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ABSTRACT: 

 

Cloud Forests (CFs) are characterized by their persistent foggy environment, in which fog can save two times the amount of 

precipitation in the dry season and increase water storage by 10% in the rainy season. CFs play an important role in ecosystems as high 

biodiversity and abundant endemic species live within CFs. However, CFs are sensitive to environmental changes, especially in current 

global climate warming conditions. Therefore, a typical cloud forest in Taiwan, Shei-Pa National park, was chosen as the study area. 

Specifically, the Normalized Difference Vegetation Index (NDVI) with meteorological factors including rainfall, average temperature, 

maximum temperature, and minimum temperature were obtained to assess the overall CFs trend from 2001 to 2017. Moreover, the 

Long Short-Term Memory neural network model (LSTM) was implemented to predict the future vegetation status. Preliminary results 

have shown that vegetation condition in Shei-Pa National park was getting better; rainfall, average temperature, and minimum 

temperature represented an upward trend while maximum temperature showed a downward trend. Furthermore, the LSTM- maximum 

temperature model displayed the highest prediction power with the MAPE index of 4.84%. The results provide a valuable reference 

for forest resource conservation and future climate adaptation strategies in Taiwan. 

 

 

1. INTRODUCTION 

According to the general statistics of the United Nations 

Environmental Programme (UNEP) and the World Conservation 

Monitor Centre (WCMC), The CFs area are accounted for 

approximately 0.26% of the global land area and 2.5% of the 

tropical forest area (Aldrich et al., 1997). However, CFs are 

unevenly distributed globally, with 60% in Asia, 25% in the 

Americas, and 15% in Africa (Bubb et al., 2004). 

Cloud Forests (CFs) are characterized by foggy conditions 

throughout the year (Bruijnzeel & Proctor, 1995). The foggy 

condition produces significant horizontal precipitation, which 

becomes occult precipitation in CFs. The occult precipitation in 

CFs can save more than two times the precipitation in the dry 

season and increase 10% of the forest water storage capacity in 

the rainy season, which is very important for conserving moisture 

in the soil and water (Bruijnzeel et al., 2011). According to the 

results of the fourth national forest resources survey in Taiwan 

and the research results from Schulz (Qiu et al., 2015; Schulz et 

al., 2017), the CFs area accounted for approximately 25% of the 

forest area in Taiwan with a relatively high proportion of the 

endemic species.  

In recent years, global warming and extreme climates have 

affected forests, thereby affecting the functions of forest 

ecosystems (Bubb et al., 2004). For instance, Chang et al. (2008) 

found that when the temperature rises, the soil will release the 

organic carbon stored in the past, making soil change from a 

carbon sink to a carbon source, which increases the carbon in the 
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atmosphere. Furthermore, Los et al. (2019) found that changing 

cloud base height will impact the forest area. They calculated 

cloud base height and occult precipitation. They concluded that 

under the circumstance of 2°C warming in the future, the cloud 

base height would increase by 250 m, which will reduce the forest 

area by about 50% or even disappear completely. Therefore, 

understanding the current status and future changes in CFs is 

important for ecological conservation and biodiversity 

maintenance. 

 

2. METHOD 

2.1 Research area 

Taiwan is rich in forest resources, with 51 high mountains over 

3,000 meters above sea level (ASL). Based on a study conducted 

by Schulz et al. (2017), Taiwan has more than 5,500 km2 of CFs, 

of which 98% of them are located at 1,000-3,000 ASL. Therefore, 

the Shei-Pa National Park, located in central-north Taiwan with 

675 km2 spatial coverage, is chosen as the study area due to its 

specific geology terrain, mountain ecology resources, and rich 

endemic species. The location of research area is shown in Figure 

1 (a), and the vegetation species in research area, such as 

plantations, coniferous forests, and broadleaf forests, are shown 

in Figure 1 (b) , and elevations in research area between at 1,000-

3,000 ASL is shown in Figure 1 (c). 
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Figure 1 (a) Research area (b) Research area vegetation species (c) Research area elevations 

 

