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ABSTRACT:  

 

Most methods developed to map crop fields with high-quality are based on optical image time-series. However, often accuracy of these 

approaches is deteriorated due to clouds and cloud shadows, which can decrease the availably of optical data required to represent crop 

phenological stages. In this sense, the objective of this study was to implement and evaluate the conditional Generative Adversarial 

Network (cGAN) that has been indicated as a potential tool to address the cloud and cloud shadow removal; we also compared it with 

the Witthaker Smother (WS), which is a well-known data cleaning algorithm. The dataset used to train and assess the methods was the 

Luis Eduardo Magalhães benchmark for tropical agricultural remote sensing applications. We selected one MSI/Sentinel-2 and C-

SAR/Sentinel-1 image pair taken in days as close as possible. A total of 5000 image pair patches were generated to train the cGAN 

model, which was used to derive synthetic optical pixels for a testing area. Visual analysis, spectral behaviour comparison, and 

classification were used to evaluate and compare the pixels generated with the cGAN and WS against the pixel values from the real 

image. The cGAN provided consistent pixel values for most crop types in comparison to the real pixel values and outperformed the 

WS significantly. The results indicated that the cGAN has potential to fill cloud and cloud shadow gaps in optical image time-series. 

 

 

1. INTRODUCTION 

Food demand is increasing rapidly and therefore sustainable food 

production is currently a worldwide concern. Tillman et al. 

(2011) predicted that by 2050 the world agricultural production 

should double to meet the food supply needs. In this context, 

stakeholders require regular and high-quality agricultural 

statistics to improve crop yield. 

 

The remote sensing community has made efforts to develop 

methods to respond this demand. The majority of existing 

approaches utilize optical image time-series to account for the 

crop phenological stages. However, noises, particularly clouds 

and cloud shadows in optical data can deteriorate the accuracy of 

land cover mapping. Lunetta et al. (2006) pointed out the 

requirement of data cleaning pre-processing to remove the 

uncertainty and provide a better land cover mapping using time 

series. Shao et al. (2016) outlined several smoothing algorithms 

that can be used to minimize noise in optical time series. The 

authors evaluated several algorithms and reported that Witthaker 

Smother (WS) provided the best distinction between classes of 

interest. 

 

The Generative Adversarial Network (GAN) is a novel approach 

for cloud removal. It comprises two deep neural networks 

competing against each other, a Generative model (G) and a 

Discriminative model (D). G learns to map an input data into 

output and D discriminates if its input is real or fake. Another 

version of GAN is the Conditional GAN (cGAN) which has its 

output conditioned in some input data. Bermudez et al., (2018) 

and (2019) addressed cloud removal with cGAN using SAR 

images to conditionate the delivery of optical data. 

 

Both approaches have been used in previous studies, however, to 

the best of our knowledge, up to now there has not been 

evaluation concerning which one delivers the best synthetic 

optical data. Our aim in this work was to perform an evaluation 

on the quality of pixel values delivered by the cGAN and WS in 

a crop dataset. This paper is organized as follows: an overview 

of GAN is presented in section 2; in section 3 are presented the 

dataset, pre-processing, and experimental protocol; results and 

discussion are given in section 4; and the conclusions in section 

5. 
 

2. GENERATIVE ADVERSARIAL NETWORK 

GAN was first introduced by Goodfellow et al. (2014) and it has 

two deep neural networks, a Generative model (G) and a 

Discriminative model (D). G is a mapping function that given any 

data distribution 𝑝𝑑𝑎𝑡𝑎(𝑥), learns to map a random noise vector 

𝑧, to produce an output 𝑦. The distribution of the output data, 

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥), must be as close as possible to 𝑝𝑑𝑎𝑡𝑎(𝑥). D is a 

function that discriminates if its input is real or fake, therefore if 

the input comes from  𝑝𝑑𝑎𝑡𝑎(𝑥) or  𝑝𝑚𝑜𝑑𝑒𝑙(𝑥).  

 

The main goal of a GAN is to improve G until D cannot tell if 

generated images are real or fake. To this end the models are 

trained in an adversarial manner in a zero-sum game, trying to 

find the optimal mapping function, which is presented in 

Equation 1. 

