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ABSTRACT:

Global warming modifies the climate balance. Warming parameters are observed by many Earth Observation satellite systems,
and the huge amount of data modifies the way to process them. This paper presents a few studies relative to damage detection on
buildings, occurred during natural disasters. Recent advances in deep learning techniques are used for the building detection such
as EfficientNet networks. Additional networks as Siamese models are used to evaluate the damage level with pre- and post-event
images. Different techniques to merge detection masks are described and compared to a multiclass segmentation network. Results
are presented and performances of the different solutions are compared.

1. INTRODUCTION

This paper presents a few studies relative to damage detec-
tion on buildings, occurred during natural disasters. Recent
advances in deep learning techniques are used for the build-
ing detection, and additional networks are used to evaluate the
damage level with before / after event images. Several neural
networks architectures have been tested, and their evaluation is
presented. Such techniques lead to interesting results for build-
ing damage assessment.

2. BACKGROUND

2.1 Natural disasters problem

Global warming modifies the climate balance. Warming param-
eters are observed by many Earth Observation satellite systems.
Warming consequences are also monitored: among them, ev-
eryone can note the increase of natural disasters number. The
population on Earth has also increased in the last century, with a
major urbanization. As a consequence, the number of vulnera-
ble areas has increased. In order to answer to the rising number
of natural disaster events, the International Charter ”Space and
Major Disasters” (Charter) has been created. Many space agen-
cies provide an important source of satellite imagery to respond
to major natural and man-made disasters worldwide. The moni-
toring of major disasters and their impacts has become an issue.

2.2 Data volume problem

The number of events increased. The number of Earth Observa-
tion satellite (in particular VHR images) also led to an augmen-
tation of the amount of data to be downloaded and processed.
Building damage assessment is important to organize rescue op-
erations. For now, damaged buildings are analyzed by photo-
interpreters, which remains complex and time-consuming. For
this reason, automatic solutions to detect and classify damaged
buildings are welcomed. Recent advances in object recognition
with deep learning algorithms offer new opportunities to do so.
∗ Corresponding author

2.3 How to define a damage ?

In order to offer consistent multi-scale building damage assess-
ment, the first step is to define a proper standard nomenclature
for damages. Several studies such as HAZUS, FEMA’s Dam-
age Assessment Operations Manual, the Kelman scale, and the
EMS-98 propose a common ground on which it is possible to
build a damage scale of four damage classes: no-damage, mi-
nor damage, major damage and destroyed. This nomenclature
has been used to label the xView2 database.

2.4 Building segmentation

Building detection may be solved by semantic segmentation.
Several architectures of convolutional networks may be used.
(Maggiori et al., 2017) compares several architectures and
shows that using Unet architecture with both encoder, decoder
and skip-connections is the best way to obtain precise semantic
segmentation.

Recent works based on this approach, try to refine detection re-
sults, focusing on building outlines. Some approaches as (Mar-
manis et al., 2017) combine images and digital surface models
(DSM), and extract first building outlines and then introduces
it into the segmentation network. (Wu et al., 2018) uses multi
objects loss function, evaluating both segmentation and build-
ing outline maps, provided by two distinct networks. (Bischke
et al., 2019) proposes an approach using SegNet with a VGG16
encoder where the masks are replaced by distance mask gen-
erated by computing for each pixel the distance to the outline.
An interesting idea is also to add constraints on intermediate
decoder layouts to make them look like the final segmentation
at lower resolution, which permits to optimize multi scales de-
scriptors. A similar multi-scale approach is also used in (Ji et
al., 2018), and this work introduces Siamese networks working
at their own different resolutions.

Enhancement of building segmentation is possible with modifi-
cations of skip-connections. (Li et al., 2018) proposes to add a
compression step into skip-connections in order to reduce net-
work weights. And (Yang et al., 2018) proposes to add an atten-
tion module into skip-connections to focus network attention on
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the most informative parts of the image and to add bottleneck
layout into the decoder.

Several neural networks architectures have been selected in this
study, and trained for building segmentation purpose.

