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ABSTRACT: 

 

Addressing hunger is one of the greatest unsolved challenges Humanity has ever faced. Africa is one of the most fragile ecosystems 

strongly affected by numerous factors ranging from climate change, increasing population, decreasing water resources, and 

undeveloped hydrological infrastructure. These factors make it exceptionally vulnerable to food insecurity. The purpose of this study 

was to establish the feasibility and methodology of using Open Data Cube (ODC) and conventional machine learning algorithms to 

determine the extent of decrease in cropped area in the desert climate of Djibouti, the smallest Horn of Africa country (by landmass) 

over a thirty-year period. The research question was answered using Landsat 5, 7, and 8 imagery taken during the month of June from 

1990, 2000, 2010, and 2020 then classified through machine learning algorithms - including decision tree and random forest. The data 

acquisition, analysis, and modeling were completed in an Open Data Cube environment using a cloud-based user computational 

platform running completely in-browser, and all necessary software was provided as part of the environment. The research identified 

a decreasing trend in vegetative areas but was limited in determining whether the vegetative areas were purely agricultural cropland in 

nature or included native vegetation. While the research reveals a concerning decline in total vegetation over the thirty-year period, the 

lack of other data variables (such as weather and climate patterns) provides too narrow a picture to determine causation. Several areas 

for further research are outlined. 

 

1. INTRODUCTION 

Addressing hunger is one of the greatest unsolved challenges 

Humanity has ever faced. Hunger has many causes including 

geopolitical volatility, extreme weather events, and changes in 

diet such as moving to a more meat-based rather than vegetation-

based diet (Wheeler and Von Braun 2013). The United Nations’ 

Food and Agricultural Organization (FAO) broadly defines food 

security as “(i) the availability of sufficient quantities of food of 

appropriate quality, supplied through domestic production or 

imports; (ii) access by individuals to adequate resources 

(entitlements) for acquiring appropriate foods for a nutritious 

diet; (iii) utilization of food through adequate diet, clean water, 

sanitation, and health care to reach a state of nutritional well-

being where all physiological needs are met; and (iv) stability, 

because to be food secure, a population, household or individual 

must have access to adequate food at all times (UNFAO 1996). 

Climate and food security are unavoidably intertwined. Global 

environmental threats to food security include climate change 

and variability, loss of biodiversity, and environmental pollution 

(UNFAO 1996). 

 

Africa is one of the most fragile ecosystems strongly affected by 

numerous factors ranging from climate change, increasing 

population, decreasing water resources, and undeveloped 

hydrological infrastructure. These factors make it exceptionally 

vulnerable to food insecurity.  

 

The Horn of Africa (HOA) region has seen famine, even in recent 

history, and is considered one of the most food-insecure regions 

of the world (Qu and Hao 2018). This region suffers from 

ongoing conflict, long-term poverty, and ecosystem deterioration 

from desertification, fuelwood scarcity, land degradation, 
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biodiversity loss, and human-induced droughts (Thrupp and 

Megateli 1999).   

 

The rapid growth in satellite technology over the last few decades 

has improved monitoring agencies’ ability to track agricultural/ 

vegetative changes in regions where food stability has 

traditionally been an area of concern. Satellite remote sensing is 

the leading technology to provide comprehensive information 

about different earth systems, particularly in monitoring global 

vegetation health and trends (Qu and Hao 2018). 

 

There are various methods commonly used to monitor 

agricultural productivity including in-situ-based methods, optical 

remote sensing methods, thermal remote sensing methods, 

microwave remote sensing methods, combined remote sensing 

methods, and synergy between in-situ and remote sensing-based 

methods (Hazaymeh and Hassan 2016). Optical and thermal are 

considered passive, while microwave is an active sensing 

method. Among passive remote sensing methods, hyperspectral 

imaging (HSI) has the potential as a non-invasive and non-

destructive tool for monitoring vegetative health (Jones 2010). 

This method captures and stores an object’s spectroscopy 

information in a spectral cube, which contains spatial information 

and hundreds of contiguous wavelengths in the third dimension.   

