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ABSTRACT: 

 

Supervised classification of remotely sensed images has been widely used to map land cover and land use. Since the performance of 

supervised methods depends on the quality of the training data, it is essential to develop methods to generate an enhanced training 

dataset. Active learning represents an alternative for such purpose as it proposes to create a dataset of optimized samples, normally 

collected based on classification uncertainty. However, it is heavily dependent on human interaction, since the user has to label 

selected samples over a number of iterations. In this paper, we explore the use of uncertainty to improve classification accuracy 

through a single iteration. We conducted experiments in a region of Portugal (Trás-os-Montes), using multi-temporal Sentinel-2 

images. The proposed approach consisted in computing the classification uncertainty of a Random Forest to collect additional 

training data from areas of high uncertainty and perform a new classification. An accuracy assessment was performed to compare the 

overall accuracy of the initial and new classifications. The results exhibited an increase in accuracy, though considered not 

statistically significant. Obstacles related to labelling additional sampling units resulted in a lack of additional training data for 

various classes, which might have limited the accuracy improvement. Additionally, an uneven proportion of additional training 

sampling units per class and the collection of new sample data from a limited number of uncertainty regions might also have 

prevented a higher increase in accuracy. Nevertheless, visual inspection of the maps revealed that the new classification reduced the 

confusion between some classes.  
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1. INTRODUCTION 

The recent availability of new data and developments in 

computing processing and classification algorithms has 

contributed to map and monitor land cover and land use 

(LCLU) efficiently (Wulder et al., 2018). Supervised 

classification of remotely sensed images has been widely used 

to map LCLU, as a variety of studies suggest that these methods 

generally produce higher accuracy compared to unsupervised 

methods (Maxwell et al., 2018). The success of supervised 

methods depends on the quality of the training dataset, which 

should preferably contain balanced and representative training 

samples (Belgiu and Drăguţ, 2016).  

Different approaches for the creation of enhanced training 

datasets have been proposed, consequently contributing to an 

improvement in classification accuracy. Such is the case of 

active learning, which proposes creating a small training dataset 

containing optimized sample units, collected based on a query 

criterion, whose performance can be similar to larger training 

datasets composed by randomly collected samples (Li et al., 

2013). The process is based on the interaction between analyst 

and model, in which the model provides the analyst with 

unlabelled sampling units which yield maximal information. 

Then, the analyst is responsible for labelling such units, which 

are incorporated to the prior training dataset for a new 

classification. This cycle is repeated until a satisfactory result is 

achieved (Tuia et al., 2011). 

Among the various query criteria employed to select new 

training sampling units mentioned in the literature, e.g. 

uncertainty, representativeness, inconsistency, variance and 

error (Ahmad et al., 2019), classification uncertainty is the most 

common. Samples with high classification uncertainty normally 

represent difficult examples, and their inclusion in training can 

contribute to improve the model’s predictive capabilities. The 

uncertainty can be determined based on a range of approaches 

(Tuia et al., 2011). Breaking Ties (BT) is a popular approach, 

suitable to be employed with classifiers that output posterior 

probabilities (Crawford et al., 2013), as is the case of Random 

Forest (RF). BT consists in computing the uncertainty as the 

difference between the two highest class membership 

probabilities. 

Despite the encouraging results, active learning is strongly 

dependent on human interaction, as the analyst has to label 

additional training sampling units throughout multiple 

iterations. In this context, the study conducted by Mack et al. 

(2017) proposed to apply the active learning principles in a 

single iteration. An initial classification with training samples 

derived automatically from an existing reference dataset was 

conducted, following the computation of classification 

uncertainty to determine areas of high uncertainty in the map, 

from which unlabelled sampling units were collected, labelled 

and incorporated into the initial training dataset to produce the 

final classification. Although the potential of the methodology 
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was demonstrated, the impact of introducing additional samples 

was not assessed. 

In this paper experiments are performed in order to further 

investigate the use of classification uncertainty to improve 

classification accuracy. It is proposed to assess whether the 

introduction of additional training samples collected from areas 

of high classification uncertainty can improve an existing 

training dataset and, consequently, increase land cover 

classification accuracy. The paper is presented according to the 

following structure: study area and data, methods, results and 

conclusions. 

