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ABSTRACT: 

Taiwan is located in subtropical monsoon area and Pacific Ring of Fire. Both the rate of crustal uplift and annual rainfall are among 

the highest in the world. Earthquakes and heavy rainfall have led to massive landslides and debris flow. Frequent disasters and the 

high rate of surface erosion have caused drastic changes in river topography and catchment areas, and, consequently, have impacted 

the safety of human lives. To mitigate the losses, better simulation and prediction of landslides are critical. Existing landslide 

prediction research works employed terrain, geology, rainfall, earthquakes and human activities as landslide triggering factors in 

the predicting model. In addition to aforementioned environmental conditions, this study would like to explore the use of SAR 

differential interferometry (InSAR) information to help observe characteristics of the slope movement behavior, which is also an 

important factor. Factors are analyzed and quantified on the basis of slope units. To confirm the applicability of selected factors to 

landslide, factors are firstly analyzed with Spearman correlation, and then those with higher correlations are incorporated into the 

prediction model. Machine learning based techniques are then employed to establish the prediction model. The experiment result 

demonstrates that InSAR information can improve the accuracy by more than 5% in landslide prediction. 

1. INTRODUCTION

Slopes in Taiwan mountainous area are mostly geologically 

sensitive and fragmented, so when heavy rainfall or 

earthquake occur, it easily leads to landslides. The causes of 

landslide can be divided into two categories: potential 

conditions and triggering factors. The potential conditions 

are the natural conditions of slopes, namely topography, 

lithology, geological structure, and vegetation coverage; 

while the triggering factors are those including disasters, such 

as rainfall, earthquakes, and human activities. Existing 

studies mostly employ the factors from the above two 

categories into mechanic and statistical models to calculate 

landslide risk. However, due to the scarcity of data points and 

remote location, it is difficult to obtain large-scale surface 

displacement information. To solve this problem, this 

research explores the use of time series phase values 

measured by SAR interferometric techniques (InSAR) to 

obtain large-scale ground deformation information, i.e. the 

slope movement characteristics. Through correlation analysis 

and machine learning techniques, we further investigate the 

impact of spatial-temporal factors and InSAR information, 

and improve the accuracy and reliability of the landslide 

prediction research. 

2. STUDT AREA

The study area is selected the area along Provincial Highway 

18, Chiayi, the central part in Taiwan (Figure 1). The streams 

and highways in here are all east-west. The study area is 

located in Fanlu Township and Alishan Township, Chiayi 

County. Covering an area of about 398.268 square kilometers. 

The main stream is the Bashang River. The terrain here is 

relatively rugged, as long as it encounters heavy rainfall 

events such as typhoons or plum rains, landslides usually 

occur. 

3. METHOD

3.1 Slope Unit 

To preserve the complete topographic patterns, slope unit 

method is selected as the basic unit for analysis of various 

spatial-temporal factors. The parameters obtained by the 

slope unit are used to represent the entire unit, and it has the 

continuous meaning of a slope, which is a suitable method 

for landslide potential research. The slope unit is divided by 

the mountain ridge line and the watershed. Slope units 

processing is referred to the method proposed by Xie et al. 

(2004). The principle is to first find out and divide the digital 

elevation model (DEM) into several catchment areas. Second 

is to invert the DEM to get the reverse stream and mountain 
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ridge information, and then divide the reverse DEM into 

several catchment areas again to obtain the reverse catchment 

areas. Third is to combine the positive and negative 

catchment areas into a single file to cut out the slope unit (Fig 

2). Since this result sometimes has unreasonable units, 

manual editing is still needed to obtain slope units with a 

more homogeneous terrain information. In this study area, 

there are 3312 slope units, and each slope unit is range in 15 

to 30 hectares.  

 
Figure 1. The study area is the area along Provincial Highway 18 and located in Fanlu Township and Alishan Township, Chiayi 

County. 

 

 

Figure 2. Slope units processing. (Xie et al., 2004). 

 

3.2 Spatial-Temporal Factors 

Common spatial-temporal factors can be categorized into 

three parts according to their characteristics, i.e. 

geomorphology, location and geology. Geomorphic factors 

include elevation, slope angle, aspect, topographic roughness, 

curvature and vegetation coverage (NDVI); location factors 

represent the influence of the distance of factors that disturb 

the slope unit, including river distance, road distance and 

fault distance; geological factors represent the influence 

caused by regional geological conditions, such as sensitive 

area index, fold and downslope index; Triggering factors are 

factors which can trigger landslides, such as rainfall, 

earthquake and deforestation. In this study, monthly 

accumulated rainfall information has been applied. 