 

 𝐺∗ = arg min
𝐺

max
𝐷

ℒ𝐺𝐴𝑁(𝐺, 𝐷) (1) 

 

where ℒ𝐺𝐴𝑁(𝐺, 𝐷) is the objective function presented in Equation 

2. 
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 ℒ𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] (2) 

 +𝔼𝑧~𝑝(𝑧)
[log(1 − 𝐷(𝐺(𝑧)))]  

 

where 𝑧 is the random noise vector; and 𝑝𝑧(𝑧) is the probability 

distribution of the noise data. 

 

The backpropagation algorithm is used in the training. First, D is 

trained with real and generated samples considering random 

initial weights, and G also with random weights but fixed (not 

trainable). After, D is set as not trainable and the parameters of G 

are updated to minimize the loss from D, considering now that 

the output of the G model is set as “real samples”. Training a 

GAN includes minimizing the Jensen-Shannon (JS) divergence 

(Equation 3) between the data distributions 𝑝𝑑𝑎𝑡𝑎(𝑥) or  

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥) as stated before. 

 

 𝐽𝑆(𝑝𝑑𝑎𝑡𝑎(𝑥), 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)) = 𝐾𝐿(𝑝𝑑𝑎𝑡𝑎(𝑥)||𝑝𝑚) 

+ 𝐾𝐿(𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)||𝑝𝑚) 
(3) 

 

where 𝑝𝑚 is (𝑝𝑑𝑎𝑡𝑎(𝑥) + 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))/2. This divergence is 

symmetrical and always defined since it is chosen 𝜇 =  𝑝𝑚; 𝐾𝐿 

stands for Kullback-Leibler (KL) divergence that is defined in 

Equation 4.  

 

 𝐾𝐿(𝑝𝑑𝑎𝑡𝑎(𝑥)||𝑝𝑚𝑜𝑑𝑒𝑙(𝑥))

= ∫ log (
𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)
) 𝑝𝑑𝑎𝑡𝑎(𝑥) 

(4) 

 

Mirza and Osindero (2014) presented the cGAN which is an 

extension of GAN. The main difference is that the generative and 

discriminative models have their outputs conditioned on extra 

information, like an observed image 𝑥. So, the G function learns 

to map an observed image 𝑥 and a random noise vector 𝑧, to 

produce an output 𝑦. The objective function of GAN conditioned 

in extra information (𝑥) is expressed in Equation 5. 

 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦~𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦)[log 𝐷(𝑥, 𝑦)] (5) 

 +𝔼𝑥~𝑝(𝑥),𝑧~𝑝(𝑧)
[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))]  

 

3. MATERIAL AND METHODS 

3.1 Dataset and Pre-processing 

To compare the performance of cGAN and WS, we carried out 

experiments using the Luís Eduardo Magalhães (LEM) 

benchmark for tropical agricultural remote sensing application 

(Sanches et al., 2018). The LEM database embraces optical and 

SAR image time series, having 54 MSI/Sentinel-2, 24 

OLI/Landsat-8, and 30 C-SAR/Sentinel-1 images.  The optical 

images were provided in surface reflectance and the SAR images 

in sigma nought (σ0) in dB scale. 

 

Each pixel of the C-SAR/Sentinel-1 images are represented by a 

vector compromising the polarizations VV and VH. For the 

MSI/Sentinel-2 images, each pixel is represented by a vector with 

values for Blue, Green, Red, NIR, Red-Edge1 (RE1), Red-Edge2 

(RE2), Red-Edge3 (RE3), SWIR1, and SWIR2 bands. The pixel 

values of both optical and SAR images were normalized to lie 

between -1 and 1. The optical images were normalized using 

linear mapping, whereas the SAR images were normalized as 

presented in Enomoto et al. (2018). 

 

Due to the different spatial resolutions of the images, the C-

SAR/Sentinel-1 images were resampled to a spatial resolution of 

20 meters using the nearest neighbor algorithm. This resolution 

was chosen because it is the predominant resolution of the 

MSI/Sentinel-2 bands and because it is lower than the resolution 

of the C-SAR/Sentinel-1 images provided in the LEM dataset (10 

meters). 

