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ABSTRACT: 

 

Predicting within-field crop yield early in the season can help address crop production challenges to improve farmers’ economic 

return. While yield prediction with remote sensing has been a research aim for years, it is only recently that observations with the 

suited spatial and temporal resolutions have become accessible to improve crop yield predictions.  

Here we developed a yield prediction framework that integrates daily high-resolution (3 m) CubeSat imagery into the APSIM crop 

model. The approach trains a regression model that correlates simulated yield to simulated leaf area index (LAI) from APSIM. That 

relationship is then employed to determine the optimum date at which the regression best predicts yield from the LAI. Additionally, 

our approach can forecast crop yield by utilizing a particle filter to assimilate CubeSat-based LAI in the model APSIM to generate 

yield maps at 3 m several weeks before the optimum regression date. Our method was evaluated for a rainfed site located in the US 

Corn belt, using a collection of spatially varying yield data. The proposed approach does not need in situ data to rain the regression, 

with outcomes reporting that even with a single assimilation step, accurate yield predictions were provided up to 21 days before the 

optimum regression date. The spatial variability of crop yield was reproduced fairly well, with a good correlation against in situ 

measurements (R2 = 0.73 and RMSE = 1.69), demonstrating that high-resolution yield predictions early in the season have great 

potential to meet and improve upon digital agricultural goals. 

 

 

1. INTRODUCTION 

 

Ensuring food security via timely crop monitoring and accurate 

crop yield estimation from field to regional and global scale is a 

priority policy goal for many countries (Cordell et al., 2009). 

While at the national or larger scales it is possible to study crop-

climate interactions (Yu et al., 2012), accurate crop yield 

predictions at the field level earlier in the season can support 

farmers to tailor management choices of crop inputs (e.g. 

fertilizer and irrigation timing and amount (Basso et al., 2001), 

and also to estimate their net profit based on spatially explicit 

yield forecast (Tewes et al., 2020).  

Modeling dynamic changes in plant growth and development 

through crop models, and remotely sensed key canopy state 

variables from satellites are essential tools to predict crop yield. 

Complex crop models such as, for instance, the Agricultural 

Production System Simulator (APSIM) (Holzworth et al., 2014) 

and the WOrld FOod STudies (WOFOST) model (Van Diepen 

et al., 1989), can temporally and dynamically describe key plant 

processes throughout the season including photosynthesis, soil 

dynamics, biomass, and yield formation, based on weather 

conditions (i.e. daily temperature, precipitation, and down-

welling shortwave radiation), soil, and management information 

(Hoogenboom, 2000). Crop models have been increasingly 

employed for many precision farming operations and at 

different scales (Jin et al., 2018), but they are primarily 

employed for point-based applications that do not account for 

spatial variation in yield forecast. One way to bypass this 

constraint is to integrate spatial information on crop status (i.e. 

Vegetation Indices, VIs) from satellite platforms into crop 

models, which can increase the reliability and usefulness of 

these models (Huang et al., 2019).  

Satellite data has been increasingly used to monitor agricultural 

systems from space, with yield estimation being one of the 

primary goals (Lobell, 2013). Yet, fine-level yield predictions 

have been compromised by the unavailability of high 

spatiotemporal resolution images. Indeed, the main drawback of 

using satellite platforms for fine-scale yield predictions has been 

their low spatial resolutions and temporal revisit time, which 

may hide main patterns and variability that happen at finer 

spatial scales (i.e. field and within-field levels). High spatial and 

temporal resolution data is key for precision agriculture 

applications, where farm management tactics (i.e. nitrogen and 

irrigation application) represent critical control variables to 

improve yield (Aragon et al., 2018). Although previous 

literature has shown the applicability of remote sensing 

technologies for yield monitoring (Lobell et al., 2015), field-

level yield mapping for precision agricultural applications has 

not yet become widespread. In fact, there is a lack of in-field 

measurements available to assess the accuracy of remote 

sensing data, and the cost related to obtaining and processing 

high spatiotemporal resolution imagery - available from 

commercial platforms for the most part - can often be 

substantial. The combination of these factors can make remote 

sensing products unsuitable for practical applications.  
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Recent methods to translate satellite imagery into yield products 

have employed crop models to generate yield and crop variables 

(i.e. LAI, GCVI) values at the field level, which are then used to 

train a linear regression that translate observed satellite 

vegetation indices into yield. The trained regressions were 

applied to satellite images to generate yield maps both at the 

regional (Sibley et al., 2014; Lobell et al., 2015) and at the field 

scale (Jeffries et al., 2019). These applications have been useful 

for their scalability and because they do not rely on in situ yield 

observations. However, they are still constrained by the long 

satellite revisit times and coarse spatial resolution. 

