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ABSTRACT: 

 

Snow avalanches are among destructive hazards occurring in mountainous regions and spatial distribution (susceptibility) of their 

occurrences needs to be considered for spatial planning and disaster risk mitigation efforts. The susceptibility assessment is the first 

step in avalanche disaster management and can be carried out using high resolution geospatial data and machine learning (ML) 

algorithms. In this study, we have assessed the snow avalanche susceptibility in Davos, Switzerland using an inventory delineated on 

satellite imagery in a previous study. The conditioning factors used for the avalanche susceptibility assessment include elevation, slope, 

plan curvature, profile curvature, aspect, topographic position index, topographic ruggedness index, topographic wetness index, land 

use and land cover, lithology, distance to road, and distance to the river. Two ML algorithms, the logistic regression (LR) and the 

random forest (RF), were comparatively assessed using validation data split from the training data (30/70). The prediction performances 

of both models were assessed based on the area under the receiver operating characteristic curve (ROC-AUC) value. Although the 

AUC value obtained from the LR method was relatively low (0.74), the value obtained from the RF (0.96) demonstrated high 

performance and usability of this approach. The results indicate that the RF method can successfully produce an avalanche 

susceptibility map for the region, although potential improvements may be possible by investigating various input features and ML 

algorithms as well as by classifying the starting and runout zones of the avalanche data separately. Furthermore, the accuracy is 

expected to increase by using a larger training dataset.  

 

 

1. INTRODUCTION 

Snow avalanches are among widely observed natural hazards 

affecting human life, economy, infrastructure, vegetation, and 

geomorphology in mountainous and cold regions. A snow 

avalanche is defined as a rapidly moving mass of snow on steep 

slopes (Schweizer et al., 2003).  Snow avalanche susceptibility is 

the spatial probability for avalanche occurrence. Avalanche 

susceptibility assessment is the first and essential stage of the 

hazard and risk assessment for disaster management and 

mitigation.  

 

Scientific analysis of snow avalanches has become crucial to 

mitigate risks through modeling, mapping, visualizing, and 

monitoring of susceptible regions with the help of Geographic 

Information Systems (GIS) and remote sensing (RS) (Yilmaz, 

2010; Kumar et al., 2016). Field-based studies are limited by the 

high-risk exposure and can be time-consuming due to the snow 

mass instability and adverse weather conditions, compared to the 

GIS and remote sensing-based approaches (Eckerstorfer et al., 

2016). On the other hand, GIS and RS are significant and cost-

effective tools for avalanche assessments (Bühler et al., 2018).  

 

The occurrence of avalanche hazards depends on the 

conditioning and the triggering factors (Nefeslioglu et al., 2013).  

The snowpack characteristics (e.g., thickness, stability, density, 

water content, grain size, etc.), the atmospheric conditions (e.g., 

air temperature, precipitation, wind speed, wind direction, etc.), 

and topographical factors (elevation, slope, curvature, aspect, 

ground cover, etc.) have frequently been considered as 

conditioning factors for avalanches in the literature. Rapid 
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temperature changes, heavy rainfalls, earthquakes, and 

anthropogenic activities are the triggering factors that initiate the 

snow mass movement (Hao et al., 2018; Kumar et al., 2017; 

Nefeslioglu et al., 2013).  

 

Researchers have applied various expert-based techniques for 

avalanche susceptibility mapping (ASM) such as fuzzy-

frequency ratio (FR) (Kumar et al., 2016), analytical hierarchical 

process (AHP) (Nefeslioglu et al., 2013; Selçuk, 2013), etc. The 

data-driven machine learning (ML) applications have made great 

strides for natural hazard assessments in recent years due to the 

ability to learn, predict and improve based on historical hazard 

events without human intervention; and the capability of trend 

and pattern identification as well as dealing with multi-

dimensional and multi-source data such as conditioning and 

triggering factors. Although various ML applications exist on 

floods and landslides, the mechanism for ASM has not been 

clearly understood due to the difficulties in inventory 

preparation. 

