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ABSTRACT: 

 

Over the past few years, many research works have utilized Convolutional Neural Networks (CNN) in the development of fully 

automated change detection pipelines from high resolution satellite imagery. Even though CNN architectures can achieve state-of-the-

art results in a wide variety of vision tasks, including change detection applications, they require extensive amounts of labelled training 

examples in order to be able to generalize to new data through supervised learning. In this work we experiment with the implementation 

of a semi-supervised training approach in an attempt to improve the image semantic segmentation performance of models trained using 

a small number of labelled image pairs by leveraging information from additional unlabelled image samples. The approach is based 

on the Mean Teacher method, a semi-supervised approach, successfully applied for image classification and for sematic segmentation 

of medical images. Mean Teacher uses an exponential moving average of the model weights from previous epochs to check the 

consistency of the model’s predictions under various perturbations. Our goal is to examine whether its application in a change detection 

setting can result in analogous performance improvements. The preliminary results of the proposed method appear to be compatible to 

the results of the traditional fully supervised training. Research is continuing towards fine-tuning of the method and reaching solid 

conclusions with respect to the potential benefits of the semi-supervised learning approaches in image change detection applications. 

 

1. INTRODUCTION 

For the past few decades, the development of automatic change 

detection applications has been an active research area in remote 

sensing. A reliable change detection pipeline can be a very useful 

tool in many Earth Observation related applications including 

environmental monitoring, urban planning, map updating and 

disaster management. 

 

Since the notable success of AlexNet (Krizhevsky et al., 2012) in 

the Large Scale Visual Recognition Challenge of 2012, 

Convolutional Neural Networks (CNN) have become a very 

popular Artificial Intelligence (AI) approach for computer 

vision-related tasks such as image classification, object detection 

and semantic segmentation. CNN models are specialized to work 

with data that have grid-like topology, are easier to train and can 

generalize better than traditional fully connected neural 

networks. Thanks to their stacks of convolutional and pooling 

layers CNN can learn useful context information from images by 

taking advantage of the hierarchical structure of an image's 

features. 

 

Recently, CNN approaches based on encoder-decoder 

architectures have been successfully applied to the change 

detection (CD) task (Peng et al., 2019; Zhang et al., 2019a; 

Bousias Alexakis & Armenakis, 2020). These models perform 

image semantic segmentation in an end-to-end manner producing 

state-of-the-art results. The networks take as input a pair of co-

registered image instances collected at different time periods and 

produce a prediction mask classifying each pixel location as 

changed or unchanged. 

 

Even though the existing CNN-based architectures have been 

successfully applied in multiple research works, there are still 

open issues regarding their training and application that need to 
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be resolved. CNN models, as all learn by example approaches, 

are only as good as the data that they are trained on. Therefore, 

in order to get high quality results there is a need for training data 

of similar quality. In addition, modern CNN architectures need a 

very high volume of data in order to generalize effectively and 

not overfit on the training data. The change detection training 

data are usually obtained from time-consuming and labour-

intensive processes such as human interpretation of remotely 

sensed datasets with the help of semi-automated CD pipelines. 

Thus, there is a need for methods that can help decrease the 

amount of labelled data needed to successfully train a CNN-

based encoder-decoder architecture and simultaneously use 

effectively the very large amount of available unlabelled data. 

 

Recognizing this need, in this work we aim to improve the 

segmentation accuracy of encoder-decoder models in the absence 

of a sufficient number of labelled training samples by applying a 

semi-supervised training approach based on the concepts of 

consistency regularization and self-ensembling. In the case of 

specific remote sensing applications from satellite imagery, like 

land-cover and land-use classification or change detection 

applications, there is a very large amount of unlabelled training 

data available from sources such as Google Earth or Sentinel 2 

imagery. The most challenging step for the successful training of 

a CNN-based CD application is to create reliable annotations for 

a sufficiently large training dataset so that the algorithm may 

learn to generalize well to new images. The proposed semi-

supervised approach utilizes all the additional unlabelled 

information by encouraging the predictions of images subjected 

to various transformations to remain consistent expecting that it 

will lead to CD models that generalize well even when trained 

with a limited number of labelled examples. 
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2. RELATED WORK 