 

2. STUDY AREA AND DATA 

2.1 Study area 

The chosen study area is the region of Trás-os-Montes, located 

in the North of Portugal (Figure 1). It is characterized by 

mountainous land, with rocks, forest and bushes, besides 

agricultural areas in the lower lands. The pronounced land 

cover diversity found in this area poses a good scenario for 

uncertainty classification experiments. 

 

 
Figure 1. Location of the study area. 

2.2 Data 

The data used in this study can be separated into remotely 

sensed data and auxiliary data. The remotely sensed data 

consisted of 457 Sentinel-2 images with less than 50% cloud 

cover from the agricultural year of 2018 in Portugal (October 

2017 to September 2018) downloaded from the Theia Land 

Data Centre. In addition, an orthophotomap with 25cm spatial 

resolution from 2018 was used for the purpose of labelling by 

photointerpretation sampling units for training and validation. 

The auxiliary data consist of multiple datasets used either as 

reference data to automatically extract training samples or as 

filtering data to refine the quality of the training samples. The 

national land use and land cover cartography (COS), the 

Portuguese Land Parcel Identification System (LPIS) and roads 

network from OpenStreetMap were used as reference data. In 

terms of filter data, the national cartography of burned areas, the 

Copernicus Land Monitoring Service’s High Resolution Layers 

(HRL) products from 2015 and a mask of NDVI for Forest 

change detection in 2015-2018 (Costa et al., 2020) were used. 

 

3. METHODS 

Sentinel-2 monthly composites were calculated from the median 

value of single image to remove pixels contaminated by clouds 

and their shadows. For each composite, 10 bands (B2, B3, B4, 

B5, B6, B7, B8, B8A, B11 and B12) were obtained, from which 

5 spectral indices were computed. In addition, 7 spectro-

temporal metrics were computed for each band and index. The 

final Sentinel-2 dataset consisted of 285 bands: 10 bands and 5 

indices for each month and 7 metrics for each band and index. 

Reference data were used to delineate polygons from which 

training samples were collected automatically. Filtering data 

were employed to refine this process and prevent mislabelling; 

e.g.  removing areas from the reference dataset that are more 

heterogeneous or not related to a specific land cover type, and 

preserving those prone to follow a condition expected for a 

specific land cover class. Some classes in particular, however, 

needed training data collected manually as preliminary results 

indicated that some classes have low accuracies when sampled 

automatically. Manual collection of training samples was based 

on delineation of polygons through visual interpretation of the 

2018 orthophoto map. The automatic and manual training 

samples were extracted from the corresponding filtered or 

manual data sets, but subject to spatial constraints. A negative 

buffer of 40 and 10 m was applied to the automatic and manual 

training polygons, respectively, and automatic areas smaller 

than 1000 m² were eliminated before sample extraction. Our 

approach proposes to use different nomenclatures for the 

training and final map. The final map nomenclature results from 

the aggregation of training classes. A total of 22 and 10 LCLU 

classes were used for the training and final map, respectively. 

Such nomenclatures can be seen in Table 1. 

 

 
Figure 2. Proposed workflow. 

The proposed workflow (Figure 2) consists in conducting an 

initial classification using Random Forest and up to 6000 

training sampling units per class, depending on sample 

availability. Besides predicting classes, the scikit-learn RF 

implementation (Pedregosa et al., 2011) can also predict class 

probabilities vectors, which were used to compute the 

classification uncertainty according to the BT approach. 

Uncertainty is given by the difference between the highest and 

second-highest class probabilities, with values ranging from 0 

(high uncertainty) to 1 (low uncertainty).  

 
Figure 3. Histogram of classification uncertainty values (U). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-81-2021 | © Author(s) 2021. CC BY 4.0 License.

 
82



 

Next, a reclassification based on a threshold of uncertainty was 

conducted to generate a binary map, which was smoothed using 

a 5x5 pixel moving window to reduce the salt and pepper effect 

and create contiguous groups of pixels of high uncertainty. The 

value of 0.1 was adopted as the uncertainty threshold, since the 

distribution of the uncertainty in the map of the initial 

classification revealed that a sufficient portion of the pixels had 

an uncertainty (U) ≤ 0.1 (Figure 3). Then, the raster was 

converted to vector and the 20 largest patches of high 

uncertainty per class were selected. Such processes are 

illustrated in Figure 4. 