 

Mosavi et al. (2020) implemented an ensemble ML model, 

random subspace functional tree (RSFT), and compared the 

model outcome with the other ML methods such as logistic 

regression (LR), logistic model tree (LMT), alternating decision 

tree (ADT), and functional trees (FT) for Karaj Watershed, Iran. 

Tiwari et al. (2021) applied a Support Vector Machine (SVM) to 

predict avalanche susceptibility with 4 different kernel 

approaches. Akay (2021) indicated that the Random Forest (RF) 

is appropriate for ASM.  Rahmati et al. (2019a) comparatively 

evaluated various ML methods for avalanche susceptibility map 

(ASM) production it two different sites and found the RF method 
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very successful. Choubin et al. (2020) employed a generalized 

additive model (GAM), multivariate adaptive regression spline 

(MARS), boosted regression trees (BRT), and SVM for 

comparing ensemble ML methods. The results from the 

mentioned studies have shown that the ML methods can provide 

a useful estimate for avalanche susceptibility. 

 

In this study, the LR and the RF, which are commonly used ML 

methods, were implemented to produce the ASM of Davos 

(Switzerland) using a total of twelve conditioning factors, such 

as elevation, slope, plan curvature, profile curvature, aspect, 

topographic position index (TPI), topographic ruggedness index 

(TRI), topographic wetness index (TWI), land use/ land cover, 

lithology, distance to road, distance to the river. The avalanche 

inventory was prepared in a previous study by Hafner et al. 

(2021a) in the form of vector data (polygons) and provided for 

the purposes of the present study to be employed as the training 

data for the supervised ML methods mentioned above. The other 

input features (conditioning factors) were derived from the 

geospatial datasets obtained from Swiss Federal Office of 

Topography, Switzerland (Swisstopo). In the following Sections, 

the datasets, methods, and the ASM results are presented in detail 

and discussed accordingly. 

 

2. MATERIALS AND METHODS 

In this Section, the study area characteristics, the input datasets 

and the pre-processing methods as well as the ML methods and 

the validation approaches are explained in detail. The location of 

the study area is shown in Figure 1. The overall methodological 

workflow employed in the study is presented in Figure 2. 

 

 

2.1 Study Area 

The study area, Davos, is located in the Eastern Region of 

Switzerland. Snow avalanche hazards occur frequently in the 

region due to climatic and topographic characteristics. The study 

area covers approximately 336 km2 and has an altitude range 

from 1,158 m to 3,144 m. According to the Institute for Snow and 

Avalanche Research (SLF), Switzerland, 17 people lost their 

lives in Davos region due to snow avalanches during 2002 - 2021 

(SLF, 2021). The geology of the region is characterized by Lower 

Penninic- Upper Austroalpine plate boundary (Ferreiro 

Mählmann and Giger, 2012).  The study area comprises southeast 

of the Prättigau halfwindow and lies below the Silvretta nappe 

(Nagel, 2006). The western part of the study area covers mostly 

Upper Austroalpine sediments and volcanites. In the eastern part, 

crystalline formations of the Silvretta nappe consist mainly of 

metamorphic rocks (gneiss, mica slate, amphibolite). 

 

2.2 Input Datasets and Features  

A reliable and complete inventory is essential to determine the 

effects and the characteristics of avalanches (Tiwari et al., 2021). 

The avalanche inventory was manually produced by Hafner et al. 

(2021b) for two avalanche periods in 2018 and 2019 from 

satellite images and provided for the present study. The inventory 

(Hafner et al., 2021b) includes the location information in the 

form of polygons. Figure 1 shows the avalanche inventory and 

3D views of some parts. Two avalanche polygons with runout 

zones in the valley were not employed in the model training stage 

since they may increase the uncertainty in the models. The 

avalanche inventory map was rasterized prior to model training 

and the avalanche and non-avalanche pixels were labeled as True 

(1) and False (0), respectively. 

  

 

 
 

Figure 1. The location map, the satellite image of the study site and the avalanche inventory. 
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Figure 2. Flowchart of the methodology. 

 

The slope is an important component of avalanche susceptibility 

studies, owing to avalanches generally occurring on snow-

covered slopes between 300-450 (Schweizer and Jamieson, 2003). 

