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ABSTRACT: 

Deforestation can be defined as the conversion of forest land cover to another type. It is a process that has massively accelerated its 
rate and extent in the last several decades. Mainly due to human activities related to socio-economic processes as population growth, 
expansion of agricultural land, wood extraction, etc. In the meantime, there are great efforts by governments and agencies to reduce 
these deforestation processes by implementing regulations, which cannot always be properly monitored whether are followed or not. 
In this work is proposed an approach that can provide forest loss estimations for a short period of time, by using Synthetic Aperture 
Radar imagery for an area in the Brazilian Amazon. SAR are providing data with almost no alteration due to weather conditions, 
however they may present other limitations. To mitigate the speckle effect, here was applied the dry coefficient, which is the mean of 
image values under the first quartile while preserving the spatial resolution. While for obtaining land cover maps containing only forest 
and non-forest areas an object-based machine learning classification on the Google Earth Engine platform was applied. The preliminary 
tests were carried out in a bitemporal manner between 2015 and 2019, followed by applying the approach monthly for the year of 
2020. The outputs yielded very satisfactory and accurate results, allowing to estimate the forest dynamics for the area under 
consideration for each month.   

1. INTRODUCTION

Due to various processes natural and anthropogenic, 
deforestation is increasing, and it represents a global issue 
leading to climate change, loss of biodiversity and larger 
probability of hazards. As an issue from such a scale, scholars 
and policymakers are putting great efforts in, firstly, directly 
mitigating the deforestation processes and secondly in 
monitoring the applied measures.  
Nowadays, the abundance of earth observation data eases the 
latter which, from its side, helps in the improvement of the 
mitigation strategies and policies. For monitoring and mapping 
forestation dynamics, the focus is on the use of medium and high-
resolution multispectral images, due to their advantages when 
dealing with vegetation. However, the biggest disadvantage in 
using optical imagery is the cloud cover that reduce the sensing 
of the Earth surface and that can be regular phenomena especially 
in tropical forests.  
Spaceborne Synthetic Aperture Radar (SAR) has on the opposite 
the advantage that sensors provide data with almost no 
restrictions from weather conditions. The limitation in this case 
is that, due to backscatter speckle, SAR imagery can introduce 
additional difficulty to apply, otherwise, straightforward 
processing, such as change detection with single thresholding. 
Scholars applying various approaches to deal with the SAR-
related limitation, such as, statistical thresholding of time-series 
(Canty et al., 2020); adoption of the shadow effect created from 
the SAR imaging on the border between forested and non-
forested areas (Bouvet et al., 2018); usage of different SAR 
frequency ranges (Rahman and Sumantyo, 2010) or directly 
combining radar data with optical (Hirschmugl et al., 2020). 
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To tackle some of the previously mentioned restrictions and to 
obtain rapid monitoring of deforestation dynamics, in this study 
was applied object-based machine learning imageclassification 
on Sentinel-1 (SE1) datasets using the advantages, in terms of 
data catalogue and processing, of the cloud computing service 
Google Earth Engine (GEE).  

2. CASE STUDY AND TIMEFRAMES

As a case study, it was chosen an area in the southern Pará state 
(Brazil) covering an area of around 49,000 km2  (Figure 1). This 
state is considered as one of the most affected area in the 
Brazilian Amazon since 1990s. Another reason for choosing it as 
the area of interest (AOI) is that some studies using multispectral 
data have been already carried out (Brovelli et al., 2020), which 
allows a straightforward validation of the applied methodology. 
The first study timeframe was chosen to match with the formal 
study with the aim to calibrate the model deriving deforestation 
rate for the period 2015 – 2019 (from now it will be referred as 
Timeframe 1). For both years we selected the same intervals - 
from the beginning of May till the end of August.  
After tunning and evaluating the processing methodology, the 
optimized framework was applied monthly for the year 2020 
(Timeframe 2) for a subset of the total AOI. The small subset that 
was taken into consideration is in the central-west regions of the 
AOI, covering an area of 450 km2, and it was chosen because it 
was noticed rapid deforestation in the previous studies. The main 
reason for the further reducing the area under investigation was 
the availability of data needed for further data aggregation. The 
availability of the scenes and their coverage will be discussed 
more into details in the following section. 
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Figure 1. Area of interests - Para State, Brazil 

