
TYPHOON DAMAGE MAPPING USING NORMALIZED DIFFERENCED  

SPATIAL AUTOCORRELATION AND PLANETSCOPE IMAGE 
 

A. C. Blanco 1, 2 
 

1Philippine Space Agency, UP Diliman, Quezon City, Philippines – ariel.blanco@philsa.gov.ph 
2Department of Geodetic Engineering, University of the Philippines Diliman, Quezon City, Philippines – acblanco@up.edu.ph 

 

Commission III, WG IVa 

 

 

KEY WORDS: Damage assessment, LISA, Local Moran’s I, change detection, building damage 

 

 

ABSTRACT: 

 

Damages to built and natural environments are essentially changes that needs to be detected and quantified. This is particularly true 

for the change detection approach. While the use of vegetation indices is effective for such assessment in natural or vegetated areas, 

the use of built-up indices does not yield useful results. This is because there is usually no significant reduction in materials. 

However, typhoon-damaged buildings are usually characterized by a change in form, shape, color, and texture. In this study, we 

examined the use of local spatial autocorrelation (LSA) to evaluate the level of damage to buildings. In particular, the local Moran’s I 

was used, and an index called the normalized difference spatial autocorrelation (NDSA) was developed. Similar with other indices, 

the values are within the range of -1 to 1. NDSA using local Getis-Ord Gi and local Geary’s C were also generated. With the 

observation that LSA generally decreases due to damages (especially to manmade structures), positive NDSA identifies the damage 

areas. The magnitude of the values corresponded to the level or degree of damage sustained as interpreted from very high-resolution 

satellite image. It was noted that the manual tagging of damages had missed buildings which are clearly damaged or destroyed based 

on the visual comparison of pre- and post-typhoon satellite images. This illustrates the value of the NDSA not only to assess damage 

on its own but also for guiding manual tagging from image and prioritizing post-disaster needs assessment and recovery operation. 

 

1. INTRODUCTION 

Typhoons typically bring destruction, including damages to 

properties and loss of lives. Mapping and assessment of 

damages to built and natural environments is critical to further 

understanding the destructive nature of typhoons and effectively 

allocate efforts towards relief and recovery. Several studies on 

mapping damages due to typhoons and other natural calamities 

(e.g., earthquake) have been undertaken (see Planck, 2014, 

Antonietta et al., 2015, Boschetti et al., 2015, Hoque et al., 

2017, Adriano et al., 2019, Xu et al., 2019, Jimenez-Jimenez et 

al., 2020, McCarthy et al., 2020, Tay et al., 2020, Liu et al., 

2021). While Hoque (2017) noted that the use of synthetic 

aperture radar (SAR) in tropical cyclone disaster management 

research was limited, we note that with Sentinel-1 being freely 

available, the utilization of SAR images is increasing. This is 

largely due to the all-weather capability of SAR systems. 

However, as noted by Antonietta et al. (2015), optical images 

are preferred for high level-of-detail damage assessments and 

the only option when visual interpretation must be utilized for 

post-typhoon assessment. Visual interpretation for damage 

mapping is time-consuming but nonetheless relatively easy 

when very high-resolution (submeter) images are used. 

However, as pointed out by Xu et al. (2019), “manual 

digitization is labor-intensive, requiring trained image analysts, 

is unsuitable for large areas, and is prone to inconsistencies 

related to human errors due to fatigue or quality control”. The 

task becomes much more difficult when applied to high-

resolution (resolution of a few meters) images (e.g., 

PlanetScope, RapidEye). There is the need to develop a 

methodology for assessing damage using such images as they 

become pervasive and more available. 

 

Recent works have investigated the use of machine learning and 

deep learning in building damage assessment. Typically, the 

objective is to map damage buildings using a single image 

acquired post-disaster. This is exemplified by the work of Xu et 

al. (2019) where WorldView 2 and 3 images were utilized. 

PlanetScope imagery and artificial intelligence has been used 

for extracting building inventory information (Kaplan,  Kaplan, 

2021) and assessing building damage (Adriano et al., 2019). 

The latter work utilized PlanetScope images in a data fusion 

manner which can be limiting for user with no access to other 

datasets. In terms of damage assessment, particularly for 

buildings, there are only a few studies conducted on the use of 

PlanetScope images.  