 

Traditional remote sensing imagery in the past has been 

expensive, unwieldy to store, manage, and access, and required 

highly specialized skills and software to analyze. Data cubes are 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1039-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1039



 

a newer approach to tackling these organizational and analytic 

issues. An image data cube stores large collections of temporal, 

analysis-ready, multispectral Earth observation data that enables 

fast access and analysis from a variety of web and desktop 

applications (Kopp, Becker et al. 2019).   

 

Open Data Cube is a non-profit, open-source project motivated 

by the need to better manage satellite data and is freely available 

to the public on GitHub. It is a set of Python libraries and 

PostgreSQL database that helps analysts work with geospatial 

raster data in a common analytical framework composed of a 

series of data structures and tools (ODC 2021).  

 

Data cubes are being increasingly used to assess cropland 

dynamics from a spatio-temporal perspective. For example, 

Digital Earth Australia, an Open Data Cube (ODC) initiative, 

offers several high dimensional statistical products of value for 

land use classification and is being used for change detection and 

machine learning in land use classification, especially over areas 

that undergo large changes in cover within a year, like the 

irrigated croplands in Western Australia (Wellington, Renzullo 

et al. 2021). Earth Observation Data Centre for Water Resources 

Monitoring in Austria designed a data cube of Sentinel-1 data that 

has been used for rice mapping in the Mediterranean, Europe-

wide vegetation monitoring, and soil moisture retrieval in Italy 

(Wagner, Bauer-Marschallinger et al. 2021). 

 

Digital Earth Africa is another ODC initiative, funded in part by 

the Helmsley Charitable Trust and supported by Digital Earth 

Australia (Africa 2020). It was established to improve quality of 

life on the African continent by translating Earth observations 

into knowledge that will aid long-term development. The DE 

Africa platform is used by African governments, industry, and 

academic institutions to track remotely sensed changes across the 

continent, especially in flooding, drought, soil and coastal 

erosion, agriculture, forest cover, land use and land cover change, 

water availability, and quality, and changes to human settlements 

(Africa 2020).  

 

DE Africa maintains robust United States Geological Survey 

(USGS) Landsat and European Commission (EC) and European 

Space Agency (ESA) Copernicus Sentinel-2 satellite imagery 

archives over the continent as well as provides a cloud-based user 

computational platform in the form of a sandbox, operating in a 

Jupyter Lab environment (DEA 2020). It is all made freely 

available for users working on any type of African geospatial 

challenges. 

 

The purpose of this research was to establish the feasibility and 

methodology of using Open Data Cube and conventional 

machine learning algorithms to determine the extent of decrease 

in total cropped area in the desert climate of Djibouti, the smallest 

Horn of Africa country (by landmass) over a thirty-year period 

(Figure 2).  

 

2. DATA 

The data used in this study was primarily USGS Landsat and 

ESA Sentinel-2 imagery, all provided as “Analysis Ready Data” 

(ARD) on the DE Africa platform (Africa 2020) using the 

Committee on Earth Observing Satellites (CEOS) ARD 

specifications. CEOS ARD data is processed to a minimum set 

of requirements and organized to allow rapid analysis with a 

minimal amount of additional user effort and interoperability 

both through time and with other datasets (CEOS 2016). Using 

data in the ARD format significantly decreased time spent 

accessing, pre-processing, and organizing the data for the study. 

There were some initial difficulties acquiring imagery as the 30-

year span in the study required data from several different 

satellites. Landsat 5 was initially used for the 1990 and 2010 

calculations. Landsat 7 was used for 2000 and Landsat 8 for the 

2020 calculations. Landsat 7 had significant issues due to the 

Scan Line Corrector failure in 2003 (Masek 2021). The failure 

made the images over Djibouti in 2010 nearly unusable, so 

Landsat 5 was used as its’ mission continued through 2013 

(Rocchio). Landsat 5 has different bands than the later satellites 

which had to be accounted for in coding the scripts. 

