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ABSTRACT: 

 

The human pressure over coastal areas is becoming increasingly relevant, due to the combinations of resource depletion, climate 

change effects and ocean eutrophication. Coastal ecosystems are so exposed to a huge number of stress factors that endanger their 

ecosystem services, like carbon uptake and biodiversity maintenance, that can be crucial in facing the effects of climate changes. 

With a particular focus on seaweeds, these ecosystems are becoming rapidly relevant both for carbon sinks and as a source of high 

value products, for example thanks to cosmetic and food industries that produce high added values products. 

 

In this contest the capability of conducting efficient monitoring is crucial to monitor environmental dynamics and resources trends.  

Traditionally seaweed monitoring was carried out with on field surveys that could be based on botanic analysis combined with 

genetic study, depending on the aims. Recently Remote Sensing techniques, combined with Artificial Intelligence ones, gave a new 

perspective to seaweed monitoring, introducing tools that are always more efficient. 

 

In this contest the present work aims to test the potentiality of remote sensing and artificial intelligence techniques for seaweed 

monitoring along the Irish west coast, building the basis for a fully automated tool for monitoring. The results showed that, with a 

supervised classification approach, it is possible to train Random Forest (RF) to perform very precise classification over the entire 

West Coast of Ireland. In particular, with all the RF configurations tested the Overall Accuracy (OA) was greater than 98.61, with the 

best performance obtained with the configuration Ntree = 600 and mtry = 2 that produced an OA =98.87. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Coastal areas are particularly affected by Climate Changes, that 

cause ocean warming, sea level rise and impacts on ocean’s 

ability to uptake carbon (Dobush et al., 2021). These pressure 

factors can affect coastal ecosystems and their carbon uptake 

mechanisms. Focusing in particular on seaweeds, these 

ecosystems are becoming increasingly more relevant in facing 

climate change effects as carbon sink (Belgiu and Drăgu, 2016; 

Krause-Jensen et al., 2018). Seaweeds can be considered part of 

a set of farming products that have a role in climate-change 

mitigation (Mozzato et al., 2018; Pagliacci et al., 2020). 

 

In fact different authors considered with increasing interest the 

importance of Blue Carbon, derived from ecosystems that 

include tidally influenced freshwater forests, for example, bald 

cypress forests and Melaleuca forests, which can have huge soil 

carbon stocks in their soils and which have been greatly reduced 

in cover (Krauss et al., 2018). 

 

However it must be remarked that kelp and other seaweed beds 

ecosystems are also being considered as Blue Carbon 

ecosystems (Lovelock and Duarte, 2019) 

However seaweeds provide also a great amount of other 

ecosystem services, like different author suggest (van den Burg 

et al., 2022).  

It must also be considered the importance of seaweeds 

production that in the last years, for example in Ireland,  is 

becoming always more interesting, thanks to cosmetic and 

pharmaceutical industries and cosmetic markets producing 

high-quality, high-value products.(Mac Monagail and Morrison, 

2020). 

Considering this general contest, some authors suggest that 

there are significant knowledge gaps that need to be addressed 

to anticipate the combined effects of global and local stressors 

on seaweed communities (Mineur et al., 2015). 

 

In fact traditional monitoring approaches consist mainly of non-

destructive monitoring based on field surveys (Terada et al., 

2021) or fixed monitoring stations(Barrientos et al., 2020). The 

surveys, depending on particular aims, can be coupled with 

botanic or genetic analysis. 

However traditional approaches to monitoring generally can be 

difficult applied to large areas or to multitemporal analysis, 

mainly for economic costs and for difficult to collect data over 

large areas.  

 

For this reason Remote Sensing based seaweed monitoring is 

becoming a relevant technique. Some authors in particular 

tested positively the potentiality of multi sensors monitoring 

approach to seaweed monitoring (Xing et al., 2019). 
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Other authors reviewed the potential of Remote Sensing 

techniques applied to seaweed monitoring, considering also 

Species Distribution Models and aerial imagery, underwater 

imagery and lidar data (Bennion et al., 2019). 

