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ABSTRACT:

Deforestation in the Amazon rainforest is an alarming problem of global interest. Environmental impacts of this process are
countless, but probably the most significant concerns regard the increase in CO2 emissions and global temperature rise. Currently,
the assessment of deforested areas in the Amazon region is a manual task, where people analyse multiple satellite images to quantify
the deforestation. We propose a method for automatic deforestation detection based on Deep Learning Neural Networks with dual-
attention mechanisms. We employed a siamese architecture to detect deforestation changes between optical images in 2018 and
2019. Experiments were performed to evaluate the relevance and sensitivity of hyperparameter tuning of the loss function and the
effects of dual-attention mechanisms (spatial and channel) in predicting deforestation. Experimental results suggest that a proper
tuning of the loss function might bring benefits in terms of generalisation. We also show that the spatial attention mechanism is
more relevant for deforestation detection than the channel attention mechanism. When both mechanisms are combined, the greatest
improvements are found, and we reported an increase of 1.06% in the mean average precision over a baseline.

1. INTRODUCTION

The environmental impacts of deforestation in the Amazon
rainforest have been attracting research interest for many dec-
ades (Lean, Warrilow, 1989, Shukla et al., 1990). As this region
is the largest tropical forest globally, it is paramount to assess
its deforestation consequences. Countless works report predic-
tions on climate changes due to deforestation in the Amazon
rainforest. For instance, Swann and co-workers developed a re-
gional ecosystem model to investigate the future consequences
of climate changes caused by deforestation in South Amer-
ica (Swann et al., 2015). Medvigy simulated the effects of
Amazon deforestation in the northern hemisphere climate using
the Ocean-Land-Atmosphere Model, where significant temper-
ature and precipitation changes were predicted (Medvigy et al.,
2013). However, the effects of deforestation are not restricted
to changes in temperature and precipitation. Deforestation for
land use is dual-severe in terms of greenhouse gases because at
the same time that it is one of the largest causes of anthropo-
genic CO2 emissions; it also ends up reducing the natural capa-
city of terrestrial carbon storage (Sy et al., 2015). Furthermore,
deforestation has an enormous impact on biodiversity loss, be-
ing even more harmful to species of high conservation and func-
tional value (Barlow et al., 2016). Besides these more evident
effects, there are also indirect and hard to predict consequences
of deforestation. An example is a recent study that relates the
increase of malaria transmission in Brazil due to Amazon de-
forestation (MacDonald, Mordecai, 2019).

According to National Institute for Space Research, the defor-
ested areas in Amazon decreased almost steadily from 2004 to
2014 (INPE, 2020). However, in the last years, the deforest-
ation processes have significantly increased, reaching in 2019
the largest deforested area in the past ten years. Therefore, this
forest’s supervision is essential to control man-made hazards
and natural disasters and enforce public policies to avoid ir-
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regular activities and contribute to climate change mitigation.
In this regard, Remote Sensing (RS) has demonstrated to be a
cost-effective solution to monitor these regions. The advances
of this technology and the easy access to high-resolution images
throughout the globe propelled remote sensing Change Detec-
tion (CD) techniques.

Many approaches have been proposed to enhance CD perform-
ance. Mostly, we can group them into four main categories: im-
age algebra; transformation; time-series analysis and classifica-
tion (Hecheltjen et al., 2014). Image algebra methods are based
on spectral values analysis, and they range from simple image
differencing to change vector analysis (CVA), which calculates
both the magnitude and direction of changes. Methods that con-
vert the input data into another dimensional-space for change
analysis are part of the transformation category. Examples of
transformation methods are Fast Fourier Transform (FFT) and
Principal Component (PC) based change detection (Wiemker,
1997). Time-series analysis encompasses the methods using
more than two images of the same location taken at different
times to detect the changing trends. The last category cov-
ers classification methods, which relies on a great quantity and
quality of classified images to produce change detection out-
puts (Lu et al., 2004).

