coefficients blocks, corresponding to a three-
level wavelet decomposition (zones of 57 × 57 pixels). These
include one DC coefficient (the average of the image subset)
and 63 AC coefficients resulting from the 9/7 2D wavelet local
description of the scene.

Instead aiming for a given number of bits, fixed-quality
compression compares the basis coefficient to the noise vari-
ance locally, assuming a white Gaussian noise of standard devi-
ation σ = 1 after VST. If ai,j < k, coefficients are set to zero,
otherwise they are transmitted. k is called the quality parameter
and is often taken between 0.5 and 1, to ensure that the wave-
let coefficients comparable to the noise are properly encoded
(k = 1 represents a compression of all wavelet coefficients
whose value is of the same level as the instrumental noise). The
strength of fixed-quality compression is to perform this compar-
ison locally, thus adapting the compression to the entropy of the
image. VSTs are not mandatory when single planes are used,
but become an interesting solutions when multiple correlated
colour planes need to be downlinked, in particular if spectral
decorrelation transforms are used (as discussed in Section 4)

Though providing images of variable sizes, this technique
tunes the quality to lose the same level of information in every
scene. In average, the obtained bitrate is similar to fixed-
bitrate compression algorithms. However, complex scenes are
now encoded with more bits (transcribing their higher complex-
ity) while uniform landscapes can be strongly compressed thus
gaining on the total bitrate. The final image quality is therefore
enhances using this type of compression.

3. RADIOMETRIC PROCESSING CHAIN

Once received on the ground, the compressed image can be de-
coded, decompressed and finally restored into its original di-
gital counts through inverse VST, if needed. However, once de-
coded, the observed scene is affected by both noise (reducing
the available information) and the modulation transfer func-
tion (or MTF), which attenuates high frequencies and/or intro-
duces aliasing on the observed scenes if the MTF is significantly
higher than than 0 above the Nyquist frequency.

3.1 Noise restoration and denoising

The overall noise model of a given instrument is well-known
and calibrated on the ground before flight using uniform tar-
get sources. Additional corrections can be performed in flight,

using for instance uniform scenes. For typical radiances, the
quality of the image is related to its signal-to-noise ratio (SNR,
i.e. the ratio S/σ). In dark areas, where this ratio is low, denois-
ing becomes necessary to enhance the final image products. We
assume that the noise can be approximated (per colour plane)
by a white Gaussian noise. Structured noise, such as repeatable
features or peaks visible in the spectrum of each image, is ig-
nored and must in any case be considered separately depending
on its value. Similarly, we also assume that the image is norm-
alised ahead of our compression step to remove pixel-to-pixel
response non-uniformity (harmful for compression).

Most denoising techniques assume a input image with a
white noise, independent from the observed scene. This as-
sumption is verified for the raw images, but is unfortunately
no longer true once compression has been applied (Section 2).
Raw decompressed images must therefore pass through two
seperate denoising steps:

• First, before radiometric processing, noise must be re-
stored to obtain a noise distribution of the image compat-
ible with the one observed before compression. In partic-
ular a Gaussian behaviour must be restored.

• Second, the image goes through the actual denoising pro-
cess to reduce the noise whilst maintaining the high-
frequency information of the scene.

Each of these two steps is detailed in the following subsections.

3.1.1 Noise restoration

Once received on the ground, the image has lost part of its in-
formation due to compression. Although the information re-
moved is lower than a fraction of the instrumental noise in our
fixed-quality approach, compression modifies the noise distri-
bution which is no longer Gaussian. Yet, to ensure a proper
application of denoising algorithms, a Gaussian distribution is
required. A noise restoration step is thus introduced.

Knowing the compression threshold set in flight, it is pos-
sible to estimate the resulting noise distribution on the ground.
The noise can then be restored by drawing random values of ai,j
at the same level of the suppressed ones. This operation is per-
formed in wavelet space using the normal distribution of the in-
flight noise model (whose variance is 1 if a VST is used). After
inverse discrete wavelet transform (DWT) and inverse VST the
noise distribution is once again Gaussian, recovering the ori-
ginal behaviour of the scene (Delvit et al., 2018). Though this
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step purposely introduces noise, it improves the subsequent de-
noising, based on Gaussian assumptions (Figure 1 and 2).