There are numerous recent research works that address the 

change detection problem by training a CNN based algorithm 

that performs end-to-end semantic segmentation of co-registered 

image pairs. Most approaches use architectures inspired by Fully 

Convolutional Networks (Long et al., 2015), especially variations 

or extensions of the UNet architecture (Ronneberger et al., 2015) 

such as the works of (Daudt et al., 2019, 2018; Peng et al., 2019; 

Papadomanolaki et al., 2020; C. Zhang et al., 2019a; Bousias 

Alexakis & Armenakis, 2020). Even though these approaches 

achieve state-of-the-art results, they have always been trained 

and tested on small datasets due to the lack of more labelled data. 

One way to avoid overfitting to small datasets is to apply transfer 

learning techniques (Yosinski et al., 2014) as did Cao et al. 

(2019) when experimenting with multiple common CNN 

architectures for land use classification and land use change 

analysis. 

 

In order to address the lack of training data, many other 

unsupervised or semi-supervised approaches based on Neural 

Networks (NN) or CNN have been recently proposed. Some of 

them make use of autoencoders to automatically extract features 

from the image pairs and then apply complex algorithms like the 

Chan-Vese algorithm (Zhang et al., 2019b) or a stacked mapping 

network and a clustering algorithm like fuzzy c-means (FCM) 

(Su et al., 2017). In the latter the unsupervised method is mainly 

based on models which learn feature representations from 

images. A stacked denoising autoencoder is applied to two 

images for feature extraction. Then mapping functions are 

generated by a stacked mapping network to form relationships 

between the features of each class. The change detection is 

performed by comparing the features and at the end applying a 

clustering algorithm. More unsupervised approaches for CD are 

cited by Khelifi & Mignotte (2020), who provide a 

comprehensive review and meta-analysis of deep learning 

change detection methods for remote sensing images, but in most 

cases the proposed methods do not make end-to-end predictions 

and only incorporate the Deep Neural Network as a feature 

extractor in the CD pipeline. 

 

In our work we make use of the concepts of consistency 

constraint and self-ensembling in Deep Neural Networks (Laine 

& Aila, 2016; Tarvainen & Valpola, 2017). It should be 

mentioned that we have not been able to find a similar approach 

for change detection in the literature, so we will devote the rest 

of the literature review on works that have introduced or applied 

these principles for image classification and medical image 

semantic segmentation. 

Laine & Aila (2016) introduced self-ensembling, which predicts 

the unknown sample labels by averaging the outputs of multiple 

instances of the same network on different training epochs and 

by also applying multiple regularizations and augmentations to 

the initial inputs of the models. Two different implementations of 

self-ensembling are proposed: a) Π-model, whose aim is to 

produce consistent predictions for both labelled and unlabelled 

data among models that undergo stochastic (thus different) 

dropout given the same input subjected to Gaussian noise and 

other augmentations; and b) temporal ensembling, which extends 

the Π-model by incorporating the model predictions over 

multiple previous training epochs. The approach was applied to 

an image classification task and achieved state-of-the-art results 

reducing by far the classification error rate of the corresponding 

supervised approach and also proved to be robust in the presence 

of incorrect labels. 

 

Tarvainen & Valpola (2017) built on the work of Laine & Aila 

(2016) and proposed Mean Teacher, a method that computes the 

Exponential Moving Average (EMA) of model weights instead 

of averaging over the model’s predictions. This way the EMA 

(also known as teacher model or Mean Teacher) is updated after 

each iteration and not after each epoch, which significantly 

increases the pace at which the training information is 

incorporated into the training process. The results indicate a 

significant training accuracy improvement and enable the models 

to learn using a smaller number of labelled samples compared to 

the approach proposed by Laine & Aila (2016). 

 

Li et al. (2021) propose a semi-supervised semantic segmentation 

approach for medical imagery that incorporates both a supervised 

and an unsupervised component in the loss function used for 

training the network. For the unlabelled samples of the dataset, 

the algorithm learns to make consistent predictions by utilizing a 

regularization term that tries to minimize the difference between 

predictions of the same input that has been subjected to different 

perturbations (gaussian noise, dropout, geometric 

augmentations). The model also makes use of a mean teacher and 

student scheme (Tarvainen & Valpola, 2017) when computing 

the consistency regularization term, where the weights of the 

teacher are an exponential moving average of the student’s 

weights on different training epochs. The proposed approach was 

validated in three different medical image segmentation tasks and 

achieved state-of-the-art results. 