Providing expected yield values as early as possible during the 

season can enable farmers to undertake early corrective 

measures to improve their yield hence their economic returns. 

One avenue to improve yield prediction efforts is to combine 

the predictive abilities of crop models with the spatial 

information retrieved from space through data assimilation 

(DA) methods. DA combines observation of a system with the 

estimates from a dynamical model to create a more accurate 

description of that system including an uncertainty estimate 

(Vetra-Carvalho et al., 2018). DA can incorporate one or 

multiple observations of model state variables during the 

current crop growing season to improve crop predictions. These 

crop predictions (in the form of spatially varying VIs) can then 

serve as a base to predict end-of-season yield through regression 

models. 

Amongst the DA methods, Ensemble Kalman Filters (EnKFs) 

are currently very popular due to their ease of filter 

implementation (Evensen, 2003). These methods employ a 

probabilistic framework and give estimates of the whole system 

state sequentially by propagating information forward in time. 

Standard EnKF is based on linear and Gaussian assumptions 

and with the increase in computational resources in the last 

decade or so, DA methods that can deal with non-Gaussian 

distribution such as particle filters became very popular 

(Carpenter et al., 1999). In contrast to the EnKF, the PF does 

not assume a Gaussian distribution for the observations nor for 

the model errors and can incorporate any probability density 

function allowing the propagation of non-Gaussian distributions 

through nonlinear models (van, Leeuwen, 2009).  

Using DA methods, different types of remote sensing 

measurements have been assimilated into crop models, 

including soil moisture (Bolten et al., 2009; Zhuo et al., 2019), 

canopy cover (Silvestro et al., 2017; Jin et al., 2020), and more 

prominently, LAI (Li et al., 2014; Huang et al., 2015; Mokhtari 

et al., 2018; Li et al., 2018; Gilardelli et al., 2019). The reason 

behind LAI’s popularity is due to its capability to effectively 

diagnose crop status, serving as an indicator of leaf abundance, 

phonological stage, and as a metric to assess diverse 

management practices. Several studies have subsequently 

proved the suitability of the Sentinel-2 (S2) multispectral 

imagery (10 m spatial resolution with a five-day revisit time) to 

assess crop status (Clevers et al., 2017), and to map within-field 

variability as a foundation for precision agriculture applications 

(Fieuzal et al., 2020). While these studies showed the emerging 

potential that satellite platforms have in advancing yield 

predictions, their spatial and temporal resolutions are still not 

high enough to properly resolve sub-field level variations that 

can be used to improve precision agriculture applications at 

smaller scales. For example, even the 5-day revisit time of 

Sentinel-2 cannot completely negate the observation gaps due to 

frequent overcast conditions, typical of subtropical and 

temperate environments.  

Recent advances in Earth Observation platforms such as 

component miniaturization and the use of reusable launch 

vehicles have enabled the development of microsatellites 

(referred to herein as CubeSats) that can provide unprecedented 

agricultural monitoring capabilities at a 3 m spatial resolution at 

daily revisit time (Aragon et al., 2021). Assimilating daily 

CubeSat products into crop models presents an opportunity to 

increase the predictive ability of the models and drive crop 

modeling advances, forecasting, and yield estimates (Ziliani, 

2022). The increased spatiotemporal resolution of these 

products can resolve fine-scale site characteristics (e.g. soil, 

topography) that can affect crop growth and development, 

especially when combined with occurring stressors such as soil 

salinity or nutrient deficiency (Franz et al., 2020). 