2.2 Research flow 

The research flow is shown in Figure 2. First, satellite-based 

vegetation data, meteorological data, and digital elevation data 

were collected. The Normalized Difference Vegetation Index 

(NDVI) images of the MOD13Q1 product were obtained from 

the Moderate-resolution imaging spectroradiometer (MODIS), 

and four meteorological factors, including rainfall, average 

temperature, maximum temperature, minimum temperature, are 

attained from Taiwan Climate Change Projection and 

Information Platform (TCCIP). Next, the Department of Land 

Administration produced the Digital Elevation Model (DEM), 

Ministry of the Interior. The NDVI and meteorological factors 

were rearranged in monthly time series. Then the second step 

referred to the CFs range defined by Schulz et al. (2017) and 

extracted the CFs area from 1,000 to 3,000 meters ASL in Shei-

Pa National Park. Next, the Mann-Kendall and Seasonal Mann-

Kendall analyses were implemented on NDVI and 

meteorological factors. In the final step, we would like to 

establish a prediction LSTM model for CFs. With NDVI and 

meteorological factors, DEM information was also considered in 

the LSTM prediction model, and the prediction capability was 

evaluated. 

 

Meteorological  Factor
(rainfall, average temperature,

maximum temperature, minimum temperature )

Satellite Image

(MOD13Q1-NDVI)
Digital Elevation Model

Extract CFs Region
(Shei-Pa National Park

elevation from 1,000 to 3,000 m)

Temporal Trends Analysis of CFs Long-

Term NDVI and Climate Factor

Build a LSTM Prediction Model

Evaluation LSTM Model Ability

Mann-Kendall trend test

Seasonal Mann-Kendall trend test

 
Figure 2 Research flow 
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2.3 Normalized Difference Vegetation Index (NDVI) 

This study obtained a time series of Normalized Difference 

Vegetation Index (NDVI) values from 2001 to 2017 derived from 

the MOD13Q1 product of Moderate-resolution imaging 

spectroradiometer (MODIS). With a spatial resolution of 250 

meters × 250 meters and one data entry every 16 days, total of 

391 NDVI images were obtained. The NDVI algorithm formula 

is as follows (Rouse et al., 1974): 

 

 𝑁𝐷𝑉𝐼 = (
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
) (1) 

 

where  𝜌 = reflectance rate of band 

 𝑁𝐼𝑅 = Near Infrared 

 𝑅𝐸𝐷 = Red 

 

2.4 Meteorological factor 

The meteorological factors used in this study include rainfall 

(Rain), average temperature (Tavg), maximum temperature 

(Tmax), and minimum temperature (Tmin). All meteorological 

factors data were derived from the Taiwan Climate Change 

Projection and Information Platform (TCCIP) in monthly gridded 

format with a spatial resolution of 5 km × 5 km (Lin et al., 2011). 

We have obtained those meteorological data from 2001 to 2017 

for the study area. 

 

2.5 Digital Elevation Model data 

The Digital Elevation Model (DEM) is a gridded data produced 

by the Department of Land Affairs, Ministry of the Interior in 

Taiwan with a spatial resolution is 20 m × 20 m. Each grid point 

has the plane coordinates and elevation information of the point. 

The plane coordinates are based on the Ministry of the Interior 

1997. The Taiwan Geodetic Datum Coordinate (TWD1997), the 

elevation coordinate datum is the Ministry of the Interior 2001 

Taiwan Elevation Datum (TWVD2001) (Ministry of the Interior, 

Department of Land Affairs, 2016). 

 

2.6 Mann-Kendall trend test and Seasonal Mann-Kendall 

test 

The Mann-Kendall test (M-K test) was used to evaluate the trend 

in this study; the M-K test was developed by Mann and Kendall 

(Mann, 1945; Kendall, 1948), which is a nonparametric statistical 

has been widely used and method recommended by the World 

Meteorological Organization (IMO). The M-K test has 

distribution-free characteristics and a high tolerance for extreme 

values in the series and missing data (Hamed, 2008; Pohlert, 

2019), which is calculated as follows. 

 

Suppose a time series is: 

 

 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} (2) 

 

The M-K test statistic S is: 

 

 𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑘 − 𝑥𝑗)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1  (3) 

 

Among 

 

sgn(𝑥𝑘 − 𝑥𝑗) = sgn(𝑅𝑘 − 𝑅𝑗) = {

1 𝑖𝑓
0 𝑖𝑓

−1 𝑖𝑓

𝑥𝑗 < 𝑥𝑘

𝑥𝑗 = 𝑥𝑘

𝑥𝑗 > 𝑥𝑘

, (4) 

 

𝑅𝑗  and 𝑅𝑘  in formula (4) represent the corresponding order 

positions of 𝑥𝑗  and 𝑥𝑘  in the time series, sgn  is a symbolic 

function. The M-K test assesses the order of the data rather than 

its true value, and it has the property that the sample must be 

normally distributed. 