Classification methods for CD started to stand out due to the
remarkable results of Deep Learning (DL) applied to image
classification. Since then, DL classification methods have been
widely used for various CD applications, including land use and
land cover change, urban settlements, changes caused by nat-
ural catastrophes, and deforestation changes (Asokan, Anitha,
2019). Given the importance of deforestation detection in the
Amazon rainforest, methods based on DL have been applied to
this problem aiming to provide a robust and automatic way to
monitor Amazon deforested areas (Ortega Adarme et al., 2020,
de Bem et al., 2020).

In this work, a recently proposed deep-learning method for
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CD (Chen et al., 2020) was applied to deforestation detection
in the Amazon rainforest. The methodology’s main idea is
to use dual-attention mechanism (spatial and channel) to im-
prove the robustness against pseudo-changes in remote sens-
ing applications, i.e., efficiently distinguishing between relev-
ant changes and circumstantial ones, such as noise and context.
This concept, which will be described in details in the follow-
ing sections, has great potential for deforestation detection, and
in this case, the relevant change is current deforestation itself.
Furthermore, Chen’s approach (Chen et al., 2020) uses a new
loss function, which intends not only to compensate for the im-
balance problem often found in training samples but also to op-
timise the training process.

This paper is organised as follows. Section 1 describes the rel-
evance of deforestation detection in the Amazon rainforest and
how it has been approached with recent DL methods. Section 2
covers the related works in the literature. In section 3 it is de-
tailed the methodology used in this work, where the network
architecture, attention mechanisms and loss function are ex-
plained. Section 4 presents the experiments assessed and their
results. Finally, Section 5 concludes the work.

2. RELATED WORKS

2.1 Deforestation Detection

The number of papers studying deforestation detection using
DL techniques increased considerably in the past few years. Re-
cently, a Convolutional Neural Network (CNN) was employed
by Grings to monitor deforestation events based on an 18-years
time-series of Enhanced Vegetation Index (EVI) in the Chaco
Forest (Grings et al., 2020). The EVI is a vegetation index
based on the spectral content of satellite images. It oscillates
according to seasonal changes, but the oscillation exhibits a
break-point in a deforestation event. Grings’ model was trained
to learn the break-points’ patterns, estimating the probability
of deforestation for a given EVI sequence. The model showed
to be sensitive to mislabeled deforestation events, which limited
its performance. Also, it requires long EVI time-series for train-
ing, which are often unavailable. And since the CNN is trained
with samples of EIV time-series, the spatial relation of pixels
is not considered in the learning process. A similar work re-
ported by Adarme and co-workers (Ortega Adarme et al., 2020)
evaluated the performance of three DL algorithms applied to
the deforestation detection problem in two different Brazilian
biomes: Amazon and Cerrado. The assessed strategies were
a CNN, Siamese Network, Convolutional Support Vector Ma-
chine and Support Vector Machine. The obtained results were
promising. However, all these methods rely on a patch-wise
classification, which can be computationally intensive.

An analysis considering a Fully Convolutional Networks (FCN)
was successfully applied and reported in (de Bem et al., 2020).
The dataset consists of images from the Amazon territory ac-
quired one year apart. Training samples were formed by stack-
ing two images from the same location at different years. It was
evaluated the performance of five different architectures on the
task of deforestation classification: SharpMask, U-Net, Res-
Net, Random Forest and Multilayer Perceptron. The firsts three
architectures produced better classification results than the last
two, showing that DL approaches are better suited for RS ap-
plications than classic machine-learning algorithms.

Other works with similar approaches also reported remarkable
results using DL methods for deforestation detection (Lee et al.,

2020, Maretto et al., 2020). However, despite the positive res-
ults, current methods are still sensitive to pseudo-changes. For
instance, some areas might be misclassified as deforested be-
cause they have a different luminosity, shadow, noise, or any
other factor that might mislead the neural network. Yet, this
problem is not restricted to deforestation detection but rather
common to most CD applications. Aiming to mitigate this prob-
lem for change detection between images taken at different sea-
sons, Chen proposed the usage of extended self-attention mech-
anism (Chen et al., 2020).