 

A very recent application of the mean teacher training scheme in 

a remote sensing setting was reported by (Hobley et al., 2021), 

where the training scheme is used to train a Fully Convolutional 

Network for seagrass monitoring from Remotely Piloted Aircraft 

(RPA) Very High Resolution (VHR) imagery. The method was 

compared to a fully supervised training setup as well as to an 

Object-based Image Analysis (OBIA) approach, resulting in 

improved results compared to the fully supervised setting but still 

not as good as the results achieved using OBIA. 

 

3. METHODOLOGY 

The method we apply to train our model follows the approach 

proposed by (Li et al., 2021). As mentioned earlier, the approach 

aims to leverage the abundance of unlabelled multi-temporal 

satellite data to address the lack of available labelled training data 

and improve the semantic segmentation performance of encoder 

decoder architectures for change detection applications.  

 

Before describing the approach step by step we should once again 

point out that it is based on two simple ideas: 

• The first one is the consistency assumption, which suggests that 

the model’s outputs should be consistent even if the input 

images have been subjected to a certain number of 

transformations. This is also called transformation 

equivariance and it can be encouraged by incorporating a 

consistency regularization term (i.e. a term that encourages the 

predictions of the same input even when subjected to various 

perturbations to remain consistent) into the loss function. 

 

• The second is the mean teacher training framework, which is a 

form of self-ensembling. Instead of only using our training 

model to compute the consistency regularization term we 

compare the results of our training model (student) to the 

results of a mean model (teacher), whose weights are computed 

based on an exponential moving average of the weights of the 

student model throughout the training epochs. 
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Figure 1: Overview of the proposed training approach (based on Li et al. (2021)).

 

Even though in the actual experiments we used a minibatch size 

of 8 image pairs, for the sake of simplicity, we are going to 

describe the training process considering a single image pair 

(Figure 1). For each sample image pair, the two RGB images are 

concatenated into a new six channel image, 𝑥𝑖. A set of 

augmentation transformations is then applied to the image pair 

that is used as input to the student model 𝑓𝜃  that produces as 

output a change prediction map 𝑝𝑖. This prediction map is then 

compared to the ground truth change mask, 𝑦𝑖, in order to 

compute the supervised component of the loss function, 𝐿1. For 

the supervised loss component, we are using a Binary Cross 

Entropy (BCE) loss function (Equation 1). 

 

The original image pair is then fed to the teacher network, 𝑓𝜃
′, to 

produce a second prediction 𝑓𝜃
′(𝑥𝑖) that is then subjected to the 

same set of transformations, 𝜏𝑖, so that the transformed 

prediction, 𝑝𝑖
′, can be comparable to the one produced by the 

student model. Using predictions 𝑝𝑖 and 𝑝𝑖
′ we can now compute 

the consistency regularization term of the loss function, 𝑅1, that 

measures how consistent the model’s predictions are when the 

images are subjected to random augmentations. For this 

unsupervised component of the loss function we have used a 

Mean Squared Error (MSE) loss function (Equation 2). 

 

The total loss function is a weighted average of the supervised 

and unsupervised components (Equation 3), where 𝜆(𝑡) is an 

exponential weighting function that increases the weight of the 

consistency regularization term as the network’s training 

progresses and the its predictions become more accurate 

(Equation 4). The terms 𝑡𝑚𝑎𝑥 and 𝜅 are hyperparameters of the 

function: 𝑡𝑚𝑎𝑥 is used to set the number of epochs (threshold) 

after which the ramp-up function takes its maximum value, and 

𝜅 is a scaling factor indicating the general weighting factor of the 

regularization term on the aggregated loss function. 

 

The student’s weights are updated through backpropagation 

while the teacher’s weights are updated by an EMA (Equation 5). 