 

Besides the images, the LEM database also has a ground truth 

with 794 polygons representing crop fields, each polygon has as 

attributes a sequence of monthly land use (type of agricultural 

crop) for 2017/2018 harvests (summer and winter). The classes 

in this database are beans, cerrado (Brazilian savanna), coffee, 

conversion area, cotton, crotalaria, eucalyptus, grass, hay, corn, 

corn+crotalaria, millet, non-commercial crops, unidentified, 

pasture, sorghum, soybean, uncultivated soil, and wheat.  

 

To perform the experiments, the ground truth was split into 

training and testing areas. The training area represents polygons 

free of cloud and cloud shadows, while the testing area simulates 

crop fields covered by cloud and cloud shadows. The boundaries 

of Luís Eduardo Magalhães municipality, as well as the crop 

fields of the ground truth, split into training and testing areas are 

depicted in Figure 1. 

 

 
Figure 1. Luís Eduardo Magalhães municipality boundaries 

with ground truth polygons 

 

3.2 Experimental Protocol 

We selected one cloud free MSI/Sentinel-2 image on the dataset 

to perform the evaluation process, the image chosen was taken 

on April 30th, 2018. To perform the image translation, we 

selected the C-SAR/Sentinel-1 image collected on May 2nd, 2018, 

which was close date to the date of the optical image. A total of 

5000 patches with 256x256 pixels were randomly extracted over 

the crop fields and were balanced regarding the class of the 

central pixel. The architecture of the cGAN (Generator and 

Discriminator) used is the same as pix2pix GAN presented by 

Isola et al. (2017). 

 

Since the WS algorithm works over time series, we built a data 

cube for each band using every MSI/Sentinel-2 image available 

on the dataset. Each cube was smoothed using the WS algorithm 

with a λ equal to 10, where a larger λ gives a smoother result.  

 

The evaluation was carried out first with visual analysis, 

comparing patches gotten over the real, the cGAN, and the WS 
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images. Following, the spectral behavior for various classes was 

evaluated by comparing the real image against the synthetic 

pixels delivered by cGAN and WS. Finally, the three images 

were classified using the Random Forest (RF) algorithm. The 

classification model was trained using data from the training area 

using the real image pixels; the model was then used to classify 

the test area for the real and both synthetic images. The RF 

version used is available in the python scikit-learn package 

(Pedregosa et al., 2011). The RF was set with 10000 trees, depth 

equal to 12, the criterion was the entropy, and class_weight was 

set as balanced; other parameters were left as default. To evaluate 

the classification performance, the Kappa coefficient and F1-

score were computed. The Kappa coefficient is used for a general 

evaluation of the classification, while the F1-score is the 

harmonic mean between the precision and recall for each class, 

for the whole model it represents how well the model classifies 

each class.  

 

4. RESULTS AND DISCUSSION 

Figure 2 shows false color composites of image patches from 

three different locations. In the first column are shown patches 

from the real optical image (a, e, i), in the second column are 

presented C-SAR patches (b, f, j), and in the third (c, g, k) and 

fourth (d, h, l) columns are shown patches for the synthetic 

optical images generated by cGAN and WS, respectively. 

Comparing the patches (a) and (e), which have clouds and cloud 

shadows with the cGAN and WS patches, (c, g) and (d, h), 

respectively, it is possible to notice that the cGAN approach was 

capable to generate synthetic pixels that visually fit in the places 

that had noise. However, it is also possible to observe that the 

areas not affected by noises in the real images were more blurred 

in the cGAN patches. In the WS patches, the dark clouds and 

cloud shadows diminished, however, new noises, looking like 

thin clouds, appeared in the patches, which is probably related to 

the presence of clouds in previous and subsequent images in the 

LEM image time series.  

 

Regarding the spectral behaviour, it is shown in Figure 3 six 

different charts for the land use classes (a) maize; (b) uncultivated 

soil; (c) cerrado (Brazilian savannah); (d) cotton; (e) eucalyptus; 

and (f) pasture. In each chart, there are boxplots of normalized 

pixel values for every spectral band of the three different images 

evaluated, the real image is depicted in gray, cGAN in light blue, 

and WS in dark blue, inside each boxplot the dot and line 

represent the mean and median, respectively. It is possible to 

notice that the mean values for almost every cGAN band are 

closer to the real image than the WS image is, the clear exceptions 

are the RE2 and NIR bands for maize (Figure 3a) and the RE2 

and RE3 bands for cerrado (Figure 3c) where the mean for the 

WS pixels are closer to the real image than the cGAN. 