Aspect can be defined as the direction of a terrain associated with 

a compass. Although snow avalanches tend to occur from all 

aspects, the reported literature cases have shown that northern 

regions are more prone to avalanches (Winkler et al., 2021). The 

term curvature is used for describing the morphology of slope, 

which is an important factor for snow cover stability (Akay, 

2021). The plan and profile curvatures affect snow-mass 

movement into horizontal and vertical directions, respectively. 

The TPI refers to the change in elevation of a central point and 

mean height of a predefined set of neighboring points (Wilson 

and Gallant, 2000). A study conducted by Choubin et al. (2020) 

has shown that the TPI was among the most significant factors 

for four different avalanche susceptibility prediction models. The 

TRI is a parameter that measures the surface roughness, which 

may affect snowpack destabilization (Kumar et al., 2017). The 

TWI provides information about the hydrological condition of 

topography (Rahmati et al., 2019b).   

 

The digital elevation model (DEM) employed in the study 

(swissALTI3D) was freely provided by Swisstopo (2021), and 

was downsampled here to 10 m spatial resolution for 

computational reasons. The slope, plan curvature, profile 

curvature, aspect, TPI, TRI, and TWI were calculated from the 

10 m DEM using the SAGA GIS software (Conrad et al., 2015). 

According to Parshad et al. (2017), it may be difficult to indicate 

the direct effect of elevation on snow avalanche hazards. Yet, it 

must be taken into account for the terrain perspective to be 

exposed to precipitation, temperature, and wind. In addition, 

distance to river and distance to road factors were calculated with 

proximity grid module in SAGA GIS and stored in raster format.  

 

The lithological units in a region can affect heat absorption and 

transfer, which may lead to snow mass movement and avalanches 

(Choubin et al., 2020). Considering the land use and land cover 

(LULC) and the avalanche relationship, several researchers 

emphasized that avalanches frequently occur on grassland and 

bare land (Bergua et al., 2018; Maggioni et al., 2016; Suk and 

Klimánek, 2011). Even though some avalanches were observed 

in forests, it was concluded in some studies that the forests were 

also effective in reducing the avalanche risk (Varol, 2022). 

In this study, the conditioning factors were used as model input 

and divided into two categories as numerical and categorical. The 

lithology and LULC data were considered as categorical features. 

Table 1 provides the distribution of lithological and LULC cover 

units by pixel for avalanche and non-avalanche areas. According 

to the inventory data, the avalanches occurred mostly in gneiss 

and mica slate, metagranitoids, sedimentary rocks as lithological 

units. Remarkably, 65.94% of avalanches occurred on grassland, 

21.99% rock (bare land), 11.40% forest, considering LULC. 
 

Lithological Units 
Non -

Avalanche 
Avalanche 

 

Alluvium 40,455 128 

Amphibolite 243,105 7927 

Basalt and metabasalt 24,450 - 

Gneiss and mica slate 904,259 27,828 

Glacier 9692 - 

Mainly blocks (rockslide) 249,511 4955 

Meta-ultrabasite, 

metabasalt, metagabbro 
24,093 2956 

Metagranitoids 495,286 20,003 

Moraine 452,969 9870 

Rhyolite, dacite 69,889 2904 

Sedimentary rocks 541,582 18,785 

Serpentinite, talc schist 91,361 2336 

Tectonic melange 36,628 2407 

Water 6818 350 

Land use / Land cover Units   

 

Forest 616,099 11,450 

Glacier 1408 - 

Grassland 1,594,527 66,238 

Rock 922,902 22,091 

Settlement 33,030 28 

Water 22,132 642 

 

Table 1. The pixel counts of categorical factors. 

 

Figure 3 shows the conditioning factors as maps (1821 x 1807 

pixels each at 10 m size). The pixels employed as non-avalanche 

class in the training dataset were randomly selected with an equal 

number to avalanche class pixels (a ratio of 1:1 for avalanche: 

non-avalanche). In the second step, the dataset was randomly 

split as training (70%) and validation (30%) datasets for 

avalanche prediction based on LR and RF. Open source scikit-

learn library Pedregosa et al. (2011) was used for processing the 

methods in a Python environment.  