Here we present a novel approach for crop yield estimation by 

combining the daily and spatial explicit utility of CubeSat 

imagery with the predictive ability of crop models. Precisely, 

building on prior studies (Sibley et al., 2014; Lobell et al., 

2015), we use the APSIM crop model to simulate realistic field-

level yield and LAI data and then train a linear regression to 

translate CubeSat-derived LAI into 3 m yield maps. We further 

enhance the approach by using a particle filter to assimilate 

CubeSat LAI maps into the APSIM crop model. The 

assimilation of CubeSat imagery enables APSIM to forecast 

weeks of LAI maps which are used to predict yield - through the 

previously trained linear regression - without waiting for the 

satellite image to become available. Besides deriving the 

highest within-field resolution yield predictions to date, the 

proposed approach relies on daily satellite images that can 

potentially be assimilated into the crop model, relaxing the 

constrain imposed by satellite platforms with a longer revisit 

time. The proposed data assimilation scheme is then evaluated 

against in situ yield observations from a rainfed maize site 

located in the United States Corn belt. Our results indicate that 

the predicted yield and biophysical parameters (i.e. LAI) can be 

used in precision agricultural contexts where real-time forecasts 

of within-field conditions are required, avoiding the overhead 

time of acquiring and processing new imagery from current 

satellite platforms.  

 

 

2. MATERIALS AND METHODS 

 

2.1 The study site 

 

The study area is part of the US corn belt and is actively 

managed by the Eastern Nebraska Research and Extension 

Center (ENREC) at the University of Nebraska-Lincoln (UNL). 

Figure 1 shows the site’s location in relation to the United 

States of America (left) and the Intensive Management Zones 

(IMZ) where LAI samples were collected for validation (right) 

of the satellite product. Meteorological forcing data (air 

temperature, precipitation, and solar radiation) came from a 

weather station attached to an eddy covariance tower, part of the 

Amerifux network (ID: US-Ne3). The site’s weather is 

characterized by cold winters, hot summers, and humid 

conditions (Baldocchi et al., 2001). The US-Ne3 site is under a 

no-till management policy, with fertilizer applied before each 

planting cycle; US-Ne3 is completely rainfed and alternates 

between maize (Zea mays L.) and soybeans (Glycine max). 

Typically, sowing occurs between late April and the middle of 

May, while harvesting happens at the end of October and early 

November. This study used data from 2001 to 2019, comprising 

10 maize-growing seasons. Soil textures, layers, and other 

parameters were obtained from the US Web Soil Survey agency. 

A more detailed description of the site’s characteristics can be 

found in Suyker and Verma (2008) and Verma et al. (2005). 

Samples of LAI (m2/m2) were collected throughout the season 

every 10 to 14 days at the six IMZs shown on the right of 
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Figure 1 (Nguy-Robertson et al., 2015). Yield at 10 m spatial 

resolution was collected at the end of each growth cycle via 

harvesting tractors equipped with GPS tracking technologies.  

 

 

Figure 1. Location of the study site in the US and the Intensive 

Management Zones (IMZ) in the field US-Ne3 where LAI 

collection is performed during the crop growing season. 

 

2.2 The APSIM model 

 

APSIM is a system modeling framework that simulates the 

development of a crop through its phenological stages, leaf, 

biomass, and yield production, which are all evaluated on a 

daily time step (Wang et al., 2002). In this study, the maize 

model (APSIM-Maize version 7.9) included in the APSIM 

framework was used to simulate maize growth and development 

for the studied period in the area of interest (Section 2.1). For 

simplicity, from now on, the APSIM-Maize model will be 

referred to as the APSIM model. The model was constructed 

using as a base the CERES-Maize model (Keating et al., 1991), 

with a fundamental distinction from CERES-Maize being the 

routines that kill the crops if severe water stress is present 

during the early- to the mid-vegetative stage (Carberry and 

Abrecht, 1991). 

Meteorological forcings are key components of the model to 

accurately drive these processes and simulations throughout the 

growing season. Maximum and minimum daily temperatures,  

daily rainfall, and solar radiation are needed to run the model. 

Management interventions generally include planting 

information such as crop type, planting date, depth, density, and 

nutrients applications (i.e. tillage, fertilizer, and irrigation). 

APSIM partitions phenology into sub-phases. The length of 

each phase is affected by temperature, photoperiod, and 

nutrients deficiencies, such as nitrogen and water-limited 

conditions. When the latter is present, the expansion of the 

leaves diminishes and so is their capacity to capture solar 

radiation (Massignam et al., 2009). Grain yield is simulated as 

the product of grain size and grain number. The latter is 

estimated using the function developed by Edmeades and 

Daynard (1979) which considers the average daily growth rate 

per plant between tassel initiation and the start of grain filling 

and the potential grain number per ear. A complete overview of 

the APSIM model and its modules are provided in Keating et al. 