3.1.2 Denoising

Denoising aims at reducing the noise of an image using
either thresholding, interpolation or filtering methods. Denois-
ing techniques on previous CNES satellites included complex
thresholding after deconvolution using wavelet packet trans-
forms. Over the last decade, non-local (NL) methods started
nonetheless to provide a more robust and accurate way for de-
noising (Menon and Calvagno, 2011).

The underlying assumption of these methods is to consider
that scenes are self-similar, i.e. that any given image contains
– at small scales – similar features. In this case, for any sub-
set of pixels (e.g. a square of k × k pixels, called a “patch”)
it is possible to find within the image similar patches (at the
sense of the L2 norm for instance) which can be considered
drawn from the same random Gaussian process, whose aver-
age is the patches’ average and whose covariance matrix Σ can
be computed analytically. Under these assumptions, for each
family of similar patches one can compute and apply a good
approximation of the optimal Wiener filter, thus denoising the
images in a locally-optimal way in terms of likelihood. Several
of these techniques (NL-means Buades et al. 2005, NL-Bayes
Lebrun et al. 2013, BM3D Dabov et al. 2009) are currently im-
plemented for space applications and constitute state-of-the-art
denoising techniques. NL-Bayes is retained in our image pro-
cessing scheme and was used in the Pléiades ground segment
(see Figure 2 for an example).

3.2 Deconvolution

A known effect of telescopes is to behave as low-pass filters
causing the attenuation – and ultimately the cancellation – of
frequencies beyond the spatial cut-off frequency, smoothing the
observed scenes and damaging the quality of the final image.
This feature is linked to the instrument’s impulse response, the
point spread function (PSF) in detector space, or equivalently
the MTF in frequency space.

Provided a good knowledge of the MTF, telescope effects
can be corrected by the image processing chain through a de-
convolution step to recover sharpness. For remote sensing ap-
plications, the MTF is low at the Nyquist frequency to reduce
aliasing on the final products and to maintain reasonable tele-
scope diameters. After denoising, the image obtained by the
detectors appears however blurred, and must be post-processed
through deconvolution to restore high frequencies.

For noiseless images, deconvolution is a direct multiplica-
tion in the frequency space by the inverse of the system MTF,
noted MTF−1. However, a low MTF near the Nyquist fre-
quency implies an oscillating deconvolution filter in detector
space with infinite spatial extent. Further, for noised data, a
direct multiplication by MTF−1 can result into extreme ampli-
fications of the high spatial frequencies, whose signal-to-noise
ratio is low in general. This can then increase the noise and re-
duce the final quality. Deconvolution must therefore be adapted
to the properties of the optical system.

A compromise can be found by aiming for prolate or arctan
functions, which enhance mid-range frequencies, while avoid-
ing an excessive increase of high-frequency noise. Wiener-
Tikhonov regularisation technique is used to obtain such filters
D (see Figure 3), defined in frequency space (fx, fy) by:

D(fx, fy) =
MTF ∗(fx, fy)

|MTF (fx, fy)|2 +
f2
x+f2

y

s

(4)

Figure 3. Target deconvolution filter D (1D slice) obtained with
the Wiener-Tikhonov method as a function of the reduced spatial
frequency (frequency f over the Nyquist frequency fs)

where MTF* stands for the complex conjugate of MTF meas-
ured in-flight on ground targets or stars. The s parameter
weights the regularisation term penalising the L2 norm of the
gradient. High values provide a sharp deconvolution; low val-
ues lead instead to smoother images. In our chain, s = 6 was
found to provide the best visual results for human operators.