3. DATA USED 

3.1 Datasets for classification processing 

In the presented study, the main aim was to use only observations 
from SE1 A/B directly available from the GEE data catalogue. 
Images in the collection SE1 SAR Ground Range Detected 
(GRD) are already pre-processed in terms of thermal noise, 
radiometric calibration, and terrain correction. For the AOI, SE1 
overpasses are only in descending direction. It should be noted 
that even though the SE1 B is operational since 2016, the 
overpasses over the AOI are not regular and images from this 
satellite were limited even in the recent Timeframe 2. Moreover, 
the AOI cannot be covered with one scene from a single overpass, 
actually in the case of Timeframe 1 2015 four scenes to cover it 
fully were needed. In the cases, of 2019 and 2020 the needed 
images were five. 

3.1.1 Sentinel-1 GRD: One of the main steps for successful 
carrying out the analysis was an implementation of data 
aggregation over time, for which was required to be used regular 
number of images independent from how much their footprint is 
covering the AOI. 
For the predefined study period in 2015, only four scenes in total 
were available from SE1 A, meaning that one overall image was 
used in the further processing. 
In the meantime, for 2019 50 scenes were available but the AOI 
was covered by five footprints leaving in total 10 images.  
However, the image availability for Timeframe 2 was 
unexpectedly more irregular compared to Timeframe 1. For most 
of the months into consideration, the images from the orbit 
covering the west part of the AOI were exhibiting almost two 
times (even more in some cases) more images than the other orbit 
covering the east parts. It was decided that such significant 
difference in the datasets would lead to severe misclassification 
because after image sampling, similar property regions would 
appear having different properties in the classification model. 
After verification of the data according to the availability for both 
orbits and to ensure equality between them, it was concluded that 
the maximum number of images that could be used for analysing 
the whole AOI on a monthly time-step is two. Which led to a 
certain level of uncertainty of the quality for the expect outputs. 
Considering the unevenness in the data distribution in both orbits, 
it was decided to carry out the analysis as planned according to 
Timeframe 2 but for a subset of the AOI covered entirely by the 
relative orbit providing the highest number of images. In this case 
the minimum number of images used was three and the maximum 
– five. The full summary of the scenes used per a timeframe is 
reported in the Table 1.  

 
Table 1. Used Sentinel-1 scenes 

3.1.2 Sentinel-2 MSI: Using SAR imagery has its own 
advantages and disadvantages. When carrying analyses in a 
tropical one of the crucial issues that must be dealt with is the 
almost constant cloud cover during the raining seasons and it is 
when radar imagery comes useful because can provide useful 
information with almost zero alteration due to the weather 
conditions. However, due to topographic effects in SAR can be 
noted the shadow, layover and foreshortening effects which in 
the current study can create additional difficulties in properly 
differentiating the forested areas from non-forested. The adopted 
approach to mitigate those effects and improve the final output 
was to implement object-based classification. Moreover, it was 
decided to combine SAR data with Sentinel-2 (SE2) 
Multispectral Instrument (MSI). This fusion was carried out, as 
an addition to main SAR processing and to highlight its 
contributions. The use of the two types of images was only used 
for the study period in 2019, due to the unavailability of cloud-
free SE2 images in 2015 and on a monthly basis in 2020. 