(2003). 

 

2.3 LAI estimation using Planet CubeSat 

 

The surface reflectance product used in this study comes from 

harmonizing and gap-filling CubeSat imagery from the Planet 

satellites constellation, each equipped with a four-band camera 

(blue, green, red, and near-infrared) in a 3U configuration. The 

CubeSat images were harmonized to Landsat 8 and Sentinel-2 

surface reflectance (SR) data, which was computed using the 

FORCE methodology (Frantz, 2019), using the CubeSat Spatio-

Temporal Enhancement Method (CESTEM) (Houborg and 

McCabe, 2018a). CESTEM is a machine learning approach that 

constructs relationships between CubeSat imagery and a high-

quality radiometric reference (with a coarser spatiotemporal 

resolution), in this study that reference was the FORCE SR 

data. Additionally, CESTEM uses Nadir Bidirectional 

Reflectance Distribution Function-Adjusted Reflectance 

(NBAR) data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) when there are no near-coincident 

reference images and for gap-filling purposes. Further details on 

the CESTEM methodology for radiometric normalization can 

be found in Houborg and McCabe (2018b).  

The LAI imagery was generated by combining CESTEM with 

reference LAI data from the regularized canopy reflectance 

model (REGFLEC), a multi-step regularization approach that 

retrieves LAI from satellite reflectance data (Houborg and 

McCabe, 2016). REGFLEC used the FORCE SR data to 

produce LAI images at 30 m resolution, which served as the 

reference for the CESTEM process (i.e., CESTEM constructed 

relationships between the CubeSat imagery and the LAI from 

REGLEC) to derive 3 m daily images of LAI. A more detailed 

description of the CESTEM-LAI methodology is presented in 

Houborg and McCabe (2018c), and Houborg and McCabe 

(2018a).  

 

2.4 Estimating crop yield using regression 

Empirical models such as linear regressions can be rapidly 

applied to VIs derived from satellites to predict crop yield at the 

end of the season. The regression approach uses the APSIM 

crop model to calibrate a simple regression that correlates 

simulated yield to a simulated VI (Clevers, 1997; Sibley et al., 

2014; Lobell et al., 2015). The trained regression can then be 

used to transform a VI from satellite into yield. The performed 

APSIM simulations spam a realistic range of meteorological, 

soil, and management practices in the region based on previous 

literature (Lobell et al., 2015; Jeffries et al., 2019), and 

information obtained from ENREC (Section 2.1). Since maize 

was considered for the analysis, simulations for each odd year 

from 2001 to 2017 were run (US-Ne3 grows maize on altering 

years), generating daily model outcomes including LAI and 

yield. A total of 7776 APSIM runs were performed based on 

multiple combinations of management inputs (fertilizer rates, 

sowing dates, sowing densities) and model parameters (i.e. 

cultivar thermal times). Daily meteorological data were used to 

initialize the model for each year, whose values were available 

from an in situ weather station, and include max and min 

temperatures, solar radiation, and precipitation.  

The simulated yield and the simulated VI (i.e. LAI) can then be 

combined to train a simple regression model: 

 

                   (1) 

 

where a and b represent the regression coefficients to be 

calibrated, and VI is the vegetation index map employed to 

predict yield at a specific date t. The proposed methodology 

does not rely on any field yield measurement but only on the 

crop model's ability to relate model variables (in this case LAI) 

to model outputs (yield).  

A separate regression is created for each day of the season with 

the VI of that day as a predictor and the yield at the end of the 

season as a response. The training of the regression provides the 

coefficient estimates for each day and also information about 

the model fit (i.e. R2) which is used to decide the day of the 

season (referred to as “regression date”) that is more suited to 

predict yield because of the highest correlation between 

simulated VI and simulated yield. Once the date with the 

highest correlation is identified, the regression can be applied 

either to satellite-derived VI or - as our novel method proposes 

- to forecasted VI generated using a data assimilation method 
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(see Section 2.5 for more details). The regression can be applied 

on a pixel-by-pixel basis, which enables to obtain intra-field 

predictions of yield.  

Differently from previous literature where the regression was 

created yearly considering meteorological data for that year 

(Sibley et al., 2014; Lobell et al., 2015; Jeffries et al., 2019), 

here we propose to use previous climate information (i.e. data 

from 2001-2017) to infer a regression that can be used to assess 

the reliability of the framework in later years (e.g. 2019). In real 

applications, weather is generally unknown for the full coming 

season, or if provided not trustworthy for a 6 months growth 

cycle.  