 

Table 2 demonstrates the statistical summary of avalanche and 

non-avalanche areas for the numerical features. The statistical 

metrics include the mean, standard deviation, minimum, 25% 

50%, 75%, maximum.  

 

2.3 Snow Avalanche Susceptibility Mapping 

In this study, the LR and the RF methods were evaluated for their 

prediction performances. The LR is an important and frequently 

used statistical tool for binary classification problems (Mosavi et 

al., 2020). The method measures the relationship of variables 

with logistic curves, similar to linear regression (Yariyan et al., 

2020). In this study, LR was used to estimate the avalanche and 

non-avalanche probability of the study area. The 

sklearn.linear_model.LogisticRegression library was applied 

with “C = 100, solver = 'lbfgs', class_weight = 'balanced'” 

parameters as a result of hyperparameter tuning.  
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Figure 3. Input features: (a) elevation, (b) slope, (c) plan curvature, (d) profile curvature, (e) distance to the drainage, (f) distance to 

road, (g) topographic wetness index (TWI), (h) topographic position index (TPI), (i) topographic ruggedness index (TRI), (j) lithology, 

(k) land use/ land cover, (l) aspect. 
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Factors 
 

Mean Std. Dev Min 25% 50% 75% Max 

Elevation 
Non-avalanche 2121.17 369.71 1166.75 1852.67 2150.17 2401.67 3144.92 

Avalanche 2129.80 264.81 1369.87 1944.35 2145.33 2338.95 2811.40 

Slope 
Non-avalanche 26.71 12.48 0.00 17.57 26.98 35.19 86.94 

Avalanche 29.96 10.74 0.00 23.03 30.83 37.14 81.77 

Aspect 
Non-avalanche 178.92 104.36 -1.00 81.25 188.85 266.22 360.00 

Avalanche 141.78 94.56 -1.00 55.62 128.85 214.44 360.00 

Profile 

Curvature 

Non-avalanche 0.02 2.16 -114.38 -0.72 0.06 0.84 115.06 

Avalanche 0.19 1.89 -29.05 -0.57 0.15 0.92 33.57 

Plan 

Curvature 

Non-avalanche 0.03 2.30 -70.59 -0.88 0.02 0.92 103.08 

Avalanche -0.21 2.36 -25.13 -1.12 -0.09 0.83 26.45 

TRI 
Non-avalanche 0.84 0.52 0.00 0.49 0.79 1.09 26.19 

Avalanche 0.94 0.43 0.00 0.66 0.92 1.17 10.94 

TPI 
Non-avalanche -0.04 0.62 -26.45 -0.40 -0.03 0.32 21.72 

Avalanche 0.12 0.56 -5.22 -0.21 0.13 0.48 5.07 

TWI 
Non-avalanche 5.32 2.08 -1.84 3.90 5.05 6.38 25.25 

Avalanche 5.67 2.10 0.19 4.29 5.43 6.71 23.83 

Distance to 

Drainage 

Non-avalanche 532.16 375.94 0.00 228.04 472.02 770.06 2377.75 

Avalanche 526.74 339.15 0.00 224.72 512.45 800.50 1667.09 

Distance to 

Roads 

Non-avalanche 309.25 335.72 0.00 60.00 183.85 444.07 1886.61 

Avalanche 230.67 211.56 0.00 63.25 170.00 345.40 1381.92 

 

Table 2. Summary statistics of the numerical features. 

 

The RF is a tree-based ensemble learning algorithm, that was first 

proposed by Breiman (2001) and is widely used for classification 

and regression problems. The method creates trees from 

randomly selected data with the bootstrap technique. The sklearn. 

ensemble.RandomForestClassifier library was  implemented 

with “n_estimators = 250, criterion = 'entropy', max_depth = 16, 

max_features = 16, class_weight = 'balanced_subsample', 

oob_score = 'true’, bootstrap = 'true'” parameters. The 

parameters with the highest accuracy were selected, as a 

consequence of the hyperparameter optimization.  

 

In order to improve the model performances, the 

HalvingGridSearchCV method was utilized for the 

hyperparameter optimization (HalvingGridSearchCV, 2022). 