 

𝐿1 = −(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)) (1) 

 

𝑅1 = ‖𝑝𝑖 − 𝑝𝑖
′‖2 (2) 

 

𝐿𝑜𝑠𝑠 = 𝐿1 + 𝜆(𝑡)(𝑅1 + 𝑅2) (3) 

 

𝜆(𝑡) = {
𝜅 exp (−5 (1 − 

𝑡

𝑡𝑚𝑎𝑥 
)

2

) , 𝑖𝑓 𝑡 < 𝑡𝑚𝑎𝑥 

𝜅,                                                𝑖𝑓 𝑡 > 𝑡𝑚𝑎𝑥

 (4) 

 

𝑓𝜃,𝑡
′ = 𝑎 𝑓′𝜃,𝑡−1 + (𝑎 − 1)𝑓𝜃,𝑡

′  (5) 

 

As it was mentioned earlier, the training process was described 

for a single image pair, while for the actual training we used a 

batch size of 8 image pairs. In the process so far, we have only 

considered the labelled examples. For the unlabelled part of the 

dataset we can compute solely the consistency regularization 

term, but since in practical applications the number of unlabelled 

samples greatly exceeds the number of labelled ones, we expect 

that the additional unlabelled information will improve the 

networks performance on the semantic segmentation task and 

will lead to more robust predictions. Thus, the complete formula 

of the loss function will include one additional term, 𝑅2, of the 

same form as 𝑅1, referring to the consistency regularization term 

for the unsupervised image pairs of each minibatch. The 

complete training process is summarized in Algorithm 1. 

 

 
Algorithm 1: Semi-supervised training process based on the 

approach of Li et al. (2021). 

 

For our student and teacher models we are using the UNet 

architecture (Ronneberger et al., 2015). UNet (Fig. 2) consists of 

a contracting and a symmetrical expanding path and takes 

advantage of both the contextually rich semantic information of 

the coarser lower layers and the spatially accurate activations of 

the fine-grained higher layers by introducing multiple skip 

connections between contrastive and expanding blocks that share 
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the same resolution. We followed the original UNet architecture 

(Ronneberger et al., 2015) and also added a batch normalization 

layer after each convolutional layer as it has been shown to help 

the models learn faster (Ioffe and Szegedy, 2015). 

 

 
Figure 2: UNet architecture. 

 

4. EXPERIMENTS 

4.1 Dataset 

Our experiments were conducted on a CD dataset proposed by 

Lebedev et al. (2018) that consists of 16000 RGB image pairs of 

size 256 × 256 pixel, taken from Google Earth (DigitalGlobe), 

and their binary change masks. The 16000 samples are split into 

a 10000 samples train set and into a 3000 samples validation and 

test sets. The pixel ground resolution ranges from 30cm to 1m. 

The masks are based solely on changes that relate to the 

appearance or disappearance of objects between the two 

instances of the pair and ignore any seasonal variations. 

 

4.2 Training Details 

We have randomly split the training set into smaller sets 𝑆500 ⊂
𝑆1000 ⊂ 𝑆2500 ⊂ 𝑆5000 ⊂ 𝑆7500 each containing 500, 1000, 

2500, 5000, 7500 labelled image pairs. For each smaller set, we 

have used the rest of the image pairs as unlabelled training 

samples. So, for example 𝑆500will be trained using 500 labelled 

and 9500 unlabelled samples, 𝑆1000 will be trained using 1000 

labelled and 9000 unlabelled samples and so on and so forth. 

Finally, we have trained the network using all 10000 labelled 

training samples in a fully supervised way to use as a benchmark 

for the results retrieved using the smaller labelled training sets 

 

The training was conducted on a NVIDIA Quadro RTX 5000 

GPU using PyTorch (Paszke et al., 2019). For the image data 

augmentations, we have used the Albumentations (Buslaev et al., 

2020) library. For the transformations 𝜏𝑖 we have used random 

90-degree angle rotations, random horizontal and vertical 

flipping and random crop and rescale transforms. Besides from 

the geometric transformations we have also used a couple of 

                                                                 
1 The number of iterations is not rounded because in our implementation 

we used the number of epochs and not the number of iterations to iterate 
over the datasets. Thus 150 epochs on the 2500 sample set with a 

minibatch size of 8 translates to 46875 iterations and to 75 epochs on 

radiometric augmentations: an RGB shift augmentation, where 

the RGB values of an image are shifted by a randomly chosen 

value for each channel in the interval (-20, +20), as well as a 

random brightness and contrast augmentation. 