2.2 Attention Mechanisms

When reading a sentence, humans naturally focus their attention
on the most relevant words. Although each word has its import-
ance grammatically, some words give much more information
than others. The same happens with images. We pay more
attention to regions in images providing more context informa-
tion. For instance, by looking at an image of a cat playing with a
ball at a backyard, we rapidly focus on the cat’s primary features
- pointy ears, paws, feline nose and mouth - and on the ball’s
spherical shape, not paying much attention to the background.
This natural capability of focusing on more relevant features is
key for image classification, as only the most significant aspects
are learned, making us exceptional in generalization tasks. Re-
cently, this attention concept has been brought to deep learning
algorithms.

Attention mechanisms (AM) were first proposed in (Bahdanau
et al., 2015) to solve the long-range dependence issue of
sequence-to-sequence models. Since then, AM have been ex-
plored in several applications (Xu et al., 2019, Mahayossanunt
et al., 2019, Li et al., 2020). The principal idea of AM is to
allow to the network focus on more meaningful features by
weighting them according to their importance. Hu et al. re-
ported an interesting configuration of AM by defining Squeeze-
and-Excitation (SE) blocks (Hu et al., 2018), which were de-
signed to model the interdependencies between image channels
explicitly.

Other researches extended the concept of Channel Attention
Mechanism to the spatial dimension (Guo et al., 2018). For
instance, in (Roy et al., 2019), the performance of SE atten-
tion blocks was assessed separately for channel and spatial di-
mensions and in a joint channel-spatial attention configuration.
Tests with these three configurations were performed with med-
ical imagery for semantic segmentation, and most results out-
performed configurations without AM.

For change detection applications, a similar idea was proposed
by Chen and co-workers. Dual-attention mechanisms, acting
both on the channel and spatial dimensions, were included in
a siamese network architecture to improve robustness against
pseudo-changes, primarily seasonal. Results showed consistent
improvement in all metrics evaluated (Chen et al., 2020). These
results suggest that the performance of state-of-the-art deep-
learning architectures used for deforestation detection could be
improved with dual-attention mechanisms. In our work, we im-
plemented the concepts of dual-attention mechanisms to defor-
estation detection in the Amazon rainforest.

3. METHODOLOGY

3.1 Network Architecture

The network architecture is shown in Figure 1. Its input is com-
posed of two co-registered images of the same area acquired
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at different times, shown as IT0 and IT1 . Both images un-
dergo the same transformations throughout the network, i.e.,
Net 0 and Net 1 share all weights, denoting a siamese relation.
Each input image is transferred to an embedding space through
a sequence of convolutions, non-linear activations (ReLU) and
max-pooling operations (convs in Figure 1), leading to features
f 0 1 and f 1 1. Then, each feature is sent through an attention
block, where two attention mechanisms take place. Details of
the attention block operations will be described in section 3.2.
Still, it can be understood as a transformation block that gener-
ates a feature embedding of the same size of its input but with
channel and spatial features weighted by their own importance.

The outputs of the attention blocks, f 0 2 and f 1 2, are used in
a distance function d(·, ·) to compute the pixel-wise distance
between feature embeddings. Last, a bi-linear upsample op-
eration is applied to the distance function output, generating
a change map of the same size of the input images. The up-
sampled change map and deforestation label are used to calcu-
late the loss, which is a contrastive function with two margins,
as will be explained in section 3.3.

Figure 1. Network architecture.

3.2 Attention Mechanisms

The type of attention mechanism implemented in this work is
defined as self-attention. Its goal is to generate a better repres-
entation of a given feature embedding by focusing on more rel-
evant elements of the embedding itself, i.e., without additional
information. Since feature embeddings of images are usually
represented as tensors with at least three dimensions, it is pos-
sible to force an attention mechanism to focus on a specific
dimension. In this section, we detail the two attention mech-
anisms that rely within the attention block shown in Figure 1,
one focusing on the spatial dimension and the other on the chan-
nel dimension. Henceforth, these will be referred to as Spatial
Attention Mechanism (SAM) and Channel Attention Mechan-
ism (CAM).