The optimal values obtained from the method were applied in the 

prediction. In the third step, overall accuracy (OA), the receiver 

operating characteristics (ROC) curve and area under the curve 

(AUC) value were produced to evaluate the performances. 

 

3. RESULTS 

The OA of the LR model was found 0.66. The result of the 

prediction was verified using the ROC (Figure 4) and an AUC 

value of 0.74 was obtained. Figure 5 illustrates the color gradient 

distribution of the probabilities acquired from the LR model. The 

OA of the RF model was found 0.88. Figure 6 indicates the 

performance of the predictive model using the ROC and an AUC 

value of 0.96 was obtained from the RF. Figure 7 shows the 

gradient map of the probabilities obtained from the RF model. 

 

The ASMs were classified as very low (0 - 0.2), low (0.2 - 0.4), 

moderate (0.4 - 0.6), high (0.6 – 0.8) and very high (0.8 – 1.0) 

susceptibilities by using equal intervals. In ASM obtained from 

the LR shows that 17.95% of the study area has very low, 30.82% 

low, 29.43% moderate, 18.62% high, 3.17% very high 

susceptibility classes. As a result of the RF, 64.24% of the study 

area has very low, 15.49% low, 10.62% moderate, 7.31% high, 

2.34% very high susceptibility classes. In Figure 8 shows the 

probability distribution histograms obtained from both methods. 

While the LR provides a normal distribution, the RF results yield 

to a geometric distribution of the outputs. Based on the maps and 

the statistical summaries mentioned previously, it can be 

concluded that the LR method possibly overestimates the areas 

susceptible to avalanches. This situation also explains the lower 

OA value obtained from this model.  

 
Figure 4. The ROC curve obtained from the LR 

 

 
Figure 5. The spatial distributions of the avalanche probabilities 

obtained from the LR. 
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Figure 6. The ROC curve obtained from the RF. 

 
Figure 7. The spatial distributions of the avalanche probabilities 

were obtained from the RF. 

 

On the other hand, when the sub-areas given in Figure 9 are 

analyzed in detail; it can be emphasized that the RF determined 

the avalanche zones with higher susceptibility levels. However, 

when the two avalanche polygons, which were not used in model 

training due to the inclusion of runout zones, are analyzed; the 

LR exhibited higher susceptibility levels for those. This finding 

indicates that the selection of training zones and the feature 

importance obtained from both methods must be investigated to 

understand the results and to obtain higher accuracy. 

 

4. DISCUSSIONS AND CONCLUSIONS 

A snow avalanche is a frequently observed natural hazard 

threatening lives and properties in mountainous and cold regions. 

The ASMs can be used as a basemap or initial data by 

researchers, designers, and decision-makers for regional land use 

planning, site selection, and avalanche prevention and mitigation 

purposes. In the present study, the LR and RF models were 

employed for snow ASM with 12 conditioning factors in Davos, 

Switzerland. The training data (Hafner et al., 2021b) was 

produced in a previous study for two avalanche periods and 

provided by the SLF.  

 

The results show that the AUC value of the RF (0.96) was better 

than the LR (0.74), which indicates that the RF exhibited higher 

prediction performance for the study area. However, further 

attention needs to be paid to the training data selection to prevent 

from model overfitting, and the input features to utilize the most 

suitable ones in the modeling stage. In addition, testing and 

validation datasets must be selected properly for increasing the 

accuracy and the reliability of the models. Furthermore, the 

avalanche inventory dataset (Hafner et al., 2021b) was limited to 

two avalanche periods only, and a larger inventory can contribute 

towards a better understanding of avalanche susceptibility 

analysis and to obtain higher accuracy. 

 
 

Figure 8. Avalanche susceptibility maps and distributions of LR (a) and RF model (b). 
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Figure 9. The LR (a) and RF (b) results in a part of the study area (purple rectangle in Figure 9). The two avalanche polygons shown 

on the right column were not employed in model training. 