 

2.5 Assimilating CubeSat LAI into APSIM using a particle 

filter 

Particle filters (PFs) approximate the probability distribution of 

the model state using a number of particles. PFs are fully non-

linear data assimilation techniques in which samples are created 

from the prior after which importance sampling is used to turn 

them into samples from the posterior where each sample is 

weighted with its likelihood value (Vetra-Carvalho et al., 2018). 

When an observation becomes available, its information content 

can be employed to compute the particle weights and a new 

weighted estimate of the model variable (i.e. LAI in our case) 

can be computed. This concept is referred to as sequential or 

Bayesian, importance sampling. 

Let  be each LAI pixel value state of the system integrated 

forward in time and k be the time of the current observation, 

then the stochastic forward model for each particle i = 1….N is 

defined as: 

 

           ,                (2)      

                          

where M is the deterministic crop model APSIM,  are 

random terms representing the Gaussian distributed model 

errors with mean zero and covariance matrix Q. Now let  

be the mean of N particles. The weight  for each LAI pixel 

value  simulated by the particle i at time k of the satellite 

acquisition is calculated as: 

 

                       (3)   

         

The observed LAI value (i.e. each pixel  of the satellite 

observation at time k) , with its standard deviation  which 

quantifies the uncertainty of the observation, represents the 

discrete observation at a specific time step k. Finally, all the 

weights  are normalized by the sum of the weights of all 

particles as: 

 

 .                             (4)  

                                                                    

The probability obtained with the weights allows to compute an 

expected weight  of the LAI values  called herein , for 

the assimilation time-step : 

 

 = .                            (5)   

                                                                    

It should be noted that in Bayesian importance sampling, only 

the weights of the particles are updated but not the model state 

variables. The expected weights are assumed to be valid from 

time  until the time of a new observation where new weights 

are computed, keeping memory of the previous assimilation 

time steps. 

An ensemble of particles was generated by running the APSIM 

model with different initial conditions. The latter were chosen 

based on previous literature (Lobell et al., 2015) and based on 

their influence on the model outputs (Ziliani, 2022). As for the 

generation of the ensemble in the regression step (see Section 

2.4), input variables representing soil conditions and 

management practices were modified to generate the particles. 

In particular, 100 particles were generated by running the model 

with different soil characteristics, planting dates, and rates of 

fertilizer applied, whose ranges of variation were set based on 

typical farming operations at the ENREC facilities. 

Meteorological data for the year 2019 were used to run model 

simulations.  

 

 

3. RESULTS 

 

3.1 Remotely sensed LAI 

 

The efficacy of the particle filter in generating good estimates of 

the model’s state variable LAI and end-of-season yield is highly 

dependent on the quality of the observation assimilated into the 

model. As such, obtaining high-quality input data from satellites 

is paramount for driving the assimilation step. Moreover, to 

achieve intra-field predictions of yield, high spatial resolution 

images are needed.  

This study uses a gap-free LAI product generated from a 

combination of Planet CubeSat imagery and the CESTEM 

algorithm to achieve a high spatiotemporal dataset (daily and at 

3 meters resolution; see Section 2.3 for the description of the 

approach) starting from day of year (DOY) 100 to DOY 320 

2019 (from April 10 till November 16).  

The accuracy of the CubeSat-derived LAI product was assessed 

by comparing them against the in situ LAI collected 

measurements at the IMZs (see Figure 1 for the locations of the 

IMZs). Figure 2 displays the daily CubeSat LAI at the same 

location (i.e. latitude and longitude) of the IMZ 1. Generally 

speaking, the CubeSat observations well reproduce the LAI 

trend with the majority of the values being within the range of 

the in situ LAI and in proximity to their average values. The 

quick development of the leaf area index observed from DOY 

170 and 200 is well reproduced by the CubeSat LAI.  

 

 

Figure 2. CubeSat-derived LAI values (orange dots) at the 

coordinate of the intensive management zone 1 and their 

comparison with the LAI in situ observations (blue bars). A 

sequence of CubeSat LAI maps at 3m is shown at the bottom. 