2.5 Damage classification

Damage evaluation may be considered as a classification task.
The first idea is to use directly outputs of two building seg-
mentation (images masks) and to define remaining, new or de-
stroyed buildings between two satellite acquisitions. Other ap-
proaches are possible. There are a few references on damage
classification, in particular on optical images. (Fujita et al.,
2017) defines a CNN (VGG or Alexnet) that classifies build-
ing patches as destroyed or not, using several architectures as
a unique network or Siamese networks, and integrating both
pre and post images. (Ji et al., 2018b) proposes the same de-
stroyed/not destroyed classification with SqueezeNet architec-
ture and (Cao et al., 2018) with VGG16 architecture. (Gupta,
2019) introduces multi-classes damage classification, using first
a Unet type network to identify buildings (segmentation) and
then an architecture combining both a Resnet50 and a shallow
network in parallel to classify damages.

3. PROPOSED METHOD

Our method is based on deep learning algorithms. Several satel-
lite images with ground truth are used for the training. Two
datasets are considered.

3.1 Used databases

3.1.1 xView2 dataset: The xView2 dataset is available
freely since the end of 2019. This dataset, described in (Gupta,
2019), offers a wide variety of situations with 6 types of
disasters : earthquake, flood, hurricane, fire, tsunami, vol-
cano. These natural events occured in eleven countries. It in-
cludes both pre- and post-disaster Very High Resolution im-
ages (Ground Sampling Distance between 0.3 and 3 meters) for
each disaster. Most importantly, this dataset provides a realistic
situation with images taken from various satellites (GeoEye1,
WorldView 2 and 3), sometimes old pre-image (maximum gap
of 3 years) and a wide range of nadir angles (from 5 deg to 36
deg). This dataset appears perfectly suited to test the process-
ing chains considered in this work. Classification ground truth
contains 4 labels : no damage, minor damage, major damage,
destroyed buildings. Figure 1, figure 2 and figure 3 are exam-
ples extracted from xView2 dataset.

Figure 1. Pre-disaster xView2 images

Figure 2. Post-disaster xView2 images

Figure 3. Ground truth for xView2 images

3.1.2 Haiti data: Thanks to the International Charter Space
and Major disasters, many satellites images are provided by
space agencies as CNES when natural events occur. Moreover,
damages maps are produced by experts. For the evaluation, we
considered the Matthieu hurricane that creates many damages
on Haiti. Pleiades images are available on Haiti, before and
after Matthieu huricane passage in october 2016. The images
have been pansharpened (Panchromatic + Multispectral). They
are used as validation data.

Ground truth associated to these images is a vector file, re-
trieved from Copernicus EMS R&R 050, containing manual la-
belling on building prints and damages classification between 3
classes: no damage, damaged, destroyed. Distinction between
minor and major damages is not available, but this dataset is a
great application case for our study.

Figure 4 presents pre and post Haiti images examples.

Figure 4. Haiti, pre and post Matthieur Huricane (oct 16),
pansharpened Pleiades images

3.2 Building segmentation with deep learning

Among the different architectures, 4 neural networks are chosen
for the damage detection and recognition. Evaluations are done
for this networks.
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3.2.1 Unet: The semantic segmentation is done with a Unet
architecture (Ronneberger, 2015), which is based on a multi-
resolution segmentation network, with an encoder part and a
decoder part. The Unet network has proven its strength in
a high number of image processing configurations with deep
learning. The encoder extracts features (convolutional layers)
while reducing the spatial resolution. The decoder sequentially
increases the resolution and, merges information from the pre-
vious layer and from the skip-connection coming from the en-
coder layer at the same resolution. Several Unet architecture
with different encoders have been compared.

3.2.2 MobileNet V2: Another neural network architecture
is considered to compare with previous Unet network. (San-
dler, 2019) introduces MobileNet architecture : this architec-
ture’s particularity is the use of depthwise convolution, which
allows to reduce computation cost with equal performance. A
depthwise convolution consists in applying a convolution per
canal and then applying classic 2D convolution of size 1x1
(pointwise convolution instead of usual 3x3 spatial convolu-
tion). When H.W.C.C.n.n operations are needed for a H.W.C
block ’s convolution, only H.W.C.n.n+H.W.C operations are
needed with depthwise convolution. (Howard, 2019) introduces
MobileNetV2 architecture. This architecture uses a new block
type, called mobile inverted bottleneck, in replacement of Con-
volution+ReLu block. Mobile inverted bottleneck consists in
applying : firstly a 1x1 convolution allowing features space ex-
pansion, secondly an activation such as ReLu, thirdly a depth-
wise convolution (one convolution per feature), then another
ReLu activation, and finally a 1x1 convolution in order to re-
duce features number. In addition, a skip connection can link
input and output blocks (same size), to reduce loss due to ReLu
activation.