 

The recent ASM studies based on ML algorithms have shown 

promising results. Wen et al., (2022) employed SVM, K-nearest 

neighbors, Classification and Regression Tree, and Multilayer 

perceptron and to compare the prediction capability with the 

AUC values of 0.918, 0.906, 0.879, 0.909, respectively. Rahmati 

et al. (2019b) applied BRT, GAM, SVM methods for prediction 

of avalanche susceptibility in an area in Iranian watershed. The 

AUC value obtained from the SVM was 0.924, indicating high 

performance of this model. Akay (2021) investigated several ML 

methods such as evidential belief function (EBF), random tree 

(RT), RF, and AdaBoost M1, etc.; and obtained AUC values of 

0.990 for training and 0.978 for testing from EBF. Rahmati et al. 

(2019a) conducted a comparative study with RF, SVM, Naïve 

Bayes and GAM models for the Darvan and the Zarrinehroud 

watersheds and found the RF successful in both Darvan (AUC = 

0.964) and Zarrinehroud (AUC = 0.956). When the results 

presented in this study are compared with those mentioned above, 

it can be emphasized that the performance of the RF was also 

very high here and it is a suitable method for ASM production. 

 

As future work, the model inputs will be analyzed in terms of 

feature importance and further ML methods will be assessed. 

Snowpack knowledge, additional terrain features and 

meteorological conditions could be useful to devoloping the 

ASMs. Furthermore, the inventory data used here will be 

analyzed to separate the starting and runout zones. 

 

ACKNOWLEDGEMENTS 

The authors thank to Elisabeth Hafner and Dr. Yves Bühler from 

SLF, Switzerland for the provision of avalanche inventory data. 

This paper is part of the Ph.D. thesis research of Sinem Cetinkaya 

and was carried out with the support of Higher Education Council 

of Turkey (YÖK) within the 100/2000 Programme. 

 

REFERENCES 

Akay, H., 2021. Spatial modeling of snow avalanche 

susceptibility using hybrid and ensemble machine learning 

techniques. Catena 206, 105524. 

https://doi.org/10.1016/j.catena.2021.105524 

Bergua, S.B., Piedrabuena, M.Á.P., Alfonso, J.L.M., 2018. Snow 

avalanche susceptibility in the eastern hillside of the aramo range 

(Asturian central massif, cantabrian mountains, nw spain). J. 

Maps 14, 373–381. 

https://doi.org/10.1080/17445647.2018.1480974 

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. 

https://doi.org/10.1023/A:1010933404324 

Bühler, Y., Von Rickenbach, D., Stoffel, A., Margreth, S., 

Stoffel, L., Christen, M., 2018. Automated snow avalanche 

release area delineation-validation of existing algorithms and 

proposition of a new object-based approach for large-scale 

hazard indication mapping. Nat. Hazards Earth Syst. Sci. 18, 

3235–3251. https://doi.org/10.5194/nhess-18-3235-2018 

Yilmaz, B., 2010. Application of GIS-Based Fuzzy Logic and 

Analytical Hierarchy Process (AHP) to Snow Avalanche 

Susceptibility Mapping, North San Juan, Colorado. Karadeniz 

Technical University. 

Choubin, B., Borji, M., Hosseini, F.S., Mosavi, A., Dineva, A.A., 

2020. Mass wasting susceptibility assessment of snow 

avalanches using machine learning models. Sci. Rep. 10, 1–13. 

https://doi.org/10.1038/s41598-020-75476-w 

Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., 

Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., 2015. System 

for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. 

Model Dev. 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1083-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1089



 

2015 (4 November 2021) 

Eckerstorfer, M., Bühler, Y., Frauenfelder, R., Malnes, E., 2016. 