During this rapid LAI growth phase, the plant stalk is 

characterized by substantial development, where leaf area and 

other plant components (i.e. canopy height) increase 
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dramatically (Ziliani et al., 2018). The first part of the 

reproductive stage (in this case from DOY 200 to 240), is 

characterized by an LAI response that remains more or less 

stable (with values around 4.5 m2/m2,). Following this flattened 

LAI period, the crop reaches physiological maturity by 

accumulating above-ground biomass while reducing leaf area. 

Figure 2 (bottom) also shows an LAI sequence (every 5 days) 

where the 3 m spatial resolution of the CubeSat LAI product 

depicts the spatial heterogeneity within the US-Ne3 site; this 

time series corresponds to the LAI decreasing period from DOY 

240 to 270. In this 30-day window, the field sees a rapid 

contraction in leaf area, which decreases from 4 m2/m2 to almost 

zero.  

A recent study that assessed the performance of the CubeSat 

LAI product in the same area (Johansen et al., 2021) showed a 

correlation (R2) of 0.92 between CubeSat LAI and in situ LAI 

with fairly low rRMSE and RMSE values (13 % and 0.4 m2/m2, 

respectively).  

 

3.2 Estimating yield using a simple regression 

 

The regression model (Eq. 1) was trained by running crop 

model simulations for the study years using daily weather data 

gathered from a local station and then applied to predict yield 

from CubeSat-derived LAI. From model simulations, it was 

identified when the LAI is the best predictor of yield, namely on 

DOY 212 (July 31), when a maximum R2 of 0.72 was identified.  

The identified regression can then be applied on a pixel basis 

(i.e. to all pixels of the satellite map) to retrieve a yield map for 

the end of the season. Although this approach has shown some 

potential in predicting yield at large and smaller scales, it still 

relies on a satellite observation concident or close to the date of 

maximum correlation. Indeed, the regression can be applied to 

the satellite image only when this becomes available from the 

satellite overpass. To overcome this constraint, here we 

developed a procedure that uses a particle filter to assimilate 

CubeSat imagery into the model APSIM and then forecast the 

LAI map until the day of maximum correlation (DOY 212). 

Once the LAI forecast until DOY 212 is computed, the yield 

can be computed by applying the previously trained regression 

to the LAI forecast instead of the actual satellite LAI, permitting 

the prediction of yield in advance, even before the satellite 

image becomes available.  

 
3.3 Assimilating LAI into APSIM with a particle filter 

 

To assess the ability of the particle filter in predicting the LAI 

maps, different assimilation dates were evaluated to understand 

how long in advance is it possible to generate a reliable LAI 

map that can be used to predict the yield. Here we assume three 

different satellite acquisition dates: one, two, and three weeks 

prior to the regression date. Figure 3 (top) shows the 

assimilation results for the three weeks assimilation period. 

The acquisition day of the CubeSat image (which corresponds 

to the assimilation day) is shown as a blue vertical line, while 

the regression date is depicted as a red vertical line. The results 

show that all the weighted mean LAI predictions (blue dots) 

clearly shift towards the mean of the observations (orange dots) 

after assimilation. Assimilating up to three weeks before the 

regression date ensures accurate LAI predictions throughout the 

forecast period. The root mean square error of the weighted 

mean against the observation is maintained below 0.4 m2/m2 if 

the assimilation is performed up to three weeks before the 

regression date. 

The particle filter DA approach is carried out on a pixel-by-

pixel basis allowing the forecast of spatially varying LAI maps 

for each day in which the data assimilation forecast step is 

performed. As such, an accurate forecast of LAI maps is key to 

properly estimating intra-field yield. Figure 3 (bottom) displays 

21 days of LAI forecast (with a 3 days cadence) generated after 

the assimilation of one CubeSat image at DOY 191 (three 

weeks before the regression date) and compared against the 

corresponding CubeSat LAI observations. Overall, the LAI 

predictions show a high level of agreement when compared to 

the CubeSat LAI for almost all the forecast period, with a 

slightly less defined pattern visible only at the end of the 

forecast period (i.e. DOY 212).  

 

 

Figure 3. LAI particles (grey lines) produced by APSIM whose 

spread includes the CubeSat LAI observations (orange dots). 

The green dots depict the particles' standard mean, while the 

blue dots stand for the daily LAI forecast from the day of 

assimilation (DA) until the regression date (RD).  