3.3 Pan-sharpening

Most HR satellites acquire both a panchromatic spectral band
and red, green, blue, near infrared bands at a coarser resolution
than the panchromatic band. This is justified by the constraints
upon the onboard downlink rate, combined with a lower SNR
of high-resolution multispectral bands due to narrower spectral
bandwidths. However, multispectral HR images can be syn-
thesised on ground through pan-sharpening techniques.

Problems may arise from aliasing, which is usually signific-
ant in colour bands due to the Pan/colour band resolution ratio
(typically 4). CNES pan-sharpening technique minimises the
impact of multispectral aliasing by computing, from the pan-
chromatic band, low-resolution (LR) aliased panchromatic im-
ages Pani

LR,alias with the same MTF and sampling grid as each
multispectral band Bi. The idea is that the ratio Bi/Pani

LR,alias

may be resampled in the high-resolution Pan geometry to pro-
duce a high resolution Bi

HR band using (Latry et al., 2012):

BHR
i = PanHR × Bi

PANLR,alias
i

(5)

Applying a low-pass filtering stage to the aliased initial multis-
pectral band Bi is advised to get rid of aliasing artefacts, but
induces a slight blurring to the final product. Finally, applying
previous noise restoration and NL-Bayes denoising stages not
only on the panchromatic band as initially planned, but also on
the multispectral aliased bands, proves to be very valuable for
the final pan-sharpened image quality. An example of a pan-
sharpened raw image, its post-processed version and the result
after pan-sharpening is provided Figure 4. Benefits of noise
restoration on a pan-sharpened image are illustrated Figure 5.

4. EXTENSION TO MATRIX-BASED DETECTORS

Over the last decade, the paradigm of Earth remote sensing is
shifting from push-broom detectors to CMOS-based matrix de-
tectors due to simpler implementation and reduced costs. The
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Figure 4. Restoration of a Pleiades HR image over Toulouse at a 70cm resolution on the ground. (Left) Raw decompressed image,
(Centre) Noise restored, denoised and deconvolved image (Right) Pan-sharpened image using R, G and B channels at 2.8m resolution.

Figure 5. Pan-sharpening of a Pléiades image. Zoom over a road
crossing restored without (Left) and with (Right) prior noise res-
toration. Adapted from Figure 6 from Delvit et al. 2018.

use of matrices, in particular chromatic ones such as Bayer de-
tectors (Bayer, 1975), comes with its challenges. In this sec-
tion, we explain the main differences caused by a Bayer RGB
detectors in our high-resolution image processing chain. We as-
sume that these detectors are made of a four-pixel pattern of two
quincunx green detectors, completed by blue and red pixels.

4.1 Spectral decorrelating transforms

Unlike on monochromatic detectors, when observing using a
Bayer detector each point on the ground is seen either in red,
in green or in blue. An accurate compression of the planes as
explained in Section 2 can no longer rely on the assumption of
redundant information in the nearby spatial pixel, since each
colour plane is sparse.

Information present in colour bands remains however cor-
related. The previous compression method can be adapted
using inter-band correlations (notably luminance/chrominance
transformations Saghri et al. 2010). To properly decorrelate
the information between R, G and B bands, the matrix is trun-
cated into four sub-planes (two green, one red and one blue
plane), each shifted by up to one pixel in the vertical and hori-
zontal direction with respect to each other. Knowing the excel-
lent ground sampling resolution of HR pixels (typically lower
than 1 m) and assuming a slowly-varying scene, decorrelation
relies on linear combinations of colour planes, e.g. lumin-
ance/chrominance transformations already used in full-frame
compression algorithms (Rao and Yip, 2000). The optimal
transformation is found through the covariance matrix of the

planes and by performing a simile Karhunen-Loève transform
(KLT) of the subsets (Saghri et al., 2010; Rao and Yip, 2000).

In the image processing chain presented here, the trans-
formation matrix is derived from a sample of Bayer images by
computing their joint covariance matrix and finding its corres-
ponding eigenvector basis. This operation can be reversed after
compression (product of orthogonal matrices). Although not
exactly a KLT of each colour plane (as the subsets are shifted),
the final matrix is in fact similar to a luminance/chrominance
transformation (Saghri et al., 2010) with an average of the four
planes and two-by-two plane differences.