3.2.3 SE-ResNet: Among the interesting solutions, we con-
sider the SE-ResNet network. (He, 2016) introduces ResNet
architecture which aims at modeling convolution filter nearby
identity in order to transfer information between layers without
having small loss gradient during learning phase. To do so, it
uses skip-connections allowing information to bypass convolu-
tions.(Hu, 2019) introduces Squeeze-Excite blocks which aims
to balance weights between channels, and to increase receptive
field size. (Xie, 2017) improves ResNet network, introducing
Squeeze-Excite blocks, to define SE-ResNet architecture. We
can notice that Squeeze-Excite blocks is likely an average on
the features which could lead to smooth effects. As it intro-
duces a dependence to a large part of the image, if this model is
used to infer the image with a tile processing, depending on the
margins, discontinuities near tiles borders are visible.

3.2.4 EfficientNet: (Tan, 2019) proposes to integrate mo-
bile inverted bottleneck, Squeeze-Excite and depthwise convo-
lution into an architecture as light as possible. It also presents
a method allowing to adapt the architecture hyperparameters in
order to point the best compromise between performance and
weight. This adaptation consists in modifying both resolution,
depth and features numbers. This high performance network is
considered for this study.

3.3 Damages classification with deep learning

For this second way, damages are classified with the neural
network. Three approaches have been compared : direct use
of the building segmentation associated with an image classi-
fier, Siamese network to achieve segmentation with 5 classes
(4 damages classes + background) and several binary networks

that generates 4 semantic segmentation, and are then merged
afterwards to build the 5 classes map.

3.3.1 Decision based on building semantic segmentation:
After the building semantic segmentation step, building mask
are computed. For each building detected, tiles centered on this
object are extracted from pre- and post-event images. Then,
a classifier is used to decide the type of damages. This ap-
proach presents a major drawback : we need a perfect building
segmentation which distinguish buildings individually. UNet-
EfficientNet architectures, which got the best performance for
building segmentation, have been chosen. Their performance is
good enough for building detection, but not sufficiently precise
to separate each building individually. So the ground truth of
building is used to extract separate tiles. Then the classification
network is trained.

3.3.2 Siamese segmentation network: It consists in imple-
menting two parallel encoders : one to process to pre-disaster
image, and one to process post-disaster image. These two en-
coders are identical and share the same weights. The two fea-
tures outputs are then merged (by concatenation) and used as
input in the decoder part. All parallel outputs of the skip-
connections are also concatenated and used as input of the de-
coder.

Figure 5. Architecture of Siamese network

3.3.3 Binary siamese segmentation networks: Is it more
efficient to train one multiclass network or to train several bi-
nary networks ? In order to answer this question, several binary
Siamese networks ”all vs one” (one per class) have been imple-
mented with EfficientNet-B0 as encoder. Then, a post treatment
retrieves all results and defines the final multi-classes result, as
defined in the following schema:

Neural networks are trained following classical backpropaga-
tion procedure. A Stochastic Gradient Descent is used. Tiles
with 224x224 pixels are sent to the network. Batch size is equal
to 32. Each class is represented into the batch with an approx-
imate ratio: 1 tile with background and no building, 2 tiles
with no-damage, 9 with minor damages, 9 with major dam-
ages, and 9 tiles with destroyed buildings. The global loss in-
cludes a balanced cross-entropy and dice loss. 200 epochs are
computed. The dropout rate is equal to 0.01. Data augmen-
tations are done on the input images as vertical and horizontal
flips, light zoom into the range [0.9; 1.1], some rotations (ran-
dom value into [0;360◦)], and modifications of brightness into
the range [0.8; 1.2].
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Figure 6. Architecture with fusion of 4 specialized binary
networks

4. RESULTS

In this part, results are given for the building semantic segmen-
tation and damages detection.

4.1 Building segmentation

This study has been focused on U-Net type architecture for
building segmentation part. Evaluations have been run on the
xView2 test database. As usual, test database has not been used
during learning phase. But the test database is related to the
same disasters and it is extracted from the same original dataset
as the learning database.

Model Parameters Precision Recall Score
number F1

(millions)
MobileNet-V2 5.1 0.702 0.887 0.784
SE-ResNet-101 62.3 0.78 0.822 0.801
EfficientNet-B0 8.6 0.771 0.859 0.813
EfficientNet-B5 59 0.805 0.866 0.834

Table 1. Synthesis of building segmentation results

Among the different architectures, Unet-EfficientNet-B5 rises
the best performance, with F1-score up to 83%. Unet-
EfficientNet networks performance is confirmed on this use
case. We can notice that Unet-EfficientNet-B0 got better per-
fomance than Unet-SE-Resnet-101 while it got only 8.6M pa-
rameters.

