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ABSTRACT: 

Classifying and monitoring different vegetation types is important for forest management, food resources, and assessing the potential 

impacts of climate change. In this regard, several methods have been developed to study them using remote sensing data, and with the 

advent of neural networks, new methods are being proposed, especially in the field of automatic land use classification. In this research, 

multispectral Sentinel-2 satellite image has been used due to having spectral information and different spatial resolution for classifying 

plant species. Deep learning models have the ability to learn and recognize different features of images, but require a large number of 

training samples, so we used pre-trained ResNet networks with depths of 50, 101 and 152 layers, that trained with BigEarthNet dataset. 

The main purpose of this study is to evaluate the sensitivity of ResNet networks to spatial resolution. Results show that ResNet 101 

was more stable than other networks, and the Resent 50 with an overall accuracy of 76.2 has the highest accuracy at a resolution of 20 

meters. 

 

 
 

1. INTRODUCTION 

Vegetation is one of the most important elements of an 

ecosystem. Vegetation affects living organisms, global climate 

and carbon cycle, so vegetation classification is important for 

natural resource management information on the distribution of 

vegetation types is a main resource for food chain planning, 

wildlife habitat, sustainable natural resource management, crop 

forests, and biodiversity conservation (Lu, Li, Moran, & Kuang, 

2014). In recent years, due to increasing urbanization and natural 

disasters, various species of vegetation are in danger of 

extinction, so it is necessary to start protection and restoration 

programs of vegetation, which requires accurate maps of 

vegetation classification. Remote sensing data are known as the 

important sources for vegetation classification due to 

characteristics such as radiometric, spectral, spatial and temporal 

resolution. In image classification, the selection of suitable 

remote sensing (RS) data, evaluation and development of 

advanced algorithms based on neural networks to improve the 

performance of land cover classification have been some active 

research topics (Wang, Zhang, Niu, Wang, & Zhang, 2019). With 

the advance of digital technology and the appearance of different 

and new needs, it is absolutely necessary to provide modern and 

intelligent methods to provide an effective and compelling 

processing of remote sensing images. In this context, data 

analysis methods are essential to retrieve information from RS 

images, where classification is one of the main information 

extraction tasks providing the categorization of the observed 

surface at pixel level (Alipour-Fard & Arefi, 2020). 

The remarkable development of deep learning models 

(Krizhevsky, Sutskever, & Hinton, 2012), which has been 

encouraged by the impressive computational and storage 

resources of new hardware devices and software technologies, 

has provided unprecedented results within RS image 

classification. In particular, convolutional neural network (CNN) 

is one of the most popular established deep learning architectures 
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for classification (He, Zhang, Ren, & Sun, 2016). The attractive 

feature of CNN is its astonishing ability to exploit the spatial 

correlation in data cube. Inspired by the biological 

visual cortex (LeCun, Bottou, Bengio, & Haffner, 1998), its 

architecture is based on grid-pattern receptive fields in a way that 

each convolution unit applies a linear function to the specific 

region defined by the receptive field on the input data. In this 

sense, the CNN builds a locally connected structure, in lieu of the 

standard fully connected architecture within traditional artificial 

networks, such as the multilayer perceptron (MLP) (Alipour-

Fard, 2020). Indeed, the CNN is a stack of hierarchical n-

dimensional filters, where each one comprises several weight 

matrices with parameter sharing mechanism, which are trained in 

order to learn specific patterns and features within the input data. 

Therefore, they are feature extractors that automatically learn 

hierarchies of features by adapting their weights to both the data 

and the conducted task, wherein bottom or lower filters (i.e. those 

that are more close to the input data) capture low-level features 

in the form of local patterns based on simple components, such 

as orientations of small segment of edges and outlines, whilst 

top/higher filters (i.e. those that are more close to the output data) 

extract more abstract features, which have been refined through 

the CNN hierarchy to extract more semantic and global 

information (Akbari, 2021). These final features are based on the 

whole input and describe its contents as a whole, and are 

therefore used for classification purposes. 

The first CNN network was introduced by (LeCun, Bottou, 

Bengio, & Haffner, 1998) in 1998 with 5 continuous layers of 

convolution, pooling and fully connected. LeNet network is one 

of the first CNN networks, so it does not have the ability to reduce 

the calculations and the number of parameters. AlexNet Network 

was introduced in 2012. This network had a better potential to 

train due to its depth (Krizhevsky, Sutskever, & Hinton, 2012). 