The combination of Satellite data with Artificial Intelligence 

techniques, considering both Machine Learning and Deep 

Learning, can represent a strong innovation for the monitoring 

phase, with incredibly positive results, reported by different 

authors.(Gonzalez-Rivero et al., 2020; Houskeeper et al., 2022) 

 

Focusing in particular on the Random Forest (RF) algorithm 

that was introduced in 2001(Breiman, 2001) this model is based 

on an ensemble of decision trees (forest) that grows through 

training towards best combinations. An ensemble consist of a 

set of individual trained classifier (decision trees), which are 

combined for classify new instances (Kulkarni, 2013).  

 

Today the RF algorithm finds a large number of applications 

thanks to its velocity of computation especially while handling 

large datasets, for example from Sentinel/Landsat imagery 

(LaRocque et al., 2020) or even laser scanning datasets (Pirotti 

et al., 2019, 2014).  

 

Considering this contest, the present work aims to: 

- build the basis for a fully automated tool for monitoring 

seaweeds, considering in particular the west coast of Ireland; 

- test the potentiality of combining remote sensing data and 

Artificial Intelligence for seaweeds monitoring. 

 

2.  MATERIALS AND METHODS 

2.1 Study area 

The study area considered for this work consists of the western 

part of the Ireland coasts, including all the areas within 750 m 

from the shoreline, as it is shown in the following picture. 

 

 

Figure 1. Figure placement and numbering. 

 

The study area represented in the previous picture is extended 

approximately 5670 km2, distributed along more than 3000 km 

of shoreline. 

 

2.2 Satellite data  

Considering the kind of analysis and the phenomena studied, it 

was decided to acquire Sentinel-2 data; the choice was based on 

following points: 

• Spatial Resolution. The spatial resolution of 

Sentinel-2 data is relatively high, with a resolution of 10 m in 

the visible and NIR. This resolution is ideal to handle a 

classification of seaweed presence at national scale. 

• Radiometric Resolution. Having 13 bands that range 

from visible to far infrared, Sentinel-2 data are particularly 

suitable to study environmental phenomena, using an AI based 

approach. 

• Temporal Resolution. The temporal resolution of 

approximately 5 days (considering both Sentinel-2A and 

Sentinel-2B) is ideal for seaweed monitoring, also considering 

possible changes due to wind, currents and sea storms. 

 

Considering meteorological conditions and cloud absence over 

a large part of the study area, it was decided to acquire satellite 

data for 28/05/2021; in detail the following Sentinel-2 tiles 

were acquired. 

 

ID Sentinel-2 tile 

1 T29UMA_20210528T115359 

2 T29UMT_20210528T115359 
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3 T29UMU_20210528T115359 

4 T29UMV_20210528T115359 

5 T29UNA_20210528T115359 

6 T29UNB_20210528T115359 

Table 1. Sentinel-2 tiles acquired. 

 

2.3 Satellite data processing 

All the processing operations computed over satellite data were 

done with a dedicated algorithm developed with R Studio 

programming language. Each band with the same spectral 

resolution of the satellite tiles acquired were merged together 

and cropped, maintaining only the raster pixels inside the study 

area. Then all bands with rougher spatial resolution were 

resampled to 10 m resolution, in order to compute spectral 

indexes among bands with different spatial resolution. After 

that, different indexes were randomly computed in order to 

define a sufficient number of features to train the models, that 

was assumed equal to nine; the features created included 

indexes like Normalized Difference Vegetation Index (NDVI), 

Blue-Normalized Difference Vegetation Index (BNDVI) and 

Normalized Difference Water Index (NDWI). 