The largest studied network EfficientNet-B5 gives the best re-
sults, but the computation time for the training is larger, higher
occupied memory into the Graphical Processing Unit. Also the
inference time and computation cost is larger with such network
compared to EfficientNet-B0 and MobileNet-V2.

4.2 Damages classification

The results presented here are computed for all pixels of the
images, whereas in the xView2 challenge, results are computed
at pixel level on buildings area only.

Model No Minor Major De-
damage damage damage stroyed

EffNet-B0 0.725 0.548 0.587 0.729
EffNet-B2 0.717 0.535 0.577 0.713

Table 2. Synthesis of damage classification results (F1 score)

4.2.1 Classification using building segmentation: The
first damage detection network classifies each couple of tiles
centered of buildings. Results of classification networks are
given in table 2.

Despite its lower number of parameters (5.3M related to
9.2M), the EfficientNet-B0 network gives better results than the
EfficientNet-B2. In order to evaluate the performance of the
classification network, evaluation is done considering a perfect
building detection : consequently, the ground truth of building
is used to create each tiles. The buildings ground truth con-
tains well separated buildings map contrary to the output map
of the MobileNet or EfficientNet semantic segmentation with
fused buildings. Global performance results should also take
into account previous building segmentation model errors.

4.2.2 Siamese network using pre and post images: UNet-
EfficientNet have been used as encoder in the siamese network.
It leads to the results (F1 score) in table 3.

No Minor Major De-
Model damage damage damage stroyed
EffNet-B0 0.790 0.412 0.635 0.702
EffNet-B5 0.556 0.097 0.222 0.609

Table 3. Siamese networks results

UNet-EfficientNet-B0 results are the best and satisfying, except
for minor damages class. UNet-EfficientNet-B5 evaluation suf-
fers from machine limitations that conduct to a batch size lim-
ited to 2. This explains why the EfficientNet-B5 results are not
satisfying. These results are computed for all pixel of the build-
ing semantic segmentation, and so integrate building detection
errors.

Figure 7. Results with siamese network

4.2.3 Binary siamese networks: Several fusion methods
have been tested, and compared to multiclasse. It leads to the
results given in table 5.

For each cascade network, only pixels that have not be classified
previously are classified by this network.

These results show firstly the difficulty to distinguish minor an
major damages. Secondly, it is interesting to note that using
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id Description
1 EfficientNet-B0 (multiclass)
2 Binary DNN: no damage → destroyed → major

→ minor
3 Binary DNN: no damage → destroyed

→ major + minor
+ major and minor separation afterwards

4 EfficientNet-B0 (multiclass)
major and minor damages classes are fused

Table 4. Description of fusion policies

Model No Minor Major De-
damage damage damage stroyed

1 0.790 0.412 0.635 0.702
2 0.805 0.328 0.538 0.635
3 0.805 0.603 0.691
5 0.790 0.624 0.702

Table 5. Binary siamese networks results

several binary networks and merge them, does not increase per-
formance compared to a multiclass network. The difficulty of
the multiclass network training is ensuring that all classes are
well represented by samples into each batch or into each epoch.
Moreover, classes weights shall be taken into account into the
cross-entropy loss.

4.3 Validation

Building detection validation tests on Haiti data have been re-
alized with the 5-class segmentation model UNet-EfficientNet-
B5. Figure 8, figure 9 and figure 10 present an example.

Figure 8. Haiti validation image

The output of building detection has a good quality and may
help image analyst to achieve rapid mapping operations.

The evaluation of building damages is also interesting. Some
area with major damages in red contrasts with the other building
are. It gives a preliminary idea of where the hurricane created
more damages, with an automatic processing chain.

5. CONCLUSION

In this work, several architectures of neural networks have
been trained to evaluate damages between pre-disaster and post-
disaster images. The class ”minor damage” appears to be the
more complicated to learn. So an approach with specialized net-
works is a potential solution to alleviate this problem. Some im-
provements have been studied, as merging the results of damage

Figure 9. Haiti building detection ground truth

Figure 10. Haiti building detection

Figure 11. Haiti validation image 2

segmentation with a preliminary building segmentation (made
only with the pre-disaster image). Several proposed solutions
give interesting results for photo-interpreters.
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