3.2 Datasets for external validation 

For external validation of the outputs from Timeframe 1, photo-
interpreted control points (Brovelli et al., 2020) and high-
resolution images from China–Brazil Earth Resources Satellite 
program CBERS 4 (5m/pix) were used. 
The classification outputs from Timeframe 2 were externally 
validated only for the months of September and October 2020, 
again by control points obtained via photointerpretation using 
high resolution images from the Norway’s International Climate 
and Forests Initiative (“NICFI”) and distributed by Planet Labs 
Germany GmbH (Planet Labs, 2021). The distributed datasets 
represent basemaps covering the tropic regions and have a spatial 
resolution of 4.77 m/pix. The analysis-ready sets are having four 
spectral bands (Red, Blue, Green and Near-infrared. From a 
temporal point of view, the products are on a biannual and 
monthly basis, where in this study were used only the monthly 
September and October 2020 products. Firstly, because this 
dataset is available only after September 2020 and secondly, big 
percentage of the rest two available images (November and 
December) were covered with artifacts probably due to the cloud-
masking processing and rendered the images unsuitable for 
validation purposes.  

4. METHODOLOGY 

The applied processing workflow can be divided into four main 
steps – pre-processing, segmentation, classification and 
validation. The same steps were applied for both timeframes. The 
general workflow is represented in Figure 2. All the steps were 
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implemented entirely in GEE. GEE is a cloud platform providing 
processing capabilities on a planetary scale and access to vast 
variety of data catalogues (Gorelick et al., 2017). Only for the 
photointerpretation of NICFI datasets for the control points for 
Timeframe 2  done QGIS and ACaTaMa plugin were used 
(Liano, 2019). 

 
Figure 2. Workflow diagram 

4.1 Pre-processing 

As mentioned before, SE1 are already pre-processed and 
available in the GEE data catalogue, therefore no multi-looking 
or speckle filtering was applied.  
To reduce the effect of the speckle the dry coefficient on the 
stacks of scenes, as proposed by Dostálová et al. (2016), was 
applied. The dry coefficient represents a mean aggregation of all 
values under the first quartile of each pixel. By its application, 
the speckle is mostly mitigated while preserving the spatial 
resolution. Moreover, in the current case, the difference between 
the forest and non-forest area is further highlighted. Such 
example can be seen in Figure 3, where a single VV polarization 
image and the dry coefficient obtained from 10 images are 
compared. The darker grey areas represent areas without forest 
cover, while the lighter ones dense forest. The dry coefficient was 
applied for the VV and VH polarization bands, and to their 
difference. 
As mentioned in Section 3.1, all the reported number of images 
in Table 1 were used for the implementation of the dry 
coefficient. 
 

 
Figure 3. a) VV polarization one scene and b) VV dry coefficient 
from 10 scenes. 

4.2 Segmentation 

The main difference between pixel-based and object-based image 
classification is in the case of the former classification is done on 
the properties of a single pixel, while in the latter on a group of 
pixels (Walter, 2004). Another aspect for adopting clusters was 
that by their use could be reduced the SAR topographic effect, 
which in a pixelwise approach will lead to a high percentage of 
misclassification. 
To perform an analysis for a whole object, image segmentation 
and the computation of per-cluster properties were performed. 
One of the implemented algorithms in GEE (Gorelick et al., 
2017) that can perform segmentation is the Simple Non-Iterative 
Clustering (Achanta and Susstrunk, 2017). The Simple Non-
Iterative Clustering (SNIC) is based on grouping pixels that share 
similar properties, however SNIC is non-iterative and less 
computationally demanding in comparison to Simple Linear 
Iterative Clustering (Achanta et al., 2012). SNIC requires the 
location spacing of a superpixel seed and allows regulation on the 
cluster shape.  
For the current AOI covering an area of almost 49,000 km2 and 
the scale of the problem was not justified to implement very 
dense grid. However, were tested two sets – one with 25 pixels 
spacing and with 100 pixels. After a trial it was concluded that 
there is no advantage, in terms of classification output to use 
further the 100 pixels one. On the contrary, it demanded an 
increase in the computational time due to the size of the clusters 
during the property aggregation step. Just in the case of the subset 
AOI it was noted a slight improvement of the output results when 
using 15 pixels seed grid, compared to 25. 
It was noted that during the segmentation of the total AOI it was 
needed to intermediately save the output clusters before 
continuing with the processing, otherwise the allocated memory 
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on GEE was exceeded. For the scale of subset AOI no 
preliminary save was needed. 
An example of clustering can be seen in Figure 4 which is 
covering the same area as in Figure 3. The deforested area is 
highlighted with the red line and it can be noted how the separate 
clusters are following the area boundaries. 
In SNIC it is possible to regulate the cluster shape to be compact 
square-like or to be totally irregular. Using more sparse seed grid 
led to unusable compact and regular clusters. The resulted 
squared clusters lead to the wrong classifications. Thus, it was 
decided to set the compactness to a bare minimum of 1%.  