    

    
(a) (b) (c) (d) 

 

    
(e) (f) (g) (h) 

 

    
(i) (j) (k) (l) 

Figure 2. Patches presented in false color composites RED(R)NIR(G)SWIR(B) for the optical images: (a, e, i) real; (c, g, k) cGAN; 

(d, h, l) WS. Patches presented in false color composites HH(R)VV(G)HH+VV(B) for the C-SAR images (b, f, j) 
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Figure 3. Spectral behaviour depicted using boxplots of the normalized pixel values for the real image (gray) and synthetic pixel 

values for cGAN (light blue) and WS (dark blue) images. Each chart corresponds to one land use class (a) maize; (b) uncultivated 

soil; (c) cerrado; (d) cotton; (e) eucalyptus; and (f) pasture. Inside the boxplots the line indicates the pixels median, while the dot 

represents the mean. 
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The results in Figure 3 show that for the most of classes the bands 

in the visible spectrum (Blue, Green, and Red) from the real and 

cGAN images are similar, especially the classes cotton (Figure 

3d) and pasture (Figure 3f) which match almost perfectly. 

Considering the visible spectral range, the only class where the 

boxplots are quite different is the eucalyptus (Figure 3e), 

although this difference decreases in other spectral bands. Even 

so, the eucalyptus class has the worst performance for both 

synthetic images, since for most bands the boxplots do not 

overlap with the boxplots for the real images. Considering the 

variability, it is possible to observe for most of the classes that 

the cGAN again outperformed the WS since the range between 

the minimum and maximum in the boxplots for the cGAN were 

closer to the range in the real image boxplots than in the WS 

image boxplots. Although large differences can be seen in some 

charts, like for the bands RE2, RE3, NIR, and SWIR2 in the class 

maize (Figure3a), yet this is not an issue since all generated pixels 

for the bands mentioned lie inside the same range that the real 

pixels for this class lie. Regarding the variability, a real issue can 

be seen in almost every chart for the WS and in certain specific 

cases for the cGAN, for instance, in the visible spectral interval 

for maize (Figure 3a), since the variability of the synthetic pixels 

are higher than the variability in the real image, meaning that the 

generated pixel values do not lie in the spectral interval of this 

class and which can lead to further misclassification. 

 

Regarding the classification results, the Kappa coefficient was 

0.645 for the real image, 0.418 for the cGAN image, and 0.019 

for the WS image. The F1-score was 0.756 for the real image, 

0.570 for the cGAN, and 0.288 for the WS image. These results 

are graphically shown in Figure 4.  

 

 
Figure 4. Metrics used for evaluation of the classification: 

Kappa coefficient and F1-score 

 

The classification metrics shown in Figure 4, confirm the visual 

analysis and the spectral behavior evaluation commented above 

where the cGAN also outperformed by far the WS image.  

 

5. CONCLUSION 

Our study compared the cGAN against the WS algorithm for 

delivering synthetic optical pixels for one image from the LEM 

benchmark and dataset. We have carried out a visual analysis, 

spectral behaviour comparison, and classification, which showed 

the cGAN outperformed the WS. In visual analysis, the capability 

of cGAN for removing clouds and cloud shadows was shown, 

however, the cGAN image patches were blurred when compared 

to the real image patches. Regarding the spectral behaviour, the 

cGAN delivered pixel values consistent with the real image for 

most of the classes. Furthermore, cGAN outperformed the WS in 

the classification analysis, but was worse than the real image. It 

is important to highlight that these are initial results and that there 

is room for improvement. A more comprehensive evaluation 

considering more image dates is necessary. In this data set, the 

WS results may have been deteriorated by cloud and cloud 

shadows in previous or further images in the dataset. In future 

studies we aim to improve the classification results using the 

cGAN, adopting the multitemporal approach as presented by 

Bermudez et al. (2019) and using a loss function that enforces the 

spectral behaviour for the generated pixels to be closer to the real 

ones.  
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