 

Change detection as an approach for damage assessment is still 

considered a viable way to provide needed information on the 

extent and severity of damages. However, care must be taken as 

images immediate available after an event “may have variations 

in illumination due to cloud cover, different viewing angle 

compared to pre-event images, and spatial co-registration 

variations leading to difficulties in identifying structural 

damages, changed or affected areas by directly comparing 

thematic maps” (Vijayaraj et al., 2008). To address these, 

various studies have utilized structural and textural features 

which are not significantly affected variations in conditions pre- 

and post-events, among others. These features include local 

binary pattern, local edge pattern, and Gabor texture features 

(see Vijayaraj et al., 2008) and object-level homogeneity index 

(see Liu & Li, 2019). Spatial autocorrelation, the correlation 

among values of a variable due to the relatively close locational 

positions on a two-dimensional surface (Griffith, 1987), has 

been used in change detection studies (see Zhou et al., 2016, 

Mondini, 2017). 

 

In this study, the use of PlanetScope image for damage mapping 

was explored using local indicators of spatial autocorrelation. 

The central and southern parts of the Philippines was heavily hit 

by Typhoon Rai (local name: Odette), a category 5 typhoon. 

Image search indicated that there are available useable 

PlanetScope images a few days after the typhoon. This effort 

addresses the need for data and information on damages. 
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1.1 Study Area 

Talisay City in the island province of Cebu was chosen as the 

study are due to the availability of (1) PlanetScope image (2) 

other reference datasets such as very high-resolution satellite 

image, and (3) damage taggings provided by the United Nations 

Satellite Center (UNOSAT) and United Nations Institute for 

Training and Research (UNITAR).  

 

 
 

Figure 1. Pre-typhoon and post-typhoon PlanetScope images, 

acquired on 30 November 2021 (top) and 22 December 2021 

(bottom), respectively, covering portion of Talisay City. Note 

the degree of damages to the natural and built environments and 

how these are captured by spectral and textural changes. The 

crosses are damage taggings from UNITAR/UNOSAT: red 

(damaged), yellow (potentially damaged). 

 

Two relatively cloud-free PlanetScope (reflectance) images of 

Talisay City acquired on 30 November 2021 (pre-typhoon) and 

22 December 2021 (post-typhoon) were used. These were 

obtained from Planet as part of their support to research and 

development. Figure 1 shows these two images of the part of 

Talisay City. The following can be noted: illumination is 

different between the two images, damages in vegetation are 

clearly seen through spectral (color) changes, and damages in 

structures (buildings, houses) can be inferred from changes in 

the spatial pattern of colors. 

 

 

2. METHODOLOGY 

Damages to built and natural environments are essentially 

changes that needs to be detected and quantified. This is 

particularly true for the change detection approach. While the 

use of vegetation indices is effective for such assessment in 

natural or vegetated areas, the use of built-up indices does not 

yield useful results. This is because there is usually no 

significant change or reduction in materials. However, typhoon-

damaged buildings are usually characterized by a change in 

form, shape, color, and texture.  

 

Figure 2 illustrates the methodology used in this study. At least 

two PlanetScope images are selected, one pre-typhoon and 

another which is post-typhoon. The post-typhoon image is 

typically more challenging in terms of availability, quality, and 

varying amounts of cloud cover, among others. Post-typhoon 

images can be processed as they become available to be able to 

complete the assessment of damages in the entire municipalities 

and cities of interest. 

 

 
 

Figure 2. Methodological flow diagram to assess damage to 

buildings using bi-temporal PlanetScope images and normalized 

difference spatial autocorrelation (NDSA). 

 

Each image is subjected to Principal Component Analysis 

(PCA). Local Indications of Spatial Autocorrelation (LISA) 

such as Moran’s I, Geary’s C, and Getis Ord are then calculated 

with the first Principal Components (PCs) as separate inputs. 

The normalized difference spatial autocorrelation is computed 

and examined together with available damage data (e.g., 
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damage taggings from very high-resolution satellite images, 

post-typhoon field assessments if available) 

 

2.1 Principal Component Analysis 

Principal component analysis (PCA) was applied separately to 

the pre-typhoon and post-typhoon images. PCA is data 

dimensionality reduction technique, transforming the originally 

larger dataset into a smaller dataset whose components are 

uncorrelated (Jolliffe, Cadima, 2016). These resulted to four PC 

bands, representing uncorrelated information about the area. 

The first Principal Component (PC1) image essentially 

represent a greyscale version of the combination of most 

information contained in the original four bands of the 

PlanetScope images. Subsequent operations were conducted 

using PC1 images only. 