 

 
Figure 4. Delineation of an uncertainty patch: a) uncertainty 

distribution; b) result of the application of threshold followed 

by smoothing (moving window) in green; c) delineation of a 

contiguous uncertainty patch. 

Polygons were manually delimited and labelled within these 

patches, assisted by the 25cm orthophotomap from 2018, to 

collect additional training samples units to be introduced to the 

initial training dataset. Since it is very unlikely to correctly 

identify crop types by visual interpretation of the orthophoto, 

patches or parts of patches located on top of cropland areas 

were ignored, which means that no additional polygons were 

delimited for the classes of agricultural crops. 

 

Map 

Class 
Training Class 

Labelled 

Polygons 
Sampling 

units  

BUP 

Built up 4 40 

Industrial - - 

Road Network - - 

AGR 

Oat - - 

Wheat - - 

Barley - - 

Ryegrass - - 

Triticale - - 

Rye - - 

Corn - - 

Sunflower - - 

Managed Grasslands 5 308 

NGL 
Agric. Nat. Grassland 23 3722 

Mount. Nat. Grassland 2 220 

EUC Eucalyptus Adult 6 579 

OBL Other Broadleaf 18 1906 

MTP Maritime Pine 9 769 

OCF Other Coniferous 20 1418 

SBL Dense Shrubland 47 4195 

NVS 
Baresoil 27 4782 

Bare Rock 1 48 

WTR Water 18 1812 

Table 1. Class nomenclature and additional sample units 

extracted from areas of high classification uncertainty. BUP: 

Built up, AGR: Agriculture, NGL: Natural Grasslands, EUC: 

Eucalyptus, OBL: Other Broadleaf, MTP: Maritime Pine, OCF: 

Other Coniferous, SBL: Shrubland, NVS: Non-vegetated 

Surfaces, WTR: Water. 

Since the size of the uncertainty patches might vary, training 

classes may have a different number of additional training 

sampling units available. Therefore, it is important to mind class 

balance when adding new sampling units. Moreover, it is 

preferable to incorporate the additional sampling units into an 

initial sample of compatible size in order to ensure that the 

additional units can have an influence over the 

representativeness of the aggregated sample. With this in mind, 

and considering the availability of additional sampling units 

(Table 1), we decided to add up to 500 sampling units per class 

to a subset of the initial sample. The subset of the initial sample 

consisted of 500 units per class. Therefore, our new training 

dataset had up to 1000 sampling units per class. 

Finally, a new classification was performed using the new 

training dataset. An accuracy assessment was conducted with an 

independent stratified random validation dataset with 535 

sampling units labelled through visual interpretation of the 

previous orthophotomap. The results of the initial and new 

classification were compared in order to evaluate whether the 

additional training samples increased classification accuracy. 

 

4. RESULTS 

The overall accuracies of the initial and new classifications are 

shown in Table 2. The new classification, performed with 

additional sampling units in the training dataset, exhibited an 
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overall accuracy of 69.72%, with only a small increase in 

accuracy compared to the initial classification. According to the 

confidence intervals (3.9%), the increase in accuracy was 

considered not statistically significant. 

 

Classification Overall accuracy (%) 

Initial 68.78 ± 3.9 

New 69.72 ± 3.9 

Table 2. Accuracy assessment of the classifications. 

The analysis of the accuracy metrics per class (Table 3) 

indicates that the new classification was advantageous to seven 

out of the 10 classes, although the degree of improvement 

varied. The addition of new sampling units was most beneficial 

for natural grasslands and eucalyptus, which had an increase of 

13% and 19.3% in F1-score, respectively. The other five classes 

had only a small increase in F1-score. It is noticeable, however, 

that despite the increase in F1-score, most of these classes 

exhibited a tradeoff between reduction and growth in 

commission and omission errors. On the other hand, agriculture, 

shrubland and non-vegetated surfaces exhibited a decrease in 

accuracy, with the latter having a reduction of 16.5% in terms of 

F1-score. 