To solve the Overfitting problem, they used the ReLU activation 

function and large filters with dimensions (11×11 and 5×5). VGG 
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network presented by (Simonyan & Zisserman, 2014). Instead of 

using large filters, this network uses 3 × 3 filters. using of small 

filters because it reduces the number of parameters decrease the 

complexity and time of computing. The depth of this network 

increases from 9 layers to 16 layers. Experience has shown that 

VGG networks have good results for classification, but the 

limitation for this architecture is its high computation. Although 

small-scale filters are used, the number of parameters used is 

about 140 million.   ResNet presented by (He, Zhang, Ren, & 

Sun, 2016) Which provided an optimal way to train deeper 

networks. The ResNet architecture is 20 times deeper than 

AlexNet and 8 times deeper than VGG and has less 

computational complexity. In this network, in order to reduce the 

calculations, Residual blocks are used that provide a shortcut 

connection between the layers. According to research, deeper 

networks have more ability to extracting features. increasing the 

depth of the network creates problems such as Overfitting, but 

the presence of Residual blocks in the ResNet architecture solves 

this problem. In 2015, ResNet with a depth of 152 layers won the 

ImageNet Large Scale Visual Recognition Competition 
compared to other CNN and shallow networks (Alom et al., 

2018). However, the successful implementation of these 

networks poses many challenges for researchers in the field of 

remote sensing. Currently one of the most important challenges 

in image classification of remotely sensed images is the lack of 

training samples, which is referred to as the small sample size 

problem. There are generally two basic approaches to overcome 

this challenge. The first approach is to collect additional training 

samples. This is usually achieved either by using direct data 

collection or annotation, which is a very costly and time-

consuming task, or by generating virtual training samples using 

methods such as the generative adversarial network, which is also 

not useful in practice due to the complex nature of the 

relationships between classes (Alipour-Fard & Arefi, 2020). The 

second approach is to employ pre-training networks that are 

already trained on large databases. Pires de Lima et al has 

investigated the effect of transfer learning method on 

classification with CNN networks for remote sensing images. In 

(Pires de Lima & Marfurt, 2020), two methods were evaluated to 

classify images, i) VGG 19 and inception were trained directly 

using the scratch with small datasets. ii) Networks that were 

trained with ImageNet dataset were fine-tuned with remote 

sensing images. The results show that Using pre train networks 

has better performance for remote sensing classification. Most 

pre train networks were trained with computer vision datasets, 

including ImageNet and CIFAR. In this data sets, images with 3 

RGB bands were used, and on the other hand, their existing 

features are generic, which is not suitable for remote sensing 

tasks. As a result, a group of researchers began to create datasets 

with remote sensing images that datasets are given in the table 1. 

 

Dataset 

Name 
Image Type 

Annotation 

Type 

Number of 

Images 

Number of 

Classes 

UC Merced Aerial RGB Single Label 2100 21 

WHU-RS19 Aerial RGB Single Label 1005 19 

RSSCN7 Aerial RGB Single Label 2800 7 

AID Aerial RGB Single Label 10000 30 

NWPU-

RESISC45 
Aerial RGB Single Label 31500 45 

RSI-CB Aerial RGB Single Label 36707 12 

PatternNet Aerial RGB Single Label 30400 38 

EuroSat 
Satellite 

Multispectral 
Single Label 27000 10 

Table 1. A list of remote sensing datasets 

The classes in UC Merced (Yang & Newsam, 2010), WHU-RS19 

(W. Shao, Yang, & Xia, 2013), RSSCN7(Zou, Ni, Zhang, & 

Wang, 2015) , AID (Xia et al., 2017), NWPU-RESISC45 

(Cheng, Han, & Lu, 2017), RSI-CB(Li et al., 2017), PatternNet 

(Zhou, Newsam, Li, & Shao, 2018), EuroSat(Helber, Bischke, 

Dengel, & Borth, 2019) datasets were single-label, with the class 

assigned to each patch being based on the dominant feature in 

that patch. Single-label datasets are sufficient for some remote 

sensing tasks such as distinguish ‘building’ and ‘airport’, but if 

the goal is to categorize similar classes such as ‘dense forests’ 

and ‘scattered forests’, CNN networks for training and extraction 

features need more detail, so researchers created multi-label 

dataset for generate accurate classification map and image 

retrieval (Z. Shao, Yang, & Zhou, 2018). 

