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ABSTRACT:

Carbon losses have enormous impacts on ecosystem and indicative meaning for ecological stability, which are, therefore, necessary to
be evaluated. In recent years, with the increasingly number of people settling in Amazon basin, large areas of tropical forests have
been exploited, which took the mainly responsible for local deforestation.

Carbon losses are hardly to be evaluated directly but can be inferred from the relationship between potential carbon and forest structures
referring to previous studies. Remote sensing-based methods are widely used because of the obvious advantages of, such as the
repeatability of data collection, high correlations between spectral bands and vegetation parameters etc. However, the selection of the
spatial resolution of data is a critical issue that should be taken into consideration for it influences the performance of image texture
thereby the discrimination of land covers, especial in complex forest stand structure. The approach for image feature extraction used
in the study is explained.

Based on the available datasets, this study aims to estimate the potential carbon losses across selected plot in Nova Vida Ranch,
Rondénia, Brazil between 1989 and 2001. The results showed that carbon potentials decreased at least 1.1*108 (Kg C) during the 12
years, which would affect all the climate, wildlife habitats and biodiversity. The study suggested that it is significantly important to
reduce the uncertainties that are caused by saturation in some of the tropic areas. To pursue this, the research on the integration of

optical and radar data is worth to experiment in further study.

1. INTRODUCTION

In recent years, with the increasingly number of people settling
in Amazon basin, large areas of tropical forests have been
exploited. whatever the various purposes of exploitation were, for
example, timber extraction, shifting cultivation, permanent
agriculture and pasture (Moraes et al, 1998), at least 50% of
tropical forest areas, were converted to agricultural lands from
1980s to 1990s, which took the mainly responsible for local
deforestation (Myers, 1991).

Carbon loss due to deforestation and degradation has enormous
impacts on ecosystem (Myers, 1991), and thus it is important to
monitor the losses. Carbon losses are hardly to be evaluated
directly but can be inferred from the relationship between
potential carbon and forest structures referring to previous studies
(Lu, 2006, Moraes et al, 1998, Steininger, 2000, Foody et al, 2003,
Zheng et al, 2004). Many cases showed that traditional field
measurements, remote sensing and GIS, were mainly used for
estimation (Lu, 2006). Among them, remote sensing-based
methods are widely used (Moraes et al, 1998, Steininger, 2000,
Foody et al, 2003, Zheng et al, 2004), depending on the
advantages of remote sensed data on estimating biomass (Lu,
2006), such as the repetitivity of data collection, high correlations
between spectral bands and vegetation parameters etc.. For
example, Liu et al (2020) calculated carbon loss through the
changes of land use and land cover changes (LULCC) in wetland.
Zheng et al (2004) bridges the application of remote sensing
techniques with various forest management practices in
Chequamegon National Forest, Wisconsin, USA by producing a
high-resolution stand age map and a spatially explicit above-
ground biomass (AGB) map. Lu (2006) chose Landsat Thematic
Mapper (TM) data to estimate AGB in relatively simple forest
structure areas.

Based on the available datasets, this paper aims to estimate the
potential losses across the selected plot in Nova Vida Ranch,

Rondénia, Brazil between 1989 and 2001. Firstly, deforestation
is detected by analysing the LULCCs. In order to improve the
discrimination of land covers (LCs), especial in complex forest
stand structure, principal component analysis (PCA) is adopted
in the study to enhance the ability of extraction of image features.
Secondly, based on the carbon potentials for different types of
land covers, the losses of carbon potentials are estimated, and the
causes of loss are also discussed.

2. METHOD
2.1 Study area

The study area (covering about 375km?) is located in the

southwestern Brazilian Amazon basin, in Rondonia state (Figure

1). The experimental site is conducted at Nova Vida Ranch (NVR)
where has total area of 22000 ha (220 km?) (Graca et al, 1999).

The climate of NVR is humid tropical with high annual

precipitation of 2200mm (Bastos and Diniz, 1982).