The M-K test assumes that each time series data is Independent 

and Identically Distributed. The mean and variance V of its 

statistic value S can be defined as: 

 

 𝐸(𝑆) = 0   (5) 

 

 𝑉(𝑆) =
{𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑡𝑖−1)(2𝑡𝑖+5)𝑚

𝑖=1 }

18
 (6) 

 

Where m is the number of groups with the same value, and 𝑡𝑖 in 

each group represents the number of values in the i-th group with 

equal values. Kendall (1948) also found that when the total 

number of data in the time series is larger, the statistical value S 

is closer to the normal distribution. At this point, the standard 

normal variable Z is used with a self-defined statistical 

significance level (such as a 0.05 level) to judge whether the time 

series data has a statistically significant trend: 

 

 Z = {

(𝑆 − 1)/√𝑉0(𝑆) 𝑖𝑓

0 𝑖𝑓

(𝑆 + 1)/√𝑉0(𝑆) 𝑖𝑓

𝑆 > 0
𝑆 = 0
𝑆 < 0

 (7) 

 

When |𝑍| > 𝑍(∝/2), it means that the time series data has a 

significant trend; a positive Z value indicates a significant 

upward trend while a negative Z value indicates a significant 

downward trend. 

This study intends to select a significant level of 5% (𝑍(∝/2) =
1.96), Therefore, if Z>1.96, it has a significant trend, and if 

Z<1.96, there is no statistically significant increase or decrease 

trend. 

We would also like to evaluate the seasonal trend of the CFs. 

Therefore, the Seasonal Mann-Kendall test (S M-K test) 

proposed by Hirsch et al. (1982) was utilized. The calculation 

method of the S M-K test is similar to the M-K test (Hirsch & 

Slack, 1984); the test method is the same; the only difference is 

that the S M-K test divides the season or the month to calculate 

the M-K test and adds them together eliminate the influence of 

seasonality. The algorithm of the S M-K test is shown as follows 

(Pohlert, 2019): 

 

𝑆𝑔 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑘𝑔 − 𝑥𝑗𝑔)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1 , 𝑔 = 1, 2, 3, … , 𝑚 (8) 

 

2.7 Long Short-Term Memory, LSTM 

The Long Short-Term Memory (LSTM), an improved version of 

Recurrent neural networks (RNN), was proposed by Hochreiter 

& Schmidhuber in 1997 (Hochreiter & Schmidhuber, 1997). The 

biggest difference between LSTM and RNN is that each neuron 

of LSTM is a memory unit and can improve the shortcomings of 

short-term memory in RNN. Each neuron in LSTM contains 

three gates, forget gate, an input gate, and an output gate. 

Detailed LSTM information can be found in Yu et al. (2019). The 

function of the forget gate is to selectively forget some 

unimportant information of the gates from the former one; the 

input gate controls the new information that it learns and decides 

whether to maintain the information in the memory in the cell; 

the output gate determines whether the information in the 

memory should be output or not. The mathematical function of 

LSTM is as follows: 

 

 𝑓𝑡 = 𝜎(𝑊𝑓ℎℎ𝑡−1 + 𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) (9) 
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 𝑖𝑡 = 𝜎(𝑊𝑖ℎℎ𝑡−1 + 𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖), (10) 

 

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐̃ℎℎ𝑡−1 + 𝑊𝑐̃𝑥𝑥𝑡 + 𝑏𝑐̃) (11) 

 

 𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡, (12) 

 

 𝑜𝑡 = 𝜎(𝑊𝑜ℎℎ𝑡−1 + 𝑊𝑜𝑥𝑥𝑡 + 𝑏𝑜) (13) 

 

 ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (14) 

 

where  ft = forget gate 

 it = input gate 

 c̃t = recurrent unit 

 ct = cell state 

 ot = output gate 

 ht = hidden layer 

 

3. RESULTS AND DISCUSSION 

3.1 Mann-Kendall trend test and Seasonal Mann-Kendall 

test 

In this study, we applied the M-K test and S M-K test to analyze 

trends in NDVI and meteorological factors of CF in Shei Pa 

National Park from 2001 to 2017. In Figure 3, the results of the 

M-K test show that the NDVI vegetation growth status of Shei-

Pa National Park CFs was getting greener (the trend is significant 

with a Z value>1.96). In terms of meteorological factors, the 

rainfall, average temperature, and minimum temperature showed 

positive trends, and the maximum temperature presented a 

negative trend. The S M-K test results showed that the NDVI 

vegetation growth state was significantly greener (with a Z 

value>1.96). The meteorological factors, including rainfall, 

average temperature, and minimum temperature, all presented 

positive trends, while the maximum temperature was negative. 