 

In order to reduce the training time, we have first trained a UNet 

model from scratch on the 2500 sample set without any data 

augmentation for 150 epochs (we noticed that at that point the 

network started to overfit to the training set). For the training sets 

containing 2500 samples or more we used the pretrained 

network’s weights as starting weights and trained for another 

46875 iterations1. We used a learning rate of 0.0003 for the first 

2/3 of the training and of 0.0001 for the last 1/3. The training sets 

containing less than 2500 labelled examples (𝑆500 and 𝑆1000) 

were trained from scratch following the same principles. 

 

4.3 Results 

 

Figure 3 and Table 1 present the Intersection over Union (IoU) 

results we retrieved on the training and validation dataset for 

different labelled sample sizes. The only case where the semi-

supervised training achieves better performance on the validation 

set is for the 2500 labelled sample size. In all other cases the 

supervised training with augmentations performs better than the 

proposed semi-supervised approach. 

 

 
Figure 3. Training and validation IoU metrics for semi-

supervised and supervised models for varying number of 

labelled training samples. 

The results are contrary to our initial expectations. We expected 

that for small number of samples the semi-supervised approach 

would perform better than the supervised one thanks to the extra 

information provided by the unlabelled data and that as the 

number of training samples increased, the benefits of the semi-

supervised training scheme would wear out with the two methods 

producing similar results for higher sample sizes. Instead, there 

is no distinct pattern connecting the relative performance of the 

two methods with the number of samples. On the smallest 

labelled sample size both approaches perform similarly (around 

61%) and greatly overfit to the data. When the labelled sample 

size is set to 1000, the semi-supervised approach has a validation 

the 5000-sample set with the same minibatch size and so on for the rest 

of the training sets. 
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Table 1. Training and validation IoU metrics for semi-supervised and supervised models for varying number of labelled training 

samples 

 

 

IoU about 4% lower than the supervised approach and for larger 

training sizes the IoU of the fully supervised approach exceeds 

the semi-supervised IoU (by about 2% on 𝑆5000and 2.5% on 

𝑆7500). The only case where the semi-supervised approach 

outperforms the fully supervised results is on the 𝑆2500 (by 

2.6%). 

 

In our initial experiments we did not use any dropout layers 

(Srivastava et al., 2014) in order to examine whether the 

geometric and radiometric augmentations would be sufficient 

perturbations for the semi-supervised training to succeed. Since 

Li et al. (2021) used dropout in their solution that outperformed 

the fully supervised training we also ran extra experiments 

applying an additional dropout regularization with a probability 

of 0.3 (or 30%) on the output of the last convolutional block and 

before applying the final convolutional layer of the model. 

Dropout was applied on three of the training schemes 

(𝑆500, 𝑆1000, 𝑆5000) and resulted in an improved IoU for 𝑆1000 

(about 2.5%), but still lower than the respective fully supervised 

result, and in slightly worse IoUs (less than 0.5%) in the case of  

𝑆500 and 𝑆5000.  

  

When considering each method individually, the results seem 

reasonable. For very small sample sizes there is a large gap 

between training and validation IoU suggesting overfitting to the 

small training set for both models (the gap is around 20% for both 

models), that is gradually closing as the number of samples 

increases, with the validation IoU being even higher than the 

training IoU for bigger labelled sample sizes (this is the case for 

𝑆7500 for both supervised and semi-supervised methods and 

𝑆10000 for the supervised one) indicating that  more labelled 

training samples help the models generalize better, which is the 

expected behaviour. The fact that the validation IoU is higher 

than the training IoU may relate to a condition included in the 

training when saving the best model. The condition was based 

solely on the IoU performance on the validation set as a safety 

net against overfitting. 