 
Figure 4. An example of SNIC clustering. The red contour 
represents the shape of the deforested area 

4.3 Cluster property computation 

During the SNIC segmentation, the algorithm computes and 
outputs the mean, per cluster, of each band that was using (i.e. 
the dry backscatter for each input polarization and their 
differences). In addition, it was decided to compute and include 
into the classification the following per cluster properties: 
standard deviation, variance, area, perimeter, width and height. It 
was decided to use the geometrical properties of the clusters as 
an input in the classification, firstly because the clusters tend to 
be more irregular and to merge in a bigger one, and secondly 
more regular patterns in deforested areas and more irregular in 
natural features were observed. 

4.4 Classification 

4.4.1 Algorithm: In this work the supervised machine 
learning classification Random Forest (Breiman, 2001) was used. 
It represents an ensemble of decision trees (Ho, 1998), where 
each tree is fed by a random sampling from the input data, 
followed by a classification vote and the one with the most votes 
is the output for the final decision.  
The algorithm proved its use for variety of earth observation 
applications such as land cover classification (Gislason et al., 
2006), hazard mapping (Feng et al., 2015; Yordanov and 
Brovelli, 2020a). Moreover, it is widely applicable on through 
medium and high-resolution remote sensing images (Hayes et al., 
2014; Thanh Noi and Kappas, 2018). 

4.4.2 Training/testing datasets: Since the study periods in 
Timeframe 1 are matching with the already validated maps from 
the previous study, the classified outputs from the multispectral 
pixel-based classifications were sampled and used as  
training/test inputs for the relevant years. The total amount of 
sampled points was 4,000 in total for both forest/non-forest 
classes. 
The previous studies were carried out till the end of August 2019, 
and they could not be considered as suitable as input datasets in 

the case of Timeframe 2 that starts four months later. In this case 
the Global Forest Change v1.8 2000-2020 dataset (Hansen et al., 
2013) was used. After fine-tuning the dataset that yielded the 
most satisfying results, it was containing in total 500 
training/testing points. 
In both timeframes 80/20 training/testing ratio was implemented. 

4.5 Validation 

Classified thematic maps need some validation to be evaluated 
their accuracy and suitability for future use (Bratic et al., 2018b). 
As in most of the times it is impossible to carry out field survey 
and to validate the output, it is widely adopted to do a validation 
using external data source as a reference. 

4.5.1 External validation sources: Control points previously 
photo-interpreted (Brovelli et al., 2020) through CollectEarth 
tool (Bey et al., 2016) and CBERS 4 datasets were used to 
externally assess the accuracy of the outputs from Timeframe 1.  
In the case of Timeframe 2, it was mainly relied on the internal 
validation metrics, due to the unavailability of free high-
resolution datasets for most of the time-steps. 
However, whenever external validation was carried out the 
number of samples (n0) used was determined through the 
Cochran's sample size formula (Cochran, 1965): 