 

One type of ARD provided by DE Africa are GeoMAD cloud-

free composites.  GeoMAD stands for Geomedian and Median 

Absolute Deviations and each composite contains a 

“representative, multi-spectral image for every pixel of the 

African continent. The result is a comprehensive dataset that can 

be used either to generate true-colour images for visual 

inspection of the landscape, or the full spectral dataset can be 

used to develop more complex algorithms” (Africa 2022). The 

GeoMAD products used extensively in this study were 

“gm_ls8_annual” (composite using Landsat-8 imagery, available 

for the years 2013 – 2020) and “gm_ls5_ls7_annual” (composite 

combining both Landsat-5 and Landsat-7 imagery, available for 

the years 1984 – 2012) (Africa 2022). 

 

Other datasets included Djibouti country vector boundaries 

acquired through ArcGIS Online (Esri 2020) used primarily for 

situational awareness. The source data for the country boundaries 

and attribute data was from the 2019 World Factbook (CIA 

2022). Training data for the models were created using ArcGIS 

Pro 2.8 then uploaded to the DE Africa sandbox environment. 

 

Accessing and analyzing the data through the ODC significantly 

decreased processing time and both software and hardware 

Figure 2. Djibouti’s location in the Horn of Africa. Figure 1. Djibouti’s location in the Horn of Africa. 
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requirements, enabling the study to be completed on a standard 

computer, without relying on a traditional remote sensing 

computer laboratory for hardware and software requirements. 

 

 

3. METHOD 

The United States Department of Agriculture (USDA) defines 

cropland as “areas used for the production of adapted crops for 

harvest” and recognizes two subcategories: cultivated and non-

cultivated. Cultivated cropland being row crops or close-grown 

crops and other cultivated cropland such as hay land or 

pastureland that is in a rotation with row or close-grown crops. 

Non-cultivated cropland is permanent hay land or horticultural 

cropland such as orchards (Agriculture 2022). 

 

The technical workflow of this study (Figure 3) covered data 

processing, feature engineering, modelling, and final 

calculations. For data processing the necessary pre-processing 

steps of radiometric calibration, pan-sharpening, and co-

registration were completed by DE Africa’s GeoMAD product 

line.  All imagery acquisition and processing, feature 

engineering, and modelling were completed in DE Africa OCD’s 

JupyterLab environment. The vector data processing, particularly 

the cropland/not cropland shapefile creation, and final raster 

calculations were completed in ArcGIS Pro 2.8. The hand-crafted 

features including various spectral and textural indices were 

calculated, stacked into multitemporal image cubes, then clipped 

by country boundary shapefile to produce individual image chips 

representing each year. 

 

Due to the sheer size of the imagery cubes encompassing the 

entire country of Djibouti and the limitations of the ODC 

computing environment, the study boundary was decreased to the 

area surrounding Djibouti city. This region had the most visible 

cropland on satellite imagery and was most effective in 

producing differentiating results over the 30-year period.   

 

Within the ODC, we ran conventional machine learning 

algorithms, including decision tree classifier, random forest 

classifier and support vector machine classifier. The training data 

consisted of a shapefile depicting 348 features of cropland / non-

cropland areas. The areas were specifically selected to capture 

the spectral variability of both classes. Class imbalance was a 

concern as there is so little cropland in Djibouti, but the two 

classes were kept as equal as possible. The imagery used in the 

models and the indices was from late June to early July each year 

to be consistent within seasonal time frame. 

 

To reduce the model complexity (and improve performance) we 

reduced the total bands from 12 down to 5 and reduced the 

cropland / non-cropland features from the initial 629 to 348. To 

improve accuracy of the final output, we calculated three band 

indices and added them to the model: Normalized Difference 

Vegetation Index (NDVI), Built-up Index (BUI), and Modified 

Normalized Difference Water Index (MNDWI). 

 

The output from the models and the indices were exported from 

the ODC sandbox and imported to ArcGIS Pro for further 

analysis. Using a raster calculator, we compared the differences 

between the span of years for each model and the indices. 

 

The ODC provided the means to manage, store and analyze the 

sheer quantity of multitemporal, multispectral image cubes for 

Djibouti during the 30-year period. Using DE Africa’s cloud-

based user computational platform significantly reduced 

computational time on the models. The sandbox provided 4 cores 

and 32G of memory. It ran completely in-browser, and all 

necessary software was provided as part of the environment, so 

no additional installation or configuration was required. 