Both SAM and CAM uses the concept of query, key and value
to implement self-attention, which has been used in a similar
way in (Ramachandran et al., 2019). This concept is borrowed
from retrieval systems, where it is realised a similarity measure-
ment between a query and keys to return a match with the best
value. We start by analysing the operations for the SAM. Let us
represent query, key and value for SAM as qSAM , kSAM and

vSAM , respectively. These are defined as follows,

qSAM = reshape(CONV1(fX 1))
T

kSAM = reshape(CONV1(fX 1))

vSAM = reshape(CONV2(fX 1)),

(1)

where fX 1 ∈ RCIN×H×W is the input of the attention block,
such that X can assume values {0, 1}, depending on the net-
work analysed (Net0 or Net1). The operations CONV1 and
CONV2 are 1 × 1 convolutions with output channels N and
CIN , respectively. Applying CONV1 to fX 1 gives a tensor in
the space RN×H×W . kSAM is obtained by reshaping the out-
put of this convolution to the tensorial space RN×H∗W . The
query, qSAM , is calculated by transposing a reshaped con-
volved tensor, giving an element in RH∗W×N . The value,
vSAM , is obtained by reshaping the output of a 1 × 1 con-
volution with CIN channels, resulting in a tensor in space
RCIN×H∗W .

The central element of the SAM is the calculus of the spatial
attention tensor ASAM , which is given by

ASAM = σ(qSAM · kSAM ), (2)

where σ is the softmax operation. Note that A denotes a mul-
tiplication between matrices of dimensions (H ∗ W,N) and
(N,H ∗W ), such that the output resides in space RH∗W×H∗W .
We can think of this operation as a contraction in the channel
dimension, resulting in a tensor that provides spatial-context re-
lations. The softmax operation guarantees that the values of A
lies in the interval [0, 1]. Next, we apply the attention tensor
to the value vSAM and reshape the output to have the same di-
mension of the input fX 1, i.e.

sSAM = reshape(vSAM ·ASAM ), (3)

with sSAM ∈ RCIN×H×W . Last, we write the output of the
SAM as a sum between the input fX 1 and sSAM weighted
by a learnable parameter η, such that the neural network will
learn the relevance of the SAM. Thus, the output of SAM can
be written as:

outSAM = fX 1 + η sSAM (4)

For the CAM we have similar key, query and value tensors, but
no convolutions are used (Chen et al., 2020). These are defined
as follows:

qCAM = reshape(fX 1)

kCAM = reshape(fX 1)
T

vCAM = reshape(fX 1).

(5)

The paramount difference between Equations 1 and 5 is the
position of the transpose operation. It the former, it is ap-
plied to the query, while in the latter it is applied to the key.
Thus, qCAM resides in the space RCIN×H∗W and kCAM in
RH∗W×CIN . With this modification, when multiplying these
elements as done in Equation 2 for the SAM case, we obtain a
channel attention tensor with dimension (CIN , CIN ), given by

ACAM = σ(qCAM · kCAM ). (6)

In a similar way as done before for the SAM case, we calculate
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sCAM and outCAM as follows:

sCAM = reshape(ACAM · vCAM )

outCAM = fX 1 + γ sCAM ,
(7)

where γ is a learnable parameter. Unlike Equation 2, in the
channel attention tensor ACAM the contraction is in the spatial
dimension, providing channel-context relations.

Last, the output of the attention block is a summation between
SAM and CAM outputs, resulting in a feature embedding with
enhanced spatial and channel information, which is written as

fX 2 = outSAM + outCAM . (8)

3.3 Loss Function

Similar to (Chen et al., 2020), we use the Weighted Double
Margin Contrastive (WDMC) Loss as a loss function. It is
an extension of the Contrastive Loss function introduced in
(Hadsell et al., 2006), which can be seen as a special case of
the WDMC Loss. These functions are designed to assign a
high loss to dissimilar pairs, and low loss to similar ones. Let
{x(0)i , x

(1)
i }i∈[1,M ] be a set of paired elements in a batch with

size M . Then, the WDMC loss is defined as

L =

M∑
i=1

w1 yimax(d(x
(0)
i , x

(1)
i )−m1, 0)

2

+w2(1− yi)max(m2 − d(x(0)i , x
(1)
i ), 0)2,

(9)

where yi is the label associated with the pair (x
(0)
i , x

(1)
i ), as-

suming value of 1 for similar pairs or corresponding to the same
class, and 0 for dissimilar pairs or different class. The paramet-
ers w1 and w2 are weights, which are selected to mitigate the
class imbalance problem. The parameters m1 and m2 are mar-
gins, which are designed to repel dissimilar pairs for at least a
margin m2 and approximate similar pairs by at most a margin
m1.