The Big Earth database has recently been introduced in (Sumbul, 

Charfuelan, Demir, & Markl, 2019), making it possible to 

classify images using pre-trained models on the BigEarthNet, 

rather than training a deep CNN from scratch. The BigEarthNet 

was generated using 590,326 multi-label patches of Sentinel-2 

from various regions in Europe. From the transfer learning 

perspective, the performance of a pre-trained network in the face 

of changing conditions in the target image relative to the source 

images is an important issue that has not been addressed so far. 

In this research, the efficiency of the pre-trained model in the face 

of changing the spatial resolution of images has been investigated 

to produce classification maps. The main questions answered in 

this research are as follows: 

 

• What is the performance of the pre-training models 

available on the Big Earth database in case of 

“changing spatial resolution”? 

• Among the different variations of the ResNet as a 

powerful architecture, which one is more stable and 

less sensitive to changing the contribution of the target 

data into training procedure? 

• If we intend to use pre-training models at an image with 

resolution other than the resolution of the source 

images, what could be the impact of fine-tuning on 

improving the classification results? 

 

The rest of this article is structured as follows. Study area and 

dataset are explained in Section 2. Section 3 presents the detail 

of the proposed method. In Section 4, the experimental results are 

illustrated and discussed. Finally, Section 5 draws the conclusion 

of this article. 

 

 

2. STUDY AREA AND DATA 

 

Study area of this research is in Switzerland. Switzerland is 

located in  45° 49' 2" N, 5° 57' 22" E geographical coordinates.  

The predominant land use of Switzerland is forests and 

agricultural areas (Figure 1).   

 
Figure 1. Location of study area 
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2.1 Sentinel 2 images 

 

Sentinel-2 is developed by the European Space Agency 

specifically for the operational needs of the Copernicus program. 

The mission supports a wide range of services and applications 

such as agricultural monitoring, emergencies management, land 

cover classification or water quality. sentinel-2 has 13 spectral 

bands: four bands at 10 m spatial resolution, six bands at 20 m 

spatial resolution, and three bands at 60 m spatial resolution 

(Figure 2, (Richter & Schläpfer, 2013)). The RGB display of the 

Sentinel-2 image is in Figure 3. This image was taken on 

5/9/2020 and has a 7% cloud cover. If the cloud cover is high, the 

classification accuracy decreases. 

 

 
Figure 2. Sentinel-2 bands (Richter & Schläpfer, 2013) 

 

 
Figure 3. RGB image from Sentinel-2 

 

2.2 BigEarthNet dataset 

 

BigEarthNet is the first large-scale multi-label remote sensing 

dataset was constructed by the Remote Sensing Image Analysis 

(RSiM) Group and the Database Systems and Information 

Management (DIMA) Group at the Technische Universität 

Berlin (TU Berlin). The images used in this archive are 125 

Sentinel-2 tiles taken from June 2017 to May 2018. BigEarthNet 

is created by 125 Sentinel-2 mosaics from 10 different European 

countries (Austria, Belgium, Finland, Ireland, Kosovo, 

Lithuania, Luxembourg, Portugal, Serbia, Switzerland). One of 

the advantages of this dataset over other existing dataset is that 

each image patch is labbeled by multiple land-cover classes that 

are provided from the CORINE Land Cover database of the year 

2018 (CLC 2018) (Sumbul, Charfuelan, Demir, & Markl, 2019). 

BigEarthNet is much richer and more diverse than other dataset, 

both in terms of the number of images and the variety of classes. 

Atmospheric corrections were made on all tiles using Sen2Cor 

tool. Images with cloud and shadow coverage have been removed 

from the existing set of images because they are not suitable for 

teaching deep learning networks. The band #10 was not used in 

this study due to lack of useful information about the earth's 

surface.  