 

2.2 Normalized Difference Spatial Autocorrelation 

In this study, the use of spatial autocorrelation (SA) to capture 

and quantify these changes between two PlanetScope images 

(pre-typhoon and post-typhoon) was examined. The concept of 

normalized differenced spatial autocorrelation (NDSA) is 

introduced. Local SA is quantified using local Moran's I for 

image 1 (pre-typhoon) and image 2 (post-typhoon). The 

Moran’s I index examined the differences in data values 

between neighboring pixels to the standard deviation. This 

provides a measure of local homogeneity. The Moran’s I ranges 

from -1 and +1, where -1 indicates strong negative 

autocorrelation (i.e., there is high variance in pixel values within 

the neighborhood considered, patters appears like a 

checkerboard), 0 means the values are spatially uncorrelated 

(i.e., pixel values are random), and +1 points to a strong spatial 

positive autocorrelation (i.e, nearby observations have similar 

values; clusters of similar values) (Legendre, Legendre, 1998, 

Jolliffe, Cadima, 2016). This Local Indicator of Spatial 

Autocorrelation (LISA) statistic (see Anselin, 1995) was found 

to be sensitive to slight differences in pixel values and can 

identify statistically significant spatial outliers (Liu et al., 2021). 

NDSA is the calculated as the difference between the two local 

Moran's I (pre-typhoon - post-typhoon) divided by their sum. 

The use of other LISA statistics, namely, local Geary’s C (see 

Anselin, 1995, Anselin, 2019) and local Getis Ord (see Getis, 

Ord, 1992, Ord, Getis, 1995), was also examined. All were 

calculated using the Queen’s rule, which takes into 

consideration all the 8 neighboring pixels. In this study, the 

evaluation of the effect of increasing lags was not considered 

yet as the interest is on detecting damage in as much detail 

possible. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Principal Component Images 

Figure 3 shows the principal component images generated by 

PCA. Note that damages can be identified visually as change in 

color, particularly for severely or completely damaged 

structures. In the first PC images, the damaged buildings can be 

identified by looking at, generally, the reduction in brightness 

values. However, the damages and their variation in terms of 

“severity” can be better identified by utilizing textural 

information. 

 

It should be noted that the damage taggings are not exhaustive. 

Due to several reasons (e.g., cloud cover, poor image quality), 

several damaged buildings may have not been tagged. We can 

see this in Figure 3, where there are discernible changes but 

were not tagged as damaged of potentially damaged. 

 

 
 

Figure 3. False color composite based on RGB PC3-PC1-PC2 

(top) and PC1 images (bottom) corresponding to the pre-

typhoon (left) and post-typhoon (right) images. Damage 

buildings and other areas can be seen as change in color and 

texture. 

 

3.2 LISA and NDSA layers 

The layers for local Moran’s I, Getis-Ord Gi, and Geary’s C for 

pre- and post-typhoon are shown in Figure 4. Local Moran’s I 

values for damaged buildings are lower compared to those of 

buildings which are not impacted significantly. This indicates 

reduced homogeneity of values within the spatial neighborhood 

considered (spatial lag = 1). Intact roofs are expected to be 

homogeneous as values are similar due to same materials, same 

color, same orientation, and other possible cause of relatively 

high homogeneity. As the roof and other parts of a building 

becomes damaged, surfaces may get more deformed and other 

material may be exposed. These results to a more heterogenous 

set of pixel values and therefore, lower local Moran’s I. 

 

Based on the local Getis-Ord Gi images shown in Figure 4, 

similar observations can be made. Reduction in local Getis-Ord 

Gi values can be used to identify affected areas. However, in 

contrast with the local Moran’s I, this LISA statistic can also 

identify clusters of high-low values and clusters of low-high 

values. This, as it relates to degree and nature of damage, will 

have to be explored further in another study. 

 

The local Geary’s C layers appear different compared to local 

Moran’s I and local Getis-Ord Gi (Figure 4). Boundaries and 

edges have high values of Geary’s C. These are areas of high 

dissimilarity or negative spatial autocorrelation. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1077-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1079



 

 

 
Figure 4. LISA layers for pre-typhoon and post-typhoon using 

Moran’s I (top), Getis-Ord Gi (middle), and Geary’s C 

(bottom). 

 

 

 

 
Figure 5. NDSA layer using local Moran’s I: >0-0.2 (green), 

0.2-0.4 (blue), 0.4-0.6 (yellow), 0.6-0.8 (orange), 0.8-1.0 (red). 

Green to red indicates increasing levels of damage. 