As mentioned before, the Contrastive Loss is a special case of
the WDMC Loss, where w1 and w2 assume unit value, and m1

is set to zero. Note that, in this case, even very similar pairs
(small L2 distance) would still imply a positive loss, such that
the algorithm is slightly more prone to overfit to the training
set. The inclusion of a margin m1 greater than zero alleviates
the similarity requirement, which might help in the process’s
generalisation.

4. EXPERIMENTS

A series of experiments were investigated to evaluate the per-
formance of both WDMC loss and AM applied to deforestation
detection in a region of the Amazon rainforest. We start this
section by describing the study area to evaluate the algorithm
in section 4.1. Next, in section 4.3, we examine the importance
of selecting proper margins in the WDMC Loss function and
how they affect the predictions of deforestation. The relevance
of weights in the loss function is evaluated in section 4.4. Last,
we analyse the effects of AM in section 4.5.

4.1 Study Area

The study area corresponds to a region of the Amazon rainforest
located in the Pará State, Brazil. This region is centered on co-
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55°0′W

55°0′W

50°0′W
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Brazil
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N

Figure 2. Study area corresponding to a region of the Pará State,
Brazil.

ordinates of 06◦ 54’ 16” South and 055◦ 11’ 52” West (see Fig-
ure 2). This state reported one of the highest deforestation rates
in 2019, which represented more than 40% of the total forest
loss in Brazilian Legal Amazon (Assis et al., 2019). The data-
base comprises two optical images acquired from the Landsat8-
OLI sensor, with a resolution of 30 m. These are co-registered
images, with dimension of 5905 × 3064 pixels, and they were
downloaded from the United States Geological Survey 1. Each
image contains seven spectral bands: Coastal/Aerosol, Blue,
Green, Red, NIR, SWIR-1 and SWIR-2. The reference defor-
estation map was downloaded from the INPE web site, which
is publicly available (INPE, 2020).

This reference refers to the deforestation that occurred between
July 2018 and July 2019. For this study, we defined three
classes: 1) non-deforested areas, 2) deforested areas from July-
2018 to July-2019, and 3) past deforestation and borders of cur-
rent deforestation. Pixels annotated with this last class shall not
be considered in the loss function, as they represent an over-
all unknown class for deforestation. These classes are shown
in Figure 3 a), where blue regions denote non-deforested areas,
white regions correspond to deforested areas, and red regions
represent past deforestation or current deforestation borders.

4.2 Experimental Setup

To build the training, validation and test sets, we split the data-
base images into 18 tiles, as shown in Figure 3 a). Given the
lack of available databases with annotation for deforestation de-
tection, we partition these tiles as follows. Seven tiles were ran-
domly selected for training, two tiles for validation, and the re-
maining nine tiles for testing, resulting in a proportion 7 : 2 : 9.
We selected patches of size (128 × 128) for each training tile,
provided that each patch contains at least 2% of deforestation
(class 2). This condition was required to build a training set
with a significant portion of deforested areas. Four examples
of training patches are shown in Figure 3 b), where the first
column contains the reference, and the second/third columns
show patches from 2018/2019 images, respectively. Note that
1 https://earthexplorer.usgs.gov/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-851-2021 | © Author(s) 2021. CC BY 4.0 License.

 
854



Figure 3. Overview of dataset used in the experiments. In a),
Reference of Amazon deforestation between 2018 and 2019.