Remote sensing of snow avalanches: Recent advances, potential, 

and limitations. Cold Reg. Sci. Technol. 121, 126–140. 

https://doi.org/10.1016/j.coldregions.2015.11.001 

Ferreiro Mählmann, R., Giger, M., 2012. The Arosa zone in 

Eastern Switzerland: Oceanic, sedimentary burial, accretional 

and orogenic very low- to low grade patterns in a tectono-

metamorphic mélange. Swiss J. Geosci. 105, 203–233. 

https://doi.org/10.1007/s00015-012-0103-7 

Hafner, E.D., Techel, F., Leinss, S., Bühler, Y., 2021a. Mapping 

avalanches with satellites – evaluation of performance and 

completeness. Cryosph. 15, 983–1004. 

https://doi.org/10.5194/tc-15-983-2021 

Hafner, E., Leinss, S., Techel, F., Bühler, Y., 2021b. Satellite 

avalanche mapping validation data. 

https://doi.org/http://dx.doi.org/10.16904/envidat.202 (20 

December 2021) 

HalvingGridSearchCV, 2022. URL https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.Hal

vingGridSearchCV.html  

Hao, J. sheng, Huang, F. rong, Liu, Y., Amobichukwu, C.A., Li, 

L. hai, 2018. Avalanche activity and characteristics of its 

triggering factors in the western Tianshan Mountains, China. J. 

Mt. Sci. 15, 1397–1411. https://doi.org/10.1007/s11629-018-

4941-2 

Kumar, S., Snehmani, Srivastava, P.K., Gore, A., Singh, M.K., 

2016. Fuzzy–frequency ratio model for avalanche susceptibility 

mapping. Int. J. Digit. Earth 9, 1168–1184. 

https://doi.org/10.1080/17538947.2016.1197328 

Kumar, S., Srivastava, P.K., Snehmani, 2017. GIS-based 

MCDA–AHP modelling for avalanche susceptibility mapping of 

Nubra valley region, Indian Himalaya. Geocarto Int. 32, 1254–

1267. https://doi.org/10.1080/10106049.2016.1206626 

Maggioni, M., Godone, D., Höller, P., Oppi, L., Stanchi, S., 

Frigo, B., Freppaz, M., 2016. Snow gliding susceptibility: the 

Monterosa Ski resort, NW Italian Alps. J. Maps 12, 115–121. 

https://doi.org/10.1080/17445647.2016.1167785 

Mosavi, A., Shirzadi, A., Choubin, B., Taromideh, F., Hosseini, 

F.S., Borji, M., Shahabi, H., Salvati, A., Dineva, A.A., 2020. 

Towards an Ensemble Machine Learning Model of Random 

Subspace Based Functional Tree Classifier for Snow Avalanche 

Susceptibility Mapping. IEEE Access 8, 145968–145983. 

https://doi.org/10.1109/ACCESS.2020.3014816 

Ferreiro Mählmann, R., Giger, M., 2012. The Arosa zone in 

Eastern Switzerland: Oceanic, sedimentary burial, accretional 

and orogenic very low- to low grade patterns in a tectono-

metamorphic mélange. Swiss J. Geosci. 105, 203–233. 

https://doi.org/10.1007/s00015-012-0103-7 

Nefeslioglu, H.A., Sezer, E.A., Gokceoglu, C., Ayas, Z., 2013. A 

modified analytical hierarchy process (M-AHP) approach for 

decision support systems in natural hazard assessments. Comput. 

Geosci. 59, 1–8. https://doi.org/10.1016/j.cageo.2013.05.010 

Parshad, R., Srivastva, P.K., Snehmani, Ganguly, S., Snehmani, 

Snehmani, 2017. Snow Avalanche Susceptibility Mapping using 

Remote Sensing and GIS in Nubra-Shyok Basin, Himalaya, 

India. Indian J. Sci. Technol. 10, 1–12. 

https://doi.org/10.17485/ijst/2017/v10i31/105647 

Pedregosa, F., Grisel, O., Weiss, R., Passos, A., Brucher, M., 

Varoquax, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Brucher, 

M., 2011. Scikit-learn: Machine Learning in Python. J. Mach. 