 

 

Figures 5 to 7 show the NDSA layers based of the three LISA 

statistics. The higher levels of damage are show in red and 

orange. Overall, the general spatial distributions of the various 

levels of damage appear similar. The NDSA local Moran’s I 

(Figure 5) and NDSA local Getis-Ord Gi (Figure 6) are highly 

similar with the latter appearing to be a regionalized version od 

the former. On the other hand, more granularity can be seen in 

NDSA local Geary’C (Figure 7). Note that there are identified 

areas (blue and green) in NDSA local Moran’s I and NDSA 

local Getis-Ord Gi that are not capture in the NDSA local 

Geary’s C. 

 

 
Figure 6. NDSA layer using Getis-Ord Gi: >0-0.2 (green), 0.2-

0.4 (blue), 0.4-0.6 (yellow), 0.6-0.8 (orange), 0.8-1.0 (red). 

Green to red indicates increasing levels of damage. 

 

 

 
Figure 7. NDSA layer using local Geary’s C: >0-0.2 (green), 

0.2-0.4 (blue), 0.4-0.6 (yellow), 0.6-0.8 (orange), 0.8-1.0 (red). 

Green to red indicates increasing levels of damage. 
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3.3 Correspondence between NDSA and Level of Damage 

With the observation that SA generally decreases due to 

damages (especially to manmade structures), positive NDSA 

identifies the damage areas. Figure 2 shows the NDSA-based 

damage assessment map generated from the pre- and post-

typhoon PlanetScope images. The points representing manually 

tagged damaged and potentially damages buildings are also 

shown. These were provided by UNITAR/UNOSAT. In 

general, the points coincided with positive values of NDSA. 

Moreover, the magnitude of the values corresponded to the level 

or degree of damage sustained as interpreted from very high-

resolution satellite image.  

 

In Figure 3, we can see that yellow to red areas in the NDSA 

maps indicate severe damage to destruction of the structures. 

The blue and green areas represent those which are relatively 

less damaged. It is interesting to note that the manual tagging of 

damages had missed buildings which are clearly damaged or 

destroyed based on the visual comparison of pre- and post-

typhoon satellite images. This illustrates the value of the NDSA 

not only to assess damage on its own but also for guiding 

manual tagging from image and prioritizing post-disaster needs 

assessment and recovery operation. 

 

In this study, the NDSA was applied to the entire image, that is, 

NDSA was computed also for the vegetation areas and other 

natural features. For the natural environment, the absolute value 

of NDSA indicate corresponding degrees of damage based on 

visual interpretation of very high-resolution satellite image. 

Damages to specific feature type or land cover class can be 

easily carried out using thresholding of indices such as the 

normalized difference vegetation index (NDVI) and the 

normalized difference built-up index (NDBI). 

 

3.4 Limitations 

The approach requires that pre- and post-damage images. This 

may pose as problem in some cases where pre-damage images 

are not available. Saito and Spence (2004) recognized this by 

developing a damage assessment method that only utilizes post-

damage image.  

 

 

4. CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

Through NDSA, damaged (high NDSA values) and potentially 

damaged areas (relatively low NDSA values) were mapped. It is 

apparent that the magnitude of NDSA values can be used as 

measure of the degree of damage. Each of the LISA statistics, 

namely, Local Moran’s I, local Getis-Ord Gi, and local 

Geary’C, can be used as basis for the NDSA. However, 

considering their complementarity with each other, they can all 

be used for guiding the identification of damaged areas 

considering “severity” levels.   

 

4.2 Future Work 

Further work is being done to examine values of NDSA in 

damages built-up and natural/vegetated areas. More damage 

taggings are needed to quantitatively assess NDSA ranges vis-à-

vis damage levels/severity. Other local measures of 

autocorrelation can be further evaluated. As mentioned, local 

Figure 8. Damage assessment layer (middle) based on NDSA local Moran’s I (red: 0.8-1.0, orange: 0.6-0.8, yellow: 0.4-0.6, 

blue: 0.2-0.4, green: >0-0.2) derived from pre-typhoon and post-typhoon PlanetScope images covering portion of Talisay 

City. Images at the second row are zoom-ins of area within red box on images in the first row. 
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SA at various spatial lags should also be examined. However, 

the sizes of the features of interest (e.g., buildings and houses) 

must be considered so as not to make the interpretation of 

NDSA difficult with the combination of built and non-built 

features in the calculation of SA. Textural measures (e.g., grey 

level co-occurrence matrix) can also be explored. The work of 

Lui and Li (2019) seems promising for application to 

PlanetScope images as well. 

 

As spatial autocorrelation and other measures evaluation 

structure and texture can be affected by image quality, 

conditions during image acquisitions, it would be interesting to 

assess the impact of these so that the robustness of these indices 

can be tested. More importantly, it would be good to reduce the 

effects of poor image quality resulting from various factors 

including environmental conditions. 
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