 

 

4. RESULTS AND DISCUSSION 

The results of the processing and analysis showed both increases 

and decreases in cropped land throughout the thirty-year period., 

but the overall pattern between 1990 and 2020 was a decreasing 

trend. 

 

The decision tree model accuracy ranged from 92% to 94%. 

Support vector machine models were 91% for both years. The 

random forest models were the most accurate with a consistent 

98% accuracy. 

 
The initial results of the decision tree model (Figure 4) were 

much too inclusive given the nature of decision tree models to 

overfitting (L. Breiman 1984) and despite our efforts at balancing 

the dataset prior to fitting. The 2020 results did show a decreasing 

trend in overall vegetation (Figure 5) but was still overly 

inclusive of all vegetation.   

 

 

Figure 3. Overall workflow for the study 
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Figure 4. Initial results of the 1990 decision tree model. 

 
Figure 5. Decision tree model shows less vegetation in 2020. 

To refine the decision tree results, we calculated three indices 

(NDVI, BUI, and MNDWI) and determined the importance of 

each variable (band) to the model. Once we discovered the five 

most important features (Figure 6), we ran the models specifying 

only that subset of features. The decision tree models for all four 

years, while they did show a decreasing trend in overall 

vegetation, showed minimal evidence of differentiation between 

wild vegetation and cropland.  

 

 
Figure 6. Bands in order of importance. 

The results of the Random Forest classifier also showed a 

decreasing trend in overall vegetation from 1990 to 2020 (Figure 

7 and Figure 8) and were slightly less inclusive of wild vegetation 

as compared to the decision tree model. Despite the increase in 

accuracy, it was still not precise enough to purely differentiate 

between just cropland and all other vegetation.     

 

 

 
Figure 7. Random forest results for 1990. 

 
Figure 8. Random forest for 2020 showing less vegetation. 

 

Support Vector Machine classifier had similar results to Random 

Forest but with a lower accuracy score (91%) , clearly showing a 

decreasing trend (Figure 9 and Figure 10) in overall vegetation in 

the region, but unable to fully differentiate between cropland and 

other vegetation.  
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Figure 9. Support vector machine results for 1990. 

 

 
Figure 10. Support vector machine shows decrease for 2020. 

The NDVI results initially appeared to show a slight increase in 

vegetation from 1990 – 2020.  However, after further inspection, 

the apparent change was likely due to the differences in Landsat 

satellite eras as the initial imagery for 1990 was Landsat 5 and 

the latest imagery in 2020 was Landsat 8.  While difficult to 

determine in the greyscale output (Figure 11 and Figure 12) once 

the data was imported into ArcGIS Pro and the differences 

calculated, there was still a decreasing trend in total vegetative 

area. 

 

 

 
Figure 11. NDVI results for 1990 in greyscale. 

 
Figure 12. NDVI results for 2020 in greyscale. 

All the models and NDVI were able to show the decrease in 

vegetation very well, but the none of the models were sensitive 

enough to differentiate between actual cropland and normal 

vegetation (which is still very sparse in the region). 

 

The study was limited in that the training set only had two 

categories of area (cropland and not cropland). Cropland and 

desert vegetation have similar spectral signatures warranting a 

deeper study using ground truth (“in situ”) collection to establish 

the difference. Combining multitemporal and multispectral 

image cubes with long term climate and weather trend data would 

show a more accurate picture of what was happening with crop 

output over the study period. 

 

While the data analysis shows a decreasing trend in total cropland 

across the thirty-year study period, there are numerous variables 

to consider before drawing drastic conclusions. Even when the 

results of the analysis are completely accurate and reliable, it is 

still important to consider this is only a thirty-year glimpse into a 

country’s vegetative health.  

  

Lastly, the results showing a decreasing trend in healthy 

vegetative areas, while limited in scope as mentioned earlier, are 

worrisome enough to warrant deeper study of the region and 

vegetative health trends over time. Given the historical food 

security issues of the region, more study would be useful to 

develop a clearer picture of potential future agricultural needs of 

the country of Djibouti and its effect on the surrounding region. 
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