 

Class 
Precision (%) Recall (%) F1-score (%) 

Initial New Initial New Initial New 

BUP 50.0 56.5 93.8 86.7 65.2 68.4 

AGR 55.0 63.6 91.7 72.9 68.8 68.0 

NGL 80.0 81.6 36.4 51.3 50.0 63.0 

EUC 83.3 64.7 22.7 47.8 35.7 55.0 

OBL 97.4 95.7 57.8 64.3 72.6 76.9 

MTP 76.0 81.6 67.9 65.1 71.7 72.5 

OCF 27.0 24.6 35.7 51.9 30.8 33.3 

SBL 68.9 67.4 85.9 84.8 76.5 75.1 

NVS 46.2 29.4 85.7 83.3 60.0 43.5 

WTR 100 100 98.0 100 99.0 100 

Table 3. Precision, recall and F1-score of both classifications. 

BUP: Built up, AGR: Agriculture, NGL: Natural Grasslands, 

EUC: Eucalyptus, OBL: Other Broadleaf, MTP: Maritime Pine, 

OCF: Other Coniferous, SBL: Shrubland, NVS: Non-vegetated 

Surfaces, WTR: Water.  

A few problems were detected regarding the delimitation and 

labelling of polygons in the selected uncertainty patches. 

Besides not being possible to label the type of crops based on 

visual interpretation of the orthophoto, no uncertainty patches 

corresponded to classes industrial or road network. As a result, 

all these classes did not have additional training sampling units. 

Moreover, the amount of training sampling units available after 

labelling varied depending on the class. These conditions 

resulted in an unbalanced training dataset, which might have 

contributed to prevent a higher increase in classification 

accuracy. For instance, training classes built up and bare rock 

had only 40 and 48 additional sampling units, respectively. 

Furthermore, collecting additional sample units from a small 

number of polygons (e.g. built up, mountain natural grassland, 

eucalyptus adult and bare rock) might have resulted in acquiring 

redundant new samples, which could have contributed to limit 

the spectral diversity, thus potentially reducing the impact on 

classification accuracy. 

Besides the accuracy assessment, a visual inspection was 

conducted to evaluate the effects of the new classification on 

the map. The analysis of the maps revealed that the additional 

samples may have been responsible for certain improvements, 

as illustrated in Figure 5. In this example, the new classification 

mapped more accurately an area identified as broadleaf forest 

according to COS, reducing not only the confusion between 

other broadleaf and other species but also between other 

broadleaf and agriculture. 

 

 
Figure 5. Highlight of the classification of other broadleaf – a) 

false color orthophoto; b) reference classification; c) new 

classification. 

Another example of improvements is exhibited in Figure 6, 

where areas incorrectly mapped as built up in the initial 

classification were correctly mapped as non-vegetated surfaces 
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in the new classification. Additionally, the new classification 

also exhibited less confusion between agriculture and 

shrubland. 

 

 
Figure 6. Reduction of misclassifications after introducing 

additional samples – a) false colour orthophoto of a 

mountainous area; b) reference classification; c) new 

classification. 

5. CONCLUSIONS 

This work proposed to explore the use of classification 

uncertainty to extract additional training data within areas of 

high classification uncertainty, as an attempt to improve 

classification accuracy. The accuracy assessment exhibited only 

a small increase in performance, which was considered not 

statistically significant. Such result might have been caused by 

limitations in the methodology, especially related to the 

impossibility of labelling additional sampling units 

corresponding to the agricultural crops. Moreover, the unequal 

distribution of additional training sampling units among classes 

may also have limited the improvements. Another factor which 

can be considered detrimental to the results was the collection 

of new training sampling units from a limited number of 

polygons, which may cause the additional sample data to be 

redundant.  

Besides the accuracy assessment, a visual inspection of the 

classification maps was conducted, revealing important 

improvements in some classes through reducing the confusion 

between classes with similar spectral patterns, as is the case of 

built up and non-vegetated surfaces. 

Future studies can further explore the potential of uncertainty to 

improve classification performance, especially addressing the 

issues involving the impossibility of labelling new sampling 

units as well as proposing alternatives to ensure that a sufficient 

amount of training data per class is collected. This could be 

achieved by modifying the uncertainty threshold or by 

increasing the number of uncertainty patches. Furthermore, 

special attention can be dedicated towards including a spatial 

criterion in the query strategy in order to select new samples 

from spatially disperse polygons. 
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