Blue color represents non-deforested areas, white color
represents deforested areas, and red color indicates past

deforested areas and current deforestation borders. In b), four
examples of patches used in training phase; from left to right:

label, image in 2018 and image in 2019, both represented in the
NIR-G-B composition.

although image patches are presented in Figure 3 b) NIR-G-B
composition, all seven bands were used in the training, valida-
tion and test phases.

For the selected training patches, a data augmentation pro-
cedure was applied, including random rotations and hori-
zontal/vertical flip, resulting in a total of 1704 patches for train-
ing.

4.3 Single Margin vs Double Margin

To assess the relevance of margins selection in the WDMC loss
function, the following experiment was set. We trained a net-
work without attention mechanisms for four values of m2, 2.0,
2.5, 3.0 and 3.5, and for each of these values, we evaluated the
mean Average Precision (mAP) on the test set for six different
m1’s. One of these six values was zero, denoting a single mar-
gin case. The weights w1 and w2 were maintained fixed at 0.18
and 0.82, respectively, for all scenarios. These values represent
the proportion of deforested (18%) and not-deforested (82%)
areas in the training patches. For the distance function d(·, ·),
we chose to use the L2 norm, as it provided the best results in
(Chen et al., 2020). Figure 4 displays the experimental results.

In the four different cases evaluated in Figure 4, values of m1

closer to 0 resulted in an mAP very similar to the Single Mar-
gin case, i.e., when m1 is set to zero. This result indicates that
small variations of margins have little impact on the prediction
result. However, it is interesting to note that there was a value
of m1 > 0 that outperformed the Single Margin condition in
all four cases. After reaching this best-case scenario, any in-
crease in m1 tends to decrease the mAP. Although the mAP
improvement reached a maximum value less than 1% above the
Single Margin case for m2 = 2.5 and m1 = 0.3, this beha-
viour indicates that when using a single margin, the network
might be overfitting when trying to approximate similar pairs
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Figure 4. Analysis of mean Average Precision for different
margins used in the WDMC loss function. Dashed lines indicate

a reference for m1 = 0.

to the point where the distance is equal to zero. Also, it is evid-
ent that whenever m1 starts getting closer to m2, it becomes
difficult to distinguish between changed and unchanged pairs.
For instance, when m2 = 2.0 and m1 = 1.5, the gap between
margins narrows down to 0.5, and we obtained the worst mAP,
88.74%.

Given the results obtained with this experiment, in the follow-
ing sections we kept margins m1 and m2 fixed at 0.3 and 3.0,
respectively, as they provided the best mAP of 94.43%.

4.4 Dataset Imbalance Compensation

An assessment of the relevance of weights in the WDMC Loss
function is done in a similar fashion. Ten cases were evaluated
in this experiment, where values ofw1 ranged from 0.05 to 0.50
in steps of 0.05, while w2 is simply its compliment, i.e., w2 =
1− w1. The used distance function was again the L2 norm, no
attention mechanisms were applied, and margins remain fixed
for all cases. Figure 5 displays experimental results, where the
mAP obtained in the previous section for w1 = 0.18 and w2 =
0.82 is shown in blue color.

For relations w2/w1 closer to unity, the predictions showed a
worse mAP. In contrast, relations closer to the optimal theor-
etical value (Chen et al., 2020), which weights changed and

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
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0.943
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Figure 5. Analysis of mean Average Precision for different
weights relations used in the WDMC loss function. Blue marker
indicates the weights relation calculated based on the proportion

of changed and unchanged pixels.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-851-2021 | © Author(s) 2021. CC BY 4.0 License.

 
855



unchanged pixels according to their proportion in the dataset,
provided the best results. We can also observe that by increas-
ing the relevance of deforested areas even further, using a re-
lation much greater than the theoretical optimal, the mAP de-
creases. Last, it is relevant to highlight the difference in mAP
between a poorly set pair of weights and the best-case scenario,
which was found to be 0.52% according to Figure 5.