 

2.4 Dataset creation 

The first step of data analysis phase was the definition of target 

classes for the classification, in order to distinguish both 

seaweeds presence and all other relevant classes within the 

study area that are not seaweeds; in detail the defined classes 

were: 

1)   Seaweeds. This is the main target class, and includes 

different kinds of seaweeds. 

2)   Water. This class includes sea water without the presence of 

seaweeds. 

3)   Rocks. This class includes rock out of the water. 

4)   Fine Sediment. This class includes fine sediments out of the 

water. 

5)   Vegetation. This class comprehends vegetation elements 

outside sea water. 

6)   Clouds. This class includes cloud cover areas within the 

study area; this class helps only in masking cloud covered areas 

in order to not produce misclassification once the process will 

be fully automated. 

 

For each of the previous classes, different polygons, to be used 

as training and validation areas, were created. The creation of 

polygons along the study area was based on Sentinel-2 true 

colour images, ground surveys information and spectral indexes 

calculated. 

 

The result of this process was the creation of an ensemble of 

polygons for each of the target classes. The following table 

provides an overall analysis of polygons created. 

 

ID Class 

Description 

Number of 

Polygons 

Area (m2) 

1 Water 14 4.16*106 

2 Rock 41 96.138*103 

3 Fine Sediment 27 2.710*106 

4 Vegetation 26 2.628*105 

5 Seaweeds 82 8.027*105 

6 Cloud 24 7.311*106 

Table 2. Polygons created for supervised classification 

 

The following picture shows some training and validation 

polygons within the study area. 

 

 

 

Figure 2.  Example of different classes training and validation polygons. 
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As it is possible to notice from the previous table, the polygon 

numerosity of different classes is different. The reason for this 

difference is connected with the characteristics of each class. In 

fact dealing with classes like “water” it was possible to create 

bigger polygons within the study area; oppositely dealing with 

the class “seaweeds” it was necessary to define small polygons 

to avoid the consideration of not “seaweeds” area within the 

“seaweeds” class.  

 

For both the training and validation datasets, a regular points 

grid was created within each polygon. The following table 

provides the overall information of the numerosity of the 

created points both in training and validation datasets. 

 

ID Class 

Description 

Number of 

Points Training 

Number of 

Points 

Validation 

1 Water 214 386 

2 Rock 203 237 

3 Fine Sediment 2305 2299 

4 Vegetation 253 220 

5 Seaweeds 1127 872 

6 Cloud 136 1927 

Table 2. Polygons created for supervised classification 

 

The following picture shows some training and validations 

points within the study area. 

 

 

Figure 3.  Example of different classes training and validation points. 

 

 

2.5 Artificial Intelligence Models - Tuning 

For all the points of the training and validation datasets the 

Machine Learning (ML) model tuning phase aimed to identify 

the best configuration of the Random Forest (RF) model for 

data analysis. 

 

The methodology adopted was an iterative one, in order to find 

the best configuration of parameters. The RF parameters object 

of the iterative calibration were: 

- Number of Tree (Ntree) value. An integer number that 

represents the number of decision trees created to perform the 

analysis. The range of variation of this parameter values from 

100 to 1500 in a sequence by 100. 

-  Variable Split to create each tree (Mtry). An integer number 

representing the “height” of each tree, that is the number of 

variable split to create each single tree of the forest. The range 

of variation of Mtry was assumed from 2 to 8. 

 

The iterative procedure consists of the test of each combination 

of the Ntree and Mtry values within the fields of variation. For 

each RF configuration tested the Overall Accuracy was 

calculated (percentage of correctly classified points on the test 

dataset). 

 

Eventually, it was maintained the model configuration that 

ensured the highest value of accuracy; for the selected 

configuration it was created a confusion matrix and different 
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error metrics were computed (Overall Accuracy, F measure, K 

index and Cramer V index). 

 

 

3. RESULTS 

The tuning procedure of RF tested 135 different combinations 

of parameters, considering the range of variation of Ntree and 

Mtry described in the previous chapter. In general the RF tuning 

procedure showed, in all the combinations tested, a high level 

of Overall Accuracy (OA), ranging from a minimum of 98.61% 

to a maximum of 98.87%. 