 

3.4 Assimilating CubeSat LAI accurately maps within-field 

yield 

 

The results show that particle filter and regression-based yield 

estimates are accurate in reproducing the spatial variability of 

yield, with correlation values that range from 0.68 (results with 

the assimilating three weeks prior to the regression date) to 0.73 

(results with the assimilating up to one week before the 

regression date). The correlation was computed on a pixel-by-

pixel basis between the in situ yield and the predicted ones. The 

latter, at 3m resolution, were upscaled to the resolution of the 

measured yield (10m) to allow a consistent datasets comparison 

which comprises a total of 74,646 pixels. The predicted yield 

shown in Figure 4 demonstrates that the proposed approach 

reproduced fairly well the sub-field yield variations, suggesting 

that the estimates are accurate at the sub-field scale. 

Assimilating closer in time to the regression date (Figure 4, 

forecast of 7 days) produces more accurate sub-level yield 

predictions compared to earlier assimilations (2-3 weeks before 

the regression date), both in terms of captured spatial variations 

and in terms of actual yield values. Assimilating two and three 

weeks prior to the regression date still allows the prediction of 

reliable yield maps with sub-field variability that is similar to 

those of the measured yield, albeit with an R2 decreasing to 0.7 

(RMSE = 1.71) and 0.68 (RMSE = 1.82), respectively.  

It can be noted that although the spatial variation of yield is 

fairly well replicated, all the predicted yields are unable to 

reproduce the lowest and highest values that are present in situ 

yield (such as the darker blue and red patches of the observed 
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yield in Figure 4). A possible explanation is that the 

assimilation is performed using CubeSat-derived LAI 

observations, which might not be the best predictor for end-of-

season yield. Indeed, it appears that the index saturates (to a 

certain extent) the yield values within the field, and cannot 

reproduce the highest and lowest values.  

 

 

Figure 4. Observed against predicted yield after the 

assimilation of one satellite image 7, 14, and 21 days before the 

regression date. 

 

 

4. DISCUSSION 

Our results demonstrate how CubeSat data can be integrated 

into the APSIM model to improve yield prediction estimates. 

Due to the spatial resolution of the CubeSat data (3 m), the 

within-field variability of the maize field was well represented. 

Additionally, the high temporal resolution of the CubeSat 

constellation allows for daily and cloud-free data that can be 

readily integrated into APSIM or other crop models for yield 

prediction. The novelty of our approach lies in the assimilation 

using a particle filter, where only the particle weights are 

updated with additional observations, resulting in a new 

weighted estimate of LAI after one assimilation step. Figure 3 

shows that the particles generated during the APSIM runs 

showed that the LAI dynamics were mostly parallel during the 

season. This behavior is a result of limiting the perturbations to 

the initial conditions (i.e., planting dates, soils, fertilizer 

amounts, and cultivar traits) and to the driving model 

parameters (i.e., climate conditions). Our results demonstrate 

that assimilating a single observation up to three weeks before 

the regression date led to accurate intra-field yield predictions. 

While only LAI was assimilated, it is important to note that 

integrating other vegetation indices or data from other remote 

sensing platforms (e.g., other satellites, remotely piloted 

aircraft) could strengthen the predictive power and provide 

further insights into the crop’s development (Franz et al., 2020). 

Finally, even though the results of this research showed how to 

employ high spatiotemporal resolution CubeSat imagery for 

yield prediction without the need for ground calibration, further 

research is necessary to test the scalability of the proposed 

framework. Indeed, changing the environment or management 

practices could lead to variations in crop canopy, and 

consequently crop yield, which could limit the applicability of 

yield prediction approaches (Prasad et al., 2006).  

 

 

5. CONCLUSION 

 

This paper discussed the utility of using a particle filter as a tool 

to integrate high spatiotemporal resolution CubeSat LAI maps 

into the APSIM model for corn yield prediction. APSIM was 

used to derive a regression model that was subsequently applied 

to an LAI forecast after a single assimilation step. The results of 

this study are in good agreement with the measured yield. More 

importantly, the presented framework forgoes the need to 

employ on-site data to calibrate the APSIM-based regression 

model while still delivering accurate yield prediction results 

even with a single assimilation step. Future research should 

focus on further improving yield estimates with other remote 

sensing data, such as evapotranspiration. Furthermore, the 

influence of the LAI assimilation window on yield estimation 

should be evaluated.  
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