 

 
Figure 4. Loss function terms of the semi-supervised method 

for 𝑆2500. Loss is the aggregate loss, sup loss is the supervised 

component of the loss function (𝐿1), semi-sup loss is the 

consistency regularization term for the labelled samples (𝑅1), 

and unsup loss is the consistency regularization term for the 

unlabelled samples (𝑅2) of the dataset. 

 

The training and validation loss curves (average loss function 

values per epoch) presented in Figure 4 and 5 can help us 

examine the learning behaviour of the semi-supervised approach. 

We can see that the consistency regularization terms have a 

significantly lower range of values. All terms decrease over time 

and seem to converge by the end of training. Also, the change of 

the learning rate from 0.0003 to 0.0001 at epoch 100 (for 𝑆2500) 

and 75 (for 𝑆2500) is visible for both learning curves. 
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500 ✘ Sup Random 0.0483 0.8136 0.1617 0.6105 

500 ✘ Semi-Sup Random 0.0649 0.8021 0.1554 0.6123 

500 ✓ Semi-Sup Random 0.0552 0.8316 0.1664 0.6101 

1000 ✘ Sup Random 0.0759 0.7308 0.1081 0.6529 

1000 ✘ Semi-Sup Random 0.0952 0.6926 0.1178 0.6146 

1000 ✓ Semi-Sup Random 0.0851 0.7415 0.1185 0.6403 

2500 ✘ Sup Pretrained 0.0751 0.7347 0.0823 0.7087 

2500 ✘ Semi-Sup Pretrained 0.0780 0.7561 0.0727 0.7351 

5000 ✘ Sup Pretrained 0.0649 0.7695 0.0621 0.7686 

5000 ✘ Semi-Sup Pretrained 0.0836 0.7421 0.0686 0.7487 

5000 ✓ Semi-Sup Pretrained 0.0796 0.7426 0.0709 0.7446 

7500 ✘ Sup Pretrained 0.0673 0.7592 0.0613 0.7663 

7500 ✘ Semi-Sup Pretrained 0.0892 0.7290 0.0710 0.7402 

10000 ✘ Sup Pretrained 0.0694 0.7539 0.0607 0.7703 
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Figure 5. Loss function terms of the semi-supervised method 

for 𝑆5000. Loss is the aggregate loss, sup loss is the supervised 

component of the loss function (𝐿1), semi-supervised loss is the 

consistency regularization term for the labelled samples (𝑅1), 

and unsup loss is the consistency regularization term for the 

unlabelled samples (𝑅2) of the dataset. 

 

In Figure 6 we present predictions from different models for 8 

image pairs selected randomly from the validation set. Overall, a 

qualitative analysis of the predictions suggests that the models 

trained on 2500 images (both supervised and unsupervised) seem 

to perform similarly to the fully supervised model trained on 

10000 images, while the models trained on the 500 images do not 

seem to produce accurate predictions, especially when it comes 

to small or thin elongated objects and regions with complex 

shapes/boundaries. 

 

5. CONCLUSION 

In this work we implemented a Mean Teacher semi-supervised 

training setup following the work of Li et al. (2021) and applied 

it to a Change Detection setting to explore the potential benefits 

of the method compared to a fully supervised training process, 

especially when only a few labelled training examples are 

available. We expected that the consistency regularization 

constraint would allow the model to learn useful information 

from unlabelled data, improving the model’s performance when 

limited labelled samples are available, which is often the case in 

CD applications.  

 

The preliminary results indicate that the proposed approach does 

not outperform the fully supervised training setup for the 

particular change detection dataset. Contrary to our initial 

expectations, there is no clear relation between the size of the 

labelled training set and any performance benefits of applying the 

semi-supervised training scheme instead of a fully supervised 

solution. In general, the fully supervised approach slightly 

outperforms the semi-supervised approach for almost all labelled 

training set sizes, with the exception of 𝑆2500. 

 

Even though the preliminary results are not in favour of the 

proposed semi-supervised method, further experiments are 

required in order to extract more solid conclusions regarding the 

usefulness of the method for Change Detection applications. 

Future work will involve larger testing datasets and stronger and 

more varied perturbations to the input data which will hopefully 

lead to higher model performance and safer conclusions 

regarding the training of CNN models using a limited number of 

labelled samples and consistency regularization. 
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