 

The following picture provide a graphical representation of the 

variation of OA score during RF tuning procedure. 

 

 
Figure 4.  Variation of OA score with different RF 

configurations 

 

As it is possible to notice from the previous picture, the best RF 

configuration was obtained with Ntree value equal to 600 and 

Mtry value equal to 2; considering the best configuration the 

following table provides the confusion matrix of the 

classification performed, with the indication of the F measure 

by class. 

 

ID 1 2 3 4 5 6 F 

measure 

1 385 0 0 0 7 0 98.97 

2 0 204 0 0 15 3 88.70 

3 0 3 2299 0 0 4 99.85 

4 0 0 0 220 2 0 99.56 

5 1 30 0 0 847 3 96.80 

6 0 1 0 0 1 1920 99.77 

Table 3. Confusion Matrix  

Considering the previous confusion matrix, the K index was 

equal to 98.43% and the Cramer V was equal to 96.88%. 

 

Figure 5 and figure 6 give graphical representations of some 

areas classified as seaweed within the study area. 

 

 

Figure 5. Particular of Seaweed areas detected – Uggool beach. 

 

 

Figure 6. Particular of Seaweed areas detected – Blacksod Bay. 

 

 

4. DISCUSSION 

The results showed that predictions over the test dataset were 

extremely precise. In general, all the tested models were 

characterized by Overall Accuracy higher than 98.61%. 

 

The best results were generally obtained with lower Mtry values 

(the height of each tree) and a higher number of trees. 

 

Having such good performances both with lower and higher 

mtry numbers, with best results at lower values, is an indicator 

that overfitting is not occurring. As a matter of fact even with 

the simplest combination tested (low number of trees and low 

mtry value) gave extremely positive results. 

 

Such good performances are mainly due to the features 

engineering phase: having meaningful variables, which can be 

interpreted with a supervised approach, simplify the Artificial 

Intelligence data analysis phase. The features engineering phase 

can be a key phase for large scale applications of Remote 

Sensing techniques. 

 

However, to build a fully automated seaweed distribution 

monitoring tool, the training and validation datasets must be 

significantly enlarged to ensure the representativity at the 

annual scale, including phenological variations of seaweeds 

(growth, colors…etc.).  
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Moreover, once building automated tools for the entire coast of 

a country like Ireland some considerations must be considered 

the particular meteorological conditions, with the sky often 

covered by clouds; this can significantly restrict the periods of 

the year where it is possible to collect useful satellite data. 

Considering in particular the case study of the Irish west coast it 

was observed that the period for useful satellite data collection 

was generally those from late spring to early autumn.  

 

Eventually it must also be considered that monitoring seaweeds 

at national scale is a relevant work that can be affected by 

multiple sources of disturbances (for example turbidity, 

meteorological conditions and human activity). 

 

Based on all these considerations the results of the work are 

extremely positive and relevant; the significant precision of 

Machine Learning models observed on a single day can be a 

solid base for future multitemporal works.  

 

For this reason, further improvement of the present work can 

include a multitemporal analysis of seaweed distributions 

during an entire year, enlarging significantly the training and 

validation datasets, to ensure representativity along the entire 

year similar to what was done in (Vaglio Laurin et al., 2016). 

 

 

5. CONCLUSION 

The study has compared different Random Forest 

configurations for seaweed distributions monitoring along the 

entire west coast of Ireland. The approach to this task was with 

a supervised classification, based on different spectral indexes 

calculated on Sentinel-2 bands.  

 

Results show that all the configurations of RF gave particularly 

good results with extremely content errors. In conclusion, this 

study shows that ML can be an efficient tool to predict seaweed 

presence and give practical support to all those interested in 

having a smart and fast monitoring tools for coastal habitat.  
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