𝑛𝑛0 =  𝑍𝑍
2𝑝𝑝𝑝𝑝
𝑒𝑒2

 ,         (1) 

where,  e = is the margin of error 
 p = is the estimated proportion of the population 
 q = 1-p 
 z = z-score of the confidence level 

4.5.2 Validation metrics: GEE offers set of tools for 
computing evaluation metrics, however the metrics were 
expanded according to recommendations for accuracy 
assessment of land cover maps (Bratic et al., 2018a), where user 
and producer accuracies were also used. Moreover, precision 
and recall were also computed, since are yielding more realistic 
representation of the accuracy when dealing disbalanced binary 
classification (Yordanov and Brovelli, 2020b). 

5. RESULTS 

The overall results depicted a very good implementation of the 
dry coefficient and object-based machine learning classification. 
As the processing was carried out according to the two 
timeframes, the results will be presented accordingly in the 
following sections. Firstly, will be assessed the output 
classification, followed by the estimation of the actual forest loss 
for the given time interval. 

5.1 Timeframe 1 

5.1.1 Classification results:  Each of the produced binary 
map was validated with external control points. Such validation 
is considered as more accurate and in the current paper will not 
be reported and discussed the internal training/testing metrics, 
even though they depicted higher accuracies than the external 
one. A summary of the assessment metrics is reported in Table 2, 
where after the year is denoted there the map is produced only by 
using SAR images or with the inclusion of optical MSI. 
As it was expected, the better results were noted for the second 
classification map for 2019 due to the higher availability of SAR 
data (10 images) that were aggregated through the dry coefficient. 
On the contrary, in the case of 2015 the coefficient was not 
implemented as intended since only one image was available. 
However, the obtained result was considered as satisfactory, and 
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the binary map was further used the estimation of the forest loss. 
In Figure 5 are exhibited few map snippets, where firstly it is 
highlighted the contribution of more images in final dry 
coefficient (2015 is in snippet a, and the 2019 case in b). The 
related object-based classifications are depicting extremely low 
level of noised misclassification pixels that is usually very 
evident in the pixelwise approaches. However, it also comes with 
its limitation, it can be seen in a misclassification of areas that are 
relatively small and inside a bigger region from the opposite 
class. Mainly, this issue is related to the parameter definition in 
the segmentation step which for the current case study and its 
scale was found to be a challenging task to find the balance 
between high precision and acceptable computational demand. 
In regard to the fusion of SAR and MSI datasets it was noted an 
overall improvement in the final results; on one hand the 
validation metrics were increased and, on the other, the final map 
was more consistent, and it was noted that the misclassifications 
were usually in areas hard to be interpreted even upon a visual 
inspection.  
Overall, the source of classification errors in both years was due 
to the topography effects of the radar imaging. 

 
Table 2. External validation metrics for Timeframe 1 

5.1.2 Forest loss estimation: The deforested areas were 
determined by a simple change detection analysis through the 
map difference between two time-steps and compared to the 
output from the pixel-wise classification from the previous study 
which resulted a forest loss for the period 2015-2019 of around 
2,570 km2. 
The estimated loss from purely the SAR-based classifications is 
4,220 km2. When difference was computed through the 
difference between 2015 SAR and 2019 SAR+MSI, the total area 
dropped to 3,737 km2. Both derived values exhibit great 
overestimation of the forest loss, however it should be considered 
the lower accuracy of the 2015 classification output. 
Even though the final results in terms of derived loss were not 
completely satisfactory, it showed that the approach is applicable 
for estimating forest dynamics and that its accuracy strongly 
depends on the amount of data used. Thus, it was decided to carry 
out another analysis on a shorter time-step but with more regular 
data availability, as it is the case of Timeframe 2.  