Natural vegetation has been classified as ‘open humid tropical
forest’ and mainly consist of palm trees (Pirez and Prance, 1985).
Two main soil types are classified by Moraes et al (1998) in terms
of U. S. soil taxonomy, including Kandiudult (red yellow
podzolic latosolic) and Ultisol (red yellow podolic soil). Both of
them cover almost 60 per cent of the area of Amazon basin.

(v\;/ L\/}o/\

Brazil

4
Ji-Parana

Rondonia \
K/ Nh ena
/ 250km

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1235-2022 | © Author(s) 2022. CC BY 4.0 License.

1235



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022
XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France

Figure 1 Study area. Modified from: Moraes et al, 1998
2.2 Carbon losses estimation

The calculation of the carbon losses between 1989 and 2001
requires the knowledge of the areas of LULCC during this time
period and the AGB estimate in different LC features. Olson et al
(1983) summarised carbon potentials in major world ecosystem
complexes, which provided the relevant carbon stored data. In
that case, the LULCC is detected using post classification method.

2.2.1 Data pre-processing

Geometric correction is required in data pre-processing by using
image to image registration that is used to geometrically aligns
two images taken at different times and / or by different sensors
(Zitova and Flusser, 2003). The two Landsat data that the early
one (1989) is from Thematic Mapper (TM) sensor and the later
one (2001) is from Enhance Thematic Mapper (ETM). Ten
ground control points (GCPs) are chosen and the RMS was
controlled within 0.1103 to get more accurate registration, as
poor geometric accuracies could result in false relationships
between AGB and the remote sensed data (Halme and Tomppo,
2001).

2.2.2 Land cover (LC) classification

LC classification is conducted using supervised classification
method. According to the previous studies on LC types in Nova
Vida Ranch and Amazon basin (Moraes et al, 1998, Braswell et
al, 2003), the LC are classified into 4 broad types including forest,
soil/sparse grass (SSG), grassland and non-vegetation features
(NVF). The details are showed in Table 1.

Broad Types Content Colour

Woodland
Forest Dense vegetation Green
Soil /Sparse Bare soil _
grass Sparse grass Sienna
(SSG)

Pasture
Grassland Agricultural land Yellow
} . Urban area (Major type)

Non-vegetation Road Magenta
features (NVF)

Unknown

Table 1 Land cover classification.

Training samples are collected for supervised classification, of
which the collected pixel should be as few, according to Moraes
et al (1998) suggested of range of three to six, and
homogenous(uniformly coloured area) as possible, because the
high number of pixels results in high standard deviation thereby
decreasing the classification accuracy (Moraes et al, 1998, Gong
and Howarth, 1992). To ensure all types of textures within same
LCs can be collected, it is no doubt to increase the workloads.

A combination of spectral responses and image textures improves
biomass estimation performance (Lu, 2006), since spectral
information can help compensating textural losses in some
degree. Principal component analysis (PCA) is adopted in this
study and spectral signature is also used to detect the same LC
types. Since PCA can convert a set of relevant variables into
another group of irrelevant variables by linear transformation
(Lin et al, 2012, Zhao et al, 2012) and can also reduce the

topographic effects on vegetation reflectance. According to Li et
al (2014), the first principal component (PC-1) is required to have
the largest possible variance and the result of PCA show that the
PC-1 obtain the highest eigenvalues in both images (Figure 2).
Therefore, the PC-1 images are used to compare with true colour
images to identify the LC types. Based on the characteristics of
remotely sensed data, same LC features have similar spectral
signals, which is conducive to classify the features that are too
fragmented to identify from the images. Finally, both images are
classified based on the training samples that are collected by
using region of interest (ROI) function in ENVI.
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Figure 2 The result of principal component analysis; left: TM;
right : ETM

2.2.3 Carbon losses estimation

The carbon potentials provided by Olson et al (1983) are
estimated in world ecosystem scale thereby not very precisely.
Therefore, instead of exact data, median and estimated range are
adopted. Olson demonstrated the carbon potentials in specific
types of LCs and corresponding to the environments of this study
area, the following categories and values are considered
reasonably to be adopted, as showed in Table 2.