Learn. Res. 12, 2825–2830. (20 December 2021) 

Rahmati, O., Ghorbanzadeh, O., Teimurian, T., Mohammadi, F., 

Tiefenbacher, J.P., Falah, F., Pirasteh, S., Ngo, P.T.T., Bui, D.T., 

2019a. Spatial modeling of snow avalanche using machine 

learning models and geo-environmental factors: Comparison of 

effectiveness in two mountain regions. Remote Sens. 11. 

https://doi.org/10.3390/rs11242995 

Rahmati, O., Yousefi, S., Kalantari, Z., Uuemaa, E., Teimurian, 

T., Keesstra, S., Pham, T.D., Bui, D.T., 2019b. Multi-hazard 

exposure mapping using machine learning techniques: A case 

study from Iran. Remote Sens. 11, 1–20. 

https://doi.org/10.3390/rs11161943 

Schweizer, J., Jamieson, J.B., 2003. Snowpack properties for 

snow profile analysis. Cold Reg. Sci. Technol. 37, 233–241. 

https://doi.org/10.1016/S0165-232X(03)00067-3 

Selçuk, L., 2013. An avalanche hazard model for Bitlis Province, 

Turkey, using GIS based multicriteria decision analysis. Turkish 

J. Earth Sci. 22, 523–535. https://doi.org/10.3906/yer-1201-10 

Suk, P., Klimánek, M., 2011. Creation of the snow avalanche 

susceptibility map of the krkonoše mountains using gis. Acta 

Univ. Agric. Silvic. Mendelianae Brun. 59, 237–246. 

https://doi.org/10.11118/actaun201159050237 

Swisstopo,2021.https://shop.swisstopo.admin.ch/en/products/he

ight_models/alti3D (20 December 2021) 

Tiwari, A., G., A., Vishwakarma, B.D., 2021. Parameter 

importance assessment improves efficacy of machine learning 

methods for predicting snow avalanche sites in Leh-Manali 

Highway, India. Sci. Total Environ. 794, 148738. 

https://doi.org/10.1016/j.scitotenv.2021.148738 

Varol, N., 2022. Avalanche susceptibility mapping with the use 

of frequency ratio, fuzzy and classical analytical hierarchy 

process for Uzungol area, Turkey. Cold Reg. Sci. Technol. 194, 

103439. https://doi.org/10.1016/j.coldregions.2021.103439 

Wang, Z., Liu, Q., Liu, Y., 2020. Mapping landslide 

susceptibility using machine learning algorithms and GIS: A case 

study in Shexian county, Anhui province, China. Symmetry 

(Basel). 12, 1–18. https://doi.org/10.3390/sym12121954 

Winkler, K., Schmudlach, G., Degraeuwe, B., Techel, F., 2021. 

On the correlation between the forecast avalanche danger and 

avalanche risk taken by backcountry skiers in Switzerland. Cold 

Reg. Sci. Technol. 188, 103299. 

https://doi.org/10.1016/j.coldregions.2021.103299 

SLF, 2021. Fatal avalanche accidents of the past 20 years, WSL 

Inst. Snow Avalanche Res. SLF. URL 

https://www.slf.ch/en/avalanches/destructive-avalanches-and-

avalanche-accidents/avalanche-accidents-of-the-past-20-

years.html#tabelement1-tab2 (3 November 2021) 

Yariyan, P., Avand, M., Abbaspour, R.A., Karami, M., 

Tiefenbacher, J.P., 2020. GIS-based spatial modeling of snow 

avalanches using four novel ensemble models. Sci. Total 

Environ. 745, 141008. 

https://doi.org/10.1016/j.scitotenv.2020.141008 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1083-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1090

https://doi.org/10.5194/tc-15-983-2021
https://doi.org/http:/dx.doi.org/10.16904/envidat.202
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.HalvingGridSearchCV.html
https://doi.org/10.11118/actaun201159050237
https://doi.org/10.1016/j.scitotenv.2021.148738
https://doi.org/10.1016/j.coldregions.2021.103439
https://doi.org/10.3390/sym12121954
https://doi.org/10.1016/j.coldregions.2021.103299
https://www.slf.ch/en/avalanches/destructive-avalanches-and-avalanche-accidents/avalanche-accidents-of-the-past-20-years.html#tabelement1-tab2
https://www.slf.ch/en/avalanches/destructive-avalanches-and-avalanche-accidents/avalanche-accidents-of-the-past-20-years.html#tabelement1-tab2
https://www.slf.ch/en/avalanches/destructive-avalanches-and-avalanche-accidents/avalanche-accidents-of-the-past-20-years.html#tabelement1-tab2