 

Figure 5. a) SE1 GRD composite (VH,VV and their difference) 
for 2015 with applied dry coefficient b) SE1 GRD composite 
(VH, VV and their difference) for 2019 with applied dry 
coefficient c) classified 2015 image using SNIC and Random 
Forest d) classified 2019 image using SNIC and Random Forest 
e) the difference between 2015 and 2019 related only to the forest 
loss. 

5.2 Timeframe 2 

Except the difference in the time-step used in this case, the other 
major difference with the previous timeframe is the increased and 
more consistent number of observations from Sentinel-1 (evident 
in Table 1). The more regular image stacks were expected to lead 
to more consistent classification and final outputs.  
Certain level of disagreement between the monthly 
classifications was expected due to the change in the seasonal 
vegetation and the dry/rainy season, typical for the tropical 
regions. These two factors potentially will alter the radar 
backscatter and predispose to misleading properties fed to the 
machine learning model. This effect was not expected to entirely 
affect the analysis in Timeframe 1 since  the same period for both 
2015 and 2019 years was defined. 

5.2.1 Classification results: After fine-tunning the 
parameters for the segmentation and machine learning 
classification, a very satisfactory classification output for each 
month under consideration was achieved. Except the use of 
regular sets of SE1 scenes, the other advantage of carrying out 
the analysis for the subset AOI was the reduced computational 
memory required and hence the decreased computational time, 
which further allowed to parametrise even better the processing 
chain. 
In Figure 6 the overall accuracy and Cohen’s Kappa of the 
internal validation using the testing dataset are depicted. It is 

External 
validation 2015 SAR 2019 SAR

2019 
SAR+MSI 

Overall 
Accuracy 0.77 0.91 0.93

Kappa 0.52 0.82 0.86

Precision 0.92 0.92 0.92

Recall 0.56 0.89 0.94

F1 score 0.70 0.91 0.93
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evident that using more and almost regular number of images to 
derive the dry coefficient resulted in better final products. 

 
Figure 6. Overall accuracy and Cohen's Kappa from the internal 
validation for each month under consideration. 

Even further confirmation for the particularly satisfactory results 
are the validation metrics (Table 3) obtained using the external 
control points from the photointerpretation of the high resolution 
NICFI datasets. As mentioned before, the external accuracy 
assessment was done only for the months of September and 
October due to reduced data availability for the other months. 
However, the results are in accordance with the internal 
validation where the slightly better performance for the 
classification in September is evident in both cases.  

 
Table 3. Results from external validation for the months of 
September and October 2020. 

Few examples from the monthly classifications are represented 
in Figure 7, where in the left column there are the aggregated dry 
images and in the right their binary classification maps.  
The maps were deliberately chosen for the months of January, 
June and September for couple of reasons. The former is that 
there is a notable difference between the dried images, and this 
is due to seasonal variations (dry and rainy periods) and to the 
natural cycle of some vegetation. In this example during 
September 2020 it was observed the least amount of low 
vegetation, which is related to the radar signal backscatter and on 
other hand led a better distinction between dense forest cover and 
bare soil/low vegetation.  
The latter is the clear visible appearing of a new deforested patch 
after June 2020 (south-east area).  
 

 
Figure 7. Some examples from the Timeframe 2 processing. On 
the left: aggregated dry images for the months of January, June 
and September 2020. On the right: their relevant binary 
classifications. 

5.2.2 Forest loss estimation: From analysing the estimated 
forest loss on a monthly basis and inspecting the produced maps, 
it can be deducted that, even considering a small area in the 
Amazon, deforestation process is ongoing with a rapid pace. 
Figure 8 represents the cumulative forest loss for the full year 
2020, where the first month (January) was considered as baseline 
with zero loss. It is notable that in the first half of 2020 the loss 
rate is low even if with a steady trend; however, after June the 
total deforested area is rapidly increasing. This observation could 
be related to the appearing patch discussed in the previous section 
which is the responsible for around 45% of the total estimated 
forest loss. 