 

3. METHOD 

 

In this section, we explain our proposed method in detail for 

satellite image classification (Figure 4).  At a glance, In the first 

step, pre-processing is done on the images. Then we have the core 

of the proposed method, including convolutional neural network 

and how to train it, which are described in the following sections. 

 

 
Figure 4. The research workflow 

3.1 Preprocessing of satellite imagery 

 

The Level-1C image of Sentinel-2 satellite was converted to 

Level-2A by Sen2cor plugin with Sentinel Application Platform 

(SNAP, version 7). Because Sentinel-2 imagery was 

georeferenced in the WGS 84 UTM 31N coordinate system, 

ground truth was transformed to the same coordinate system, and 

was clipped to the study area. 

In order to investigate the sensitivity of networks to different 

resolutions, all bands have been resampled to a resolution of 20, 

30, 40, 50 and 60 meters by the nearest neighbourhood 

interpolation method (Teoh, Ibrahim, & Bejo, 2008). In the next 

step, the image is divided into 8281 patches, each of which is part 

of 1) 120 × 120 pixels for 10m bands; 2) 60 × 60 pixels for 20m 

bands; 3) 40 × 40 pixels for 30m bands; 4) 30 × 30 pixels for 40m 

bands; 5) 24 × 24 pixels for 50m bands; 6) 20 × 20 pixels for 60m 

bands.  The area of each patch is 1.44 square km (1.2km × 1.2km) 

each image patch was annotated by multiple land-cover classes 

(i.e., multi-labels) according to the CORINE Land Cover 

database of the year 2018 (like BigEarthNet dataset), then all 

patches were converted to tensors to be used as CNN input in the 

next step . 
  

3.2 Classification with ResNet network 

 

Convolutional neural networks play a key role in the 

classification of images. Deep Convolutional Neural Networks 

(DCNN) is made up of a large number of convolutional layers 

that have the ability to extract features automatically compared 

to traditional image classification methods. As the number of 

layers increases, the network is able to recognized more complex 

features but deep networks are hard to train because of the 

vanishing gradient problem  as the gradient is back-propagated to 

first layers, repeated multiplication may make the gradient 

infinitively small. As a result, as the network goes deeper, its 

performance gets saturated or even starts degrading rapidly. To 

solve this problem (He et al., 2016) suggested the Residual neural 

network (ResNet). The ResNet model operate skip connection, 

which transfers the inputs of the previous layer to the next layer 
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without intermediaries, and in the Back-propagation step, 

transfers the error of each layer to the previous layer, so the 

network becomes deeper and training faster. 

Because training deep convolutional neural network requires 

many training samples, in this study was used ResNet 50, ResNet 

101, ResNet 152 networks that have been pre-trained with the 

BEN database. Two experiments were designed to evaluate pre-

training models. In the first experiment, no training samples were 

used from the target images, and in the second experiment, to 

improve the performance, the networks were fine-tuned in 20 

epochs with 30% of Sentinel-2 available labelled data (target 

image) and tested with 70% of the rest labelled data. Overall 

accuracy was used to evaluate the accuracy of the classification 

maps. In order to study the performance of the proposed network 

for RS classification, an implementation has been developed and 

tested on a hardware environment with a 6th Generation Intel® 

CoreTM i7-6800K processor with 6M of Cache, installed over an 

ASUS motherboard. Also, a graphic processing unit (GPU) 

NVIDIA GeForce GTX 1080Ti with 8GB RAM. In order to 

provide an efficient implementation, the proposed model has 

been implemented over the TensorFlow 1.3 (an open source 

machine learning library developed by Google (Abadi et al., 

2016)). 

 

4. RESULTS AND DISCUTION 

 
Figure 5 shows the results of the first experiment. This image 

shows the average accuracy obtained for the four intended 

images. In general, it can be seen that the overall accuracy 

obtained in all three networks is low (less than 50%). It is 

expected to obtain maximum accuracy at spatial resolution of 

20m, since the target and source images both have the same 

spatial resolution. The results of this image show that changing 

the resolution did not cause significant changes in the obtained 

results. Figure 6 shows the results of the second experiment. In 

this experiment, we used a limited number of training samples to 

fine-tune the parameters of the three networks to achieve higher 

accuracy.  