4.5 Effects of Attention Mechanisms

An analysis of the effects of AM on deforestation detection is
provided in this section. In contrast to the previous sections,
where the experiments considered modifications only in the loss
function, here, we implemented modifications in the network
architecture to evaluate the contribution of each AM separately.
Four methods were considered: (I) a baseline (BL) architec-
ture without AM, with the distance function applied directly to
the feature embeddings f0 1 and f1 1; (II) an architecture with
only a CAM present in the attention block; (III) another with
only a SAM present; and (IV) with the dual-attention mechan-
isms combined. Weights w1 and w2 of WDMC loss function
were kept fixed and equal to 0.1 and 0.9, respectively, as these
provided the best mAP in the previous section, equal to 94.44%.

Visual results for deforestation predictions of networks trained
with these four strategies are shown in Figure 6. There, five ex-
amples are provided, each presented in a single row. The first
three columns show an input test patch from the 2018 image, its
co-registered pair from 2019, and the ground truth (GT). The
last four columns present the change map results from the four
methods evaluated (I)-(IV), respectively. Blue colour represents
the zero probability of deforestation class and red the maximum
probability. For instance, the first row shows that architectures
using the dual-attention modules distinguish the deforested re-
gions accurately, providing more confident outputs and resolv-
ing complex geometries in a better way. On the other hand, the
BL architecture presented more false-positive regions, classi-
fying the class past deforestation as deforestation. The CAM
and SAM outputs deliver fewer false-positive regions, but they
produced less confident values than the dual-attention mechan-
isms.

Any further analysis requires a comparison of metrics to eval-
uate the performance of each method. For this reason, we
provide a plot related to precision and recall scores for the four
evaluated methods (see Figure 7). Furthermore, Table 1 sum-
marises the numerical results in terms of Recall, Precision, F1-
score (F1), and mAP. By carefully analysing the result in Fig-
ure 7, we can see an increase in the prediction performance
when SAM is employed. The SAM method and dual-attention
method curves lie above the CAM and baseline curves for all
recall values.

Method Rec. Prec. F1 mAP
Baseline 93.00 81.44 86.83 94.44
CAM 94.91 80.16 86.91 94.49
SAM 94.28 80.80 87.02 95.15
SAM + CAM 93.99 81.62 87.36 95.50

Table 1. Metrics results, in [%], for the four methods evaluated.

Since there are a few crosses between the curves of CAM and
baseline methods and between SAM and dual-attention meth-
ods, we must analyse metrics results numerically to further con-
clusions. Table 1 shows that methods using spatial attention
mechanisms indeed outperformed CAM and baseline methods.

We believe one of the following factors is the dominant reason
for this result: the usage of convolution operations in the SAM
method might better resolve complex features, or spatial rela-
tions are indeed more relevant than channels’ for deforestation
detection. Further analysis needs to be done before asserting
which is the prevailing factor.

Also, according to Table 1, the CAM method did not provide
many improvements compared to the baseline method. How-
ever, when combining CAM with SAM, nearly all metrics
showed an improvement compared to the SAM method isol-
ated. The best mAP obtained was for the dual-attention method,
with an increase of 1.06% compared to the baseline method.

5. CONCLUSIONS

This paper reported the application of a deep-learning network,
equipped with a dual-attention mechanism, to the task of de-
forestation detection in the Amazon rainforest. A recently pro-
posed loss function, the WDMC loss, was used throughout the
work. A set of experiments were implemented to analyse the
effects of both margins and weights of the WDMC loss function
in the prediction of deforestation. Results suggest that adding
a second margin to the classic contrastive loss function might
bring benefits in terms of generalisation, as it can help avoid
overfitting. Also, it was shown that the weights of the loss func-
tion could impact the mean average precision of deforestation
detection in up to 0.52%.

Further experiments were developed to investigate the effects
of self-attention mechanisms in deforestation detection. Res-
ults showed that the spatial content of images was more rel-
evant for attention mechanism than the channel content. The
usage of a spatial attention mechanism resulted in an improve-
ment in mean average precision of 0.71%, and when combined
with channel attention mechanism, the improvement increased
to 1.06%. To our best knowledge, this is the first work that
reports an analysis of dual-attention mechanisms with WDMC
loss function applied to deforestation detection. Thus, given the
consistent improvements in predicting deforestation, we believe
this work might encourage other researchers in the challenging
task of deforestation detection.
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