 

3.3 Spearman Correlation Coefficient 

The main purpose of correlation analysis is to understand the 

statistical dependence between two variables. To discover the 

applicability of the selected factors in this study, a correlation 

analysis of these factors is applied to understand the 

correlation between each factor and landslide. Considering 

that the distribution of each factors is different, and may not 

be able to fit the strict assumptions of the statistical method, 

such as the normal distribution, this study adopts Spearman 

Correlation Coefficient, which is a nonparametric measure of 

rank correlation. The data are only required to be converted 

into accordance with ascending or descending order, which 

can be applied to the description of the linear relationship of 

variables. The definition of Spearman Correlation 

Coefficient is as follows: 

 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (1) 

 

where  rs = Spearman Correlation Coefficient 

di = the difference between the two ranks 

n = the number of observations 

 

3.4 InSAR Information Collection 

This study collects the InSAR information from Sentinel-1, 

ESA, for five years, from 2016 to 2020. The deformation 

information from InSAR has been calculated in time interval: 

4 months. InSAR technique is to obtain SAR images by using 

the repeated satellite orbits in the same area at different times, 

and obtains surface deformation information from the phase 

value. To explore the rationality of the ground displacement 
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from InSAR, the displacement velocity will be converted 

from the satellite line of sight (VLOS) to slope (Vslope) 

direction. After converting the line of sight to slope, there are 

600 Vslope points in the study area, which means only 18% 

slope units have InSAR information. According to Aslan et 

al. (2020), the speed of deformation displacement in the 

direction of line of sight of SAR satellite can be converted 

into the direction of the slope. Figure 3 is the schematic of 

the conversion between Vslope and VLOS, and the equation of 

conversion is as follows: 

 

𝑉𝑠𝑙𝑜𝑝𝑒 =  
𝑉𝐿𝑂𝑆

𝐶
 (2) 

 

Where the coefficient C represents the proportion of the real 

surface displacement velocity (Vslope) along the slope when 

projected to the LOS direction, which can be calculated by 

the geometric relationship between line of sight direction and 

slope units. The equation of the coefficient C is as follows: 

 
𝐶 = 𝑁 ∙ [𝑐𝑜𝑠(𝑆) ∙ 𝑠𝑖𝑛(𝐴 − 90∘)] + 

𝐸 ∙ [− 𝑐𝑜𝑠(𝑆) ∙ 𝑐𝑜𝑠(𝐴 − 90∘)] + 𝐻 ∙ 𝑠𝑖𝑛(𝑆) 
(3) 

 
𝑁 =  𝑐𝑜𝑠(90∘ − 𝛼) ∙ 𝑐𝑜𝑠(180∘ − 𝛾) (4) 

 
𝐸 =  𝑐𝑜𝑠(90∘ − 𝛼) ∙ 𝑐𝑜𝑠(270∘ − 𝛾) (5) 

 
𝐻 =  𝑐𝑜𝑠(𝛼) (6) 

 

where  A = slope direction of the slope unit 

 S = slope angle of the slope unit 

 α = incident angle of line of sight direction 

 γ = azimuth angle of line of sight direction 

 

 
Figure 3. The schematic of the conversion between Vslope and VLOS. 

 

3.5 Machine Learning Prediction 

Machine learning techniques are commonly applied in 

establishment of landslide prediction model. In this study, 

Random Forest algorism has been applied for landslide 

prediction. Random forest is a classifier that contains 

multiple decision trees, and add random selection of training 

data to greatly improve the final calculation result. The 

equation of Random Forest algorism is as follows:  

 

𝑃( 𝑐 ∣∣ 𝑣𝑖(𝑥) ) =  
𝑃(𝑐∣𝑣𝑖(𝑥))

∑ 𝑃(𝑐1∣𝑉𝑖(𝑥))𝑛=1
1

  (7) 

 

𝑔𝑐(𝑥) =  
𝑙

𝑡
∑ �̂�(𝑐 ∣ 𝑣𝑖(𝑥))

𝑡

𝑖=1

 (8) 

 

where  P = probability 

 c = category 

 v = node 

 l = number of categorise 

 t = number of decision trees 

 gc = the average probability for category c 

 

For classification, the output of Random Forest is the class 

selected by most trees. Random Forests correct for decision 

trees' habit of overfitting to their training set. This study uses 

14 spatial-temporal factors as import data, of which 5 years 

from 2016 to 2020 are used as training samples and then 

predict in March 2020 and September 2020 whether each 

slope unit will occur landslides. Finally, calculate and 

compare the prediction accuracy between entire slope units 

and slope units with InSAR information. 