By reducing the spatial resolution, the ResNet101 was able to 

maintain its efficiency, while the speed of decreasing accuracy 

while decreasing the spatial resolution in the ResNet152 is higher 

than the other two networks. This indicates that the ResNet101  
is more stable  and somehow invariant to spatial resolution 

changes. By comparing the results obtained in the first and the 

second experiments, we find that fine-tuning the parameters are 

necessary and the performance of the networks does not follow 

the same pattern in both cases. At a resolution of 10m, the overall 

accuracy is rapidly reduced due to spectral distortion. 

 

 
Figure 5. Average of overall accuracy obtained from the first 

experiment (without fine-tuning the parameters) on Sentinel-2 

image. 

 
Figure 6. Average of overall accuracy obtained from the second 

experiment (with fine-tuning the parameters) on Sentinel-2 

image. 

By comparing the accuracy of each class, it can be concluded that 

classes that have a larger number of training samples and are 

integrated, such as Arable land and Mixed forest, are not greatly 

affected by changes in spatial resolution, but classes that are 

scattered, such as Land principally occupied. And the Argo-

forestry class, which has few training samples, are significantly 

reduced by decreasing spatial resolution. Figures 7 to 9 show the 

graph of networks accuracy for each class. 

 

 
Figure 7. Average of overall accuracy obtained from the second 

experiment (with fine-tuning the parameters) on Sentinel-2 

image for each class with ResNet 50 network. 

 

 

 
Figure 8. Average of overall accuracy obtained from the second 

experiment (with fine-tuning the parameters) on Sentinel-2 

image for each class with ResNet 101 network. 
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Figure 9. Average of overall accuracy obtained from the second 

experiment (with fine-tuning the parameters) on Sentinel-2 

image for each class with ResNet 152 network. 

According to the results, all networks had the highest accuracy at 

a resolution of 20 meters. Figures 11-13 shows classification 

maps at a resolution of 20 meters. According to the classification 

maps, we found that the performance of all three networks is 

relatively similar. In Compared to ground truth, the left corner of 

the image has different vegetation types, and all networks have 

mistakenly predicted the Arable land label, which is the dominant 

class in the region, for other classes. 
Comparing the maps from all three networks, it can be seen that 

the ResNet 50 network performed worse in detecting the Land 

principally occupied by agriculture and Argo-forestry area 

classes marked in the red box, and the ResNet 101 network 

performed poorly in detecting the Natural grassland classes 

marked in the black box. Although the accuracy of the ResNet 50 

is 76.2%, which is higher than other networks, but with the visual 

interpretation of the classification maps, it can be seen that the 

Resident 152 has performed better in detecting complex classes, 

As the number of hidden layers increases, the network becomes 

more capable of learning complex features but it needs more time 

and powerful processors. 

 

   
Figure 10. Ground-truth 

   
Figure 11. Classification map obtained from ResNet50 at 20 m 

spatial resolution with fine-tuning 

   

   
Figure 12. Classification map obtained from ResNet101 at 20 m 

spatial resolution with fine-tuning 

 

  
Figure 13. Classification map obtained from ResNet152 at 20 m 

spatial resolution with fine-tuning 

5. CONCLUSIONS 

 
The industrialization of cities has led to the extinction of various 

vegetation species, so high-precision classification maps are 

needed for the sustainability and management of natural 

resources. In this research, ResNet networks that have been 

trained with BigEarthNet dataset and the sensitivity of these 

networks to different resolutions of Sentinel-2 satellite image 

have been investigated. The overall accuracy obtained for the 

networks proves that The BigEarthNet dataset, due to the 

allocation of multiple labels for each patch and the use of multi-

band satellite imagery, has the ability to highlight different 

vegetation features compared to other machine vision datasets. 

(Because only three RGB bands are used in dataset like 

ImageNet). This advantage can be seen for each class, however, 

some classes may not be well distinguishable due to the 

complexity and similarity of the features. Classification maps 

show that the ResNet 152 network has been more successful in 

detecting complex classes but ResNet 50 has higher overall 

accuracy. All networks have better performance at 20 m 

resolution because all bands have less spectral distortion at this 

resolution. The sensitivity of ResNet networks with different 

depth to changing spatial resolution varies. ResNet 101 network 

is slightly sensitive to changing spatial resolution when changing 

the spatial resolution of 30-50 meters. 
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