 
Figure 8. Cumulative forest for 2020, per month. 
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The mentioned is clearly visible in the Figure 9 where it is 
depicted the total forest loss for the year 2020. 

 
Figure 9. Forest loss in 2020. (Basemap - September 2020 
(monthly NICFI dataset, distributed by Planet Labs.) 

5.2.3 Identification of deforestation clusters: By having the 
deforestation maps on a regular basis (as the current output is per 
month for a year) it is possible to carry out a spatial analysis and 
to identify if some areas are emerging with more severe 
deforestation processes. It was carried out such simple hotspot 
analysis for the subset AOI using the monthly forest loss 
information. Figure 10 shows three major areas where the 
deforestation processes were more concentrated. Such analysis 
can be a significant help in highlighting areas which are more 
prone to be further exploited, or when is needed to monitor the 
implementation of mitigation strategies. 

 
Figure 10. Deforestation hotspots. (Basemap - September 2020 
monthly NICFI dataset, distributed by Planet Labs.) 

In fact, upon visual inspection from the available monthly dataset 
from NICFI, it was noted that the deforested area exhibiting the 
most severe processes is continuing to expand in the months after 
the analysis was carried out (Figure 11); which just highlights the 
fact that the deforestation progresses in the Amazon,  as one 
constantly ongoing process leading to severe consequences. 
Judging to the deforested regular patterns it is evident that those 
processes are not natural, but human-induced. 

 
Figure 11. Snippet of ongoing deforestation processes. January 
2021 image is not included due to a significant cloud coverage 
(Imagery- monthly NICFI dataset, distributed by Planet Labs.). 

6. CONCLUSION 

Deforestation in the Amazon is a continuous process which is 
mainly a result from human activities, which has many 
consequences directly on a local and global scale. Many studies 
are carried out on the topic for monitoring the forest dynamics 
using remotely sensed data from satellites and machine learning 
algorithms. In this study, an approach from combining freely 
available Sentinel-1 Synthetic Radar Aperture datasets and 
object-based Random Forest classification on the cloud 
processing service Google Earth Engine was presented. The 
study was carried out in two main parts, differing by the spatial 
and temporal scale. The first one was done on a time-step of four 
years (2015-2019) with the aim to tune the proposed approach 
and easily validate the results with previous studies of the same 
area. The second one was applied on an area relatively smaller. 
In this case, the aim was to verify the usage of the proposed 
method and the usability of derived results for a much shorter 
time-step (one month). If needed and depending on the data 
availability, this step can be further reduced. Such short time-
steps are almost impossible to be implemented when using only 
optical imagery because of the often and dense cloud coverages 
in the Amazon region. 
One of the main components in using SAR data was the 
aggregation of the backscatter through the dry coefficient which 
is the mean of data values below the first quartile from several 
images. When enough data are available, its use significantly 
reduces the speckle effect by preserving the spatial resolution.  
There are two main advantages of using object-based 
classification: the noise of misclassified pixels (a frequent case in 
the pixelwise approaches) is reduced to its minimum; the usage 
of geometrical properties (such as area, width, height, etc.) as 
additional inputs in the machine learning model is reducing the 
topographic effects of SAR imaging. The image segmentation 
was done using Simple Non-Iterative Clustering. 
The obtained results from the object-based image classification 
exhibited very satisfactory and accurate results when sufficient 
data was available. The implementation of a monthly time-step 
allowed the analysis and the achievement of the complete 
overview of the deforestation dynamics in the subset AOI for 
2020.  
Few limitations were found in the implementation of this 
approach. The most important is related to the amount of data that 
are available: one SAR image could even provide satisfactory 
results but, as always, the more are the images the better are the 
results. Moreover, it should be paid great attention, in the 
parametrization of the approach, to be balance accurate outputs 
and reasonable demand of computational power. 
Nevertheless, the applied SAR object-based approach is useful 
when timely results are needed, also considering that they can be 
further improved by combining SAR and MSI data.  
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