 

3.6 Landslide Ground Truth Map 

The landslide inventory announced by Forestry Bureau is 

once a year, and the latest landslide inventory was announced 

in 2017. The time scale in years does not meet the needs in 

this study, thus, SPOT images have been downloaded for 

making the landslide ground truth map in this study. The 

SPOT image has been supervised classification to 

preliminarily classify into categories such as bare soil, 

vegetation, water body, and cloud cover. Since the spectral 

characteristics of river channel and settlements are similar to 

landslides, they were classified into the bare soil category in 

the preliminary classification, however, river channel and 

settlements are not landslides. Thus, manual editing is carried 

out to separate the preliminary category bare soil into real 

landslide areas, river channels, settlements, and vegetation 

regeneration areas. 
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4. RESULTS AND DISCUSSION 

The spatial-temporal factors in this study are all quantified 

and analyzed based on slope units and show in Figure 4 From 

the significance test (Table 1), the significant factors related 

to the landslide in the study area are slope, topographic 

roughness, curvature, distance to river, distance to fault, 

downslope index, fold and sensitive area index. The results 

of correlation analysis demonstrate that the correlation 

between factors and landslide are mostly weak to modest, 

which means the impact of one single factor is not obvious to 

landslide. 

There are 3312 slope units in the study area, of which 14 

spatial-temporal factors are used as the import data in 

Random Forest landslide prediction model. The prediction 

result (Table 2) shows that in March 2020, the overall 

accuracy is 88.1%; in September 2020 forecast, the overall 

accuracy is 88.9%. For 600 slope units with Vslope points 

(about 18% of the total units), the overall accuracy for 

landslide prediction in March 2020 is 94.2%; the overall 

accuracy for landslide prediction in September 2020 is 94.8%. 

Both are significantly higher than the accuracy of the entire 

slope unit by more than 5%. In the study area, 213 landslide 

units (about 6% of the total units) were increased in March 

2020, and 4 landslide units (about 0.1% of the total units) 

were increased in September 2020. For increased landslides 

prediction (Table 2), the overall accuracy in March 2020 and 

in September 2020 can reach 97.2% and 100% respectively. 

The results demonstrate that the machine learning model has 

enough capability to predict increased landslides. 

 

 
Figure 4. Spatial-temporal factors in slope units. 

 

Table 1. Spearman correlation coefficient test between selected factors and landslide. 

Factors 
Correlation 

Coefficient 

Level of 

Significance 
Relevance 

Geomorphic 

Factors 

Slope Angle 0.18 0.00 
Modestly 

correlated 

Elevation 0.01 0.126 Weakly correlated 

Topographic Roughness 0.14 0.00 
Modestly 

correlated 

Curvature -0.21 0.00 
Modestly 

correlated 

Location 

Factors 

Distance to River -0.12 0.00 
Modestly 

correlated 

Distance to Road 0.01 0.16 Weakly correlated 

Distance to Fault 0.15 0.00 
Modestly 

correlated 

Geological 

Factors 

Downslope Index 0.04 0.00 Weakly correlated 

Fold 0.04 0.00 Weakly correlated 

Sensitive Area Index 0.28 0.00 
Modestly 

correlated 

InSAR 

Factors 
Vslope -0.06 0.00 Weakly correlated 
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Note: The lower the level of significance level, the better the factor significance, and the level of significance < 

0.05 means significant. 

 

Table 2. The overall accuracy for landslide prediction result. 

Prediction Time Total Slope Units 
Slope Units with InSAR 

Vslope Points 

Slope Units with Newly-

Increased Landslides 

March 2020 88.1 % 94.2 % 97.2 

September 2020 88.9 % 94.8 % 100 

 

5. CONCLUSION 

In this study, the area along Provincial Highway 18, Chiayi 

was chosen to be the study area. The significant factors 

related to the landslide are slope, topographic roughness, 

curvature, distance to river, distance to fault, downslope 

index, fold and sensitive area index. The weak to modest 

correlation results demonstrate that the impact of one single 

factor is not obvious to landslide. For landslide prediction, 

Random Forest algorithm is performed by applying the 5-

year (2016-2020) spatial-temporal factors to the prediction of 

landslides in March and September 2020, and the accuracy 

can be higher than 88%. Research results demonstrate that 

after applying InSAR information, the capability of the 

prediction model has been improved, which is more than 5% 

higher than slope units without InSAR points. For predicting 

newly increased landslides, the prediction accuracy can even 

exceed 95%. In this study, the analysis and prediction method 

of slope displacement is proposed to realize its feasibility by 

integrating common spatial factors (geomorphology, location 

and geology) and InSAR temporal observation data. 
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