This transformation reduces the download bandwidth by an
average of 15% for a fixed-quality compression when tested
on various sceneries (urban, forest, desert). This approach re-
quires however an accurate knowledge of the noise model for
each transformed plane. The use of an Anscombe transform
before the KLT is once again necessary (as linear combinations
of planes include differences between the red, green or blue
planes) and is included in the processing chain.

4.2 Demosaicing and recovery of colour planes

Once the data is received on the ground, the user is provided
with a sparse image of each colour plane. Ultimately, these im-
ages need to be interpolated to recover the colour planes at the
native resolution of the detectors. This step is called demosa-
icing. This interpolation can be performed using multiple tech-
niques, e.g. Adams and Hamilton 1996; Malvar et al. 2004 (see
Menon and Calvagno 2011; Li et al. 2008 for a review). For
space applications, computation time is a critical parameter. A
good compromise comes from gradient-based techniques such
as derivations of the Hamilton-Adams (HA) approach (Adams
and Hamilton, 1996). For the chain currently under develop-
ment green pixels are interpolated as follows (Figure 6, top left).
First we compute the horizontal and vertical gradients:

∆H = |G4 −G6|+ |R5 −R3 +R5 −R7| (6)

∆V = |G2 −G8|+ |R5 −R1 +R5 −R9| (7)

Depending on their local value, we then interpolate as follows:

• If ∆H > 1.5∆V , G5 = (G2+G8)
2

+ (R5−R1+R5−R9)
4

• If ∆V > 1.5∆H , G5 = (G6+G4)
2

+ (R5−R3+R5−R7)
4

• Else, G5 = (G2+G4+G6+G8)
4

+ (4R5−R1−R3−R7−R9)
8
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Figure 6. (Top left) Bayer matrix with numbering for HA tech-
nique. (Top right) Input simulated image (Amiens, France) for
demosaicing with noise. Image processed using HA before (bot-
tom left) and after (bottom right) our denoising approach.

One of HA’s weaknesses is the creation of 45° artefacts (Malvar
et al., 2004). This was corrected using a 1.5 factor on the gradi-
ent, which provided the best results numerically and cancelled
most 45° artefacts. The blue and red pixels are in turn interpol-
ated. Using a slowly-varying hue assumption, we first interpol-
ateR−G (resp. B−G) through bicubic interpolation, then at a
green pixel location i, j we compute Ri,j = (R−G)i,j +Gi,j

(respectivelyBi,j = (B−G)i,j+Gi,j). This approach provides
reconstruction of the colour planes with few artefacts and with
a reasonable computation time. Zipper artefacts are most likely
to appear on the image, but are however corrected by the NL
denoising (see Figure 6, bottom).

4.3 Denoising

The use of colour matrices provides additional complexities to
the denoising step. The noise models between colour planes can
indeed differ due to the properties of each colour pixel. Thus,
denoising must be performed after a VST to use the same noise
model in all the pixels. The nominal chain performs a VST after
the HA demosaicing and before denoising the R, G, B plane us-
ing NL-Bayes (an inverse VST is performed after denoising, see
Figure 7). By doing so however, the interpolated pixels found
during demosaicing do not follow the same noise model as the
data pixels, since they are obtained by linear combination of
noisy pixels of different noise variances. Two approaches were
considered to solve this issue: perform the denoising before the
demosaicing (when pixels have the same noise model thanks to
the VST) or create an additional denoising step after NL-Bayes
for interpolated pixels only.