Most of the trends were significant (Z value>1.96); only the 

rainfall trend was not significant (Z value<1.96).  

 

 
Figure 3 M-K test and Seasonal M-K test of Shei-Pa 

National Park NDVI and Meteorological factor 
 

3.2 LSTM 

A total of six LSTM models with different architectures of one 

and two hidden layers were established for testing. Three 

temperature factors, average temperature (Tavg), maximum 

temperature (Tmax), and minimum temperature (Tmin), were 

combined with NDVI, DEM, and rainfall to form a data set. The 

data from 2001 to 2014 was used for training, 80% of which was 

used for training and 20% for validation. The data from 2015 to 

2017 were used for testing by 500 epochs. Each data set was 

divided into five datasets for cross-validation. The results showed 

that the data is evenly distributed. Furthermore, the model is 

stable with the maximum and minimum training loss values of 

0.040 and 0.0023 and maximum and minimum validation loss 

values of 0.006 and 0.0023, respectively (Figure 4 and Figure 5).  

The results of LSTM are shown in Figure 6, with the average 

MAPE between 4% to 5%. The models with two hidden layers 

performed better than those with one. Among the six models, the 

two hidden layers model with the maximum temperature 

combined with NDVI, DEM, and rainfall performs the best with 

the MAPE value of 4.71% (marked with a star in Figure 6). 

Therefore, we presume that the maximum temperature 

information contributes more to the model's predictive ability. 

Then the model is retrained with all the data from 2001 to 2014, 

and its MAPE is 4.84%. 

Based on the results of LSTM models, the differences between 

the predicted and observed NDVI in 2016 and 2017 are shown in 

Figures 7 and 8. The absolute values of the error less than 0.1, 

overestimation, and underestimation are shown in yellow, red, 

and blue, respectively. Most of the areas show errors less than 0.1, 

which indicates a good prediction capability of the LSTM model. 

However, a small proportion of pixels are overestimated, while 

some in January 2017 are underestimated. Additionally, in 

January, March, May, August of 2016, and January and May of 

2017, some errors exceeded 5%. 

Moreover, it is found that most of the locations with inaccurate 

predictions have more than two types of forests (Taiwan national 

natural vegetation maps, 2014), which may indicate complicated 

interactions with each other; thus, it is difficult to predict 

accurately. In addition, the prediction results at the edges of the 

study area are also poor. 

 

 
Figure 4 Results of 5 Fold Training loss 

 

 
Figure 5 Results of 5 Fold Training loss 
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Figure 6 MAPE values of the six LSTM models 

 

4. CONCLUSIONS 

The M-K test results of the trend assessment of CFs in Shei-Pa 

National Park showed that its vegetation state was growing well 

(a significantly positive trend in NDVI). In addition, the 

minimum temperature increased significantly. Based on the S M-

K test results, the NDVI, average temperature, and minimum 

temperature of Shei-Pa National Park CFs showed a significant 

positive trend. However, the maximum temperature dropped 

significantly, and the rainfall had no significant trend. 

The LSTM prediction model was established based on NDVI, 

rainfall, DEM, and the maximum temperature data with a good 

prediction performance of MAPE 4.84%. However, the 

prediction results of the LSTM model in January and May are 

less accurate.  

This study analyzed the trends of CFs vegetation and 

meteorological factors in Shei-Pa National Park. It used the 

LSTM model with a highly accurate prediction ability to make 

predictions, which accurately grasped the growth of vegetation in 

the past and predicted the possible conditions of vegetation in the 

future.  

Considering possible challenges of future climate change, the 

prediction results of this study can provide a valuable reference 

for forest management authorities to support decision-making 

regarding forest conservation. More importantly, the results of 

this study serve as a scientific basis for establishing adaptation 

strategies, which are of positive benefit to the overall ecological 

environment of Taiwan. 
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Figure 7 The differences between the predicted and observed NDVI in 2016 

 

 
Figure 8 The differences between the predicted and observed NDVI in 2017 
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