The first solution provides denoising on smaller images
(N/2 and N/4 for green and red/blue pixels respectively for
an image of size N ) with lower resolutions, thus decreasing
the total computational time. However, this approach is incap-
able to properly take advantage of correlations between colour
planes as bands are shifted, and provided systematically less ac-
curate results than the original chain in our tests. Instead, the

HA only NL-Bayes Our chain
R (true) 1 0.87 0.87
R (interpolated) 2.44 1.55 1.21
G (true) 1 0.83 0.83
G (interpolated) 2.11 1.53 1.02
B (true) 1 0.83 0.83
B (interpolated) 1.96 1.30 1.01

Table 1. Root Mean Squared in VST space (1 being the true noise
level) comparison between input simulation image and restored
image over a pool of 50 images for random noise iterations. Our
chain outperforms NL-Bayes for interpolated pixels due to an ad-
ditional denoising step.

second solution takes advantage of the correlation between col-
our planes to obtain information of an interpolated pixel of a
given patch using the information of measured pixel in another
similar patch (similarly to Menon and Calvagno 2011; Li et al.
2008). This additional step improves significantly the quality
of the final product on interpolated pixels, with low impacts on
the computational time (see Table 1).1

4.4 First results on Bayer detectors

Colour filter arrays are increasingly used for remote sensing,
notably in recent reduced-cost imaging missions such as Cube-
Sat missions, e.g. the Dove constellation (Wilson et al., 2017) or
Eyesat (Carret, 2018). First results of these missions and their
detectors show promising leads for these technologies. An ex-
ample of this restoration chain applied to an uncompressed Eye-
sat image over Australia is provided in Figure 8. Application
to real HR Bayer images is expected in the coming months on
future CNES satellites. This image processing chain is not ex-
clusively dedicated to satellites, but could also be used on plan-
etary rovers and in theory on any digital cameras based upon
Bayer matrix. Example of this image chain restoration applied
on MAHLI cameras (Edgett et al., 2012) (Curiosity Mars rover)
is also provided 2. Applications on RMI camera aboard Per-
severance (Maki et al., 2020) and on MMX rover navigation
cameras (Ulamec et al., 2019) are also planned.

First colour filter array satellite images also put forward
specific effects of these detectors, notably, signal mixing and
aliasing related to the use of spectrally correlated bands (e.g.
red and green spectral bands overlap and thus are strongly cor-
related), or the presence of a small level of crosstalk between
colour bands, which needs to be included in post-processing
techniques. The advent of future large scale missions using
these techniques will require a good understanding of these fea-
tures to ensure the final image quality.

5. CONCLUSION

The growing demand for high resolution satellite images re-
quires to continuously improve both the hardware and software
related to image processing. In particular, a deeper and more
complex interaction between onboard algorithms and ground
image processing chains are used.

In this paper, we have presented our next-generation on-
ground/in-flight imaging chain for high resolution satellite ap-
plications. In particular, we have described the interest of using
fixed-quality compression over typical fixed-bitrate approaches,

1 This technique is not detailed here for confidentiality issues but will be
detailed in forthcoming papers.

2 https://pds-imaging.jpl.nasa.gov/data/msl/
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Figure 7. Block diagram of the overall image processing chain. Only the steps discussed in this paper are shown (normalisation is for
instance considered for the input image, but not shown). The blocks filled in light blue colour are specific to matrix-based detectors.

as well as the way image restoration is planned to be performed
on the ground (denoising, deconvolution, pan-sharpening).

With the advent of low-cost matrices of arrays, the same
image processing chain has been adapted for the case of colour
filter arrays (in particular Bayer arrays) with only minor modi-
fications. In theory, only an additional demosaicing step is re-
quired, but we have underlined how inter-channel correlations
can be used efficiently both during compression and restora-
tion stages to improve image quality even further. We have also
demonstrated that this image chain can be extended to any other
satellite or planetary rover using the same detectors.

The main interest of this image chain is not only to ob-
tain a high-quality visual product, but also to pre-process the
image for further treatments such as 3D reconstruction using
stereo images, classification and identification of objects, or
even deep-learning analysis (e.g. deepzoom, aliasing correc-
tion). The image chain presented here is expected to be used on
future CNES mission in the upcoming years.
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