The carbon balances are estimated based on the LULCCs and the
carbon potentials for each type of LC. The equation (Eq. 1) is
showed as follow.

Carbon balance=
> carbon potentialsixAreaii =Y Carbon potentiali<Areari (1)

where i is the type of LC, li is the initial area of each LC in 1989
and Fi is the final area in 2001.
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3. ULTS AND DISCUSSION
3.1 Land cover changes

In 1989, the LC types consisted mainly of forest and SSG. The
distributions of grasslands were scattered around the margin of
the forest and that of NVFs were relative concentrated. While in
2001, the primary LC types were forest, grassland and NVFs. The
original SSG lands were almost disappeared (Figure 3). As can
be seen from Figure 4, the proportion of SSG decreased from 21
per cent to 7 per cent and that of forest also shrank from 55 per
cent to 48 per cent. In the contrast, the proportions of grassland
and NVFs grew 12 and 9 per cent respectively.

Carbon Carbon
potentials | potentials
Land cover Category Median Range
(Kg C/m?) | (Kg C/m?)
Main tropical
forest (broad-
Forest leaved humid 12 4-25
forest)
Grass and shrub
Grassland complexes (main 0.9 0.5-3
grassland, warm
and hot)
Soil / Sparse
grass (SSG) Heath 1.0 1-2
Non- .
. Marginal Lands
¥: aﬂitrztslon (warm or hot 0.8 0.6-2
(NVF) settlements)

Table 2 Carbon potentials estimated for land covers

B 5
™ glﬁ

Figure 3 The results of land cover classifications in 1989 (a) and
2001 (b). Forest (green); Soil / Sparse grass (sienna), Grassland
(yellow), Non-vegetation features (magenta).

The specific changing patterns are showed in Figure 4 a, b, c, d
and statistic results are showed in Table 3. Firstly, forest areas
were mainly replaced by NVFs and grassland. The total
deforestation area was 24.75 km?. Secondly, it is notable that
almost all the original SSG lands were almost replaced by
grassland and NVFs. The total SSG loss was 49.92 km?2. Thirdly,
Urban areas (NVFs) increased significantly across the
experimental area during the period of time, however, parts of
original areas were replaced by grassland. The total expansion
was 32.32 km2. Finally, grassland area also had a dramatic
increase, while only a small part of original grassland was
replaced. From 1989 to 2001, grassland area grew 42.34 km?2.

O Forest OGrassland

OSoil / Sparse grass ONon-vegetation

!/

1989

OForest O Grassland

OSoil / Sparse grass ONon-vegetation

i

2001
Figure 4 The proportion of each land cover in 1989 and 2001

3.2 Carbon loss

Caused by the deforestation and exploitation of soils, the total
carbon potentials displayed a deceased trend. From 1989 to 2001
(Table 4), at least 1.08x<108 (Kg C) carbon potentials were
depleted and the maximum losses would reach 5.27x108 (Kg C).
The median was 2.83%108 (Kg C).

Comparing the result with previous study, Moraes et al (1998)
also did a similar research in Rondonia, Brazil using a Landsat
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Initial 1989
Area/ km? Forest Grassland SSG NVF Row Total Class Total
Forest 146.66 24.14 9.08 0.87 180.75 180.75
Grassland 30.97 16.98 33.24 14.84 96.03 96.03
—
§ SSG 11.10 3.06 9.86 3.72 27.74 27.74
©
LEL NVF 16.76 9.50 25.48 19.68 71.42 71.42
Class Total 205.50 53.69 77.66 39.11 0 0
Image 2475 42.34 -49.92 32.32 0 0
Difference

Table 4 Change detection statistics

TM image that was acquired in 1991. They once suggested that
during forest burning and decay of unburnt biomass release a
considerable amount of carbon to atmosphere. In the research, the
mosaic pastures that were converted from deforested land were
discriminated of different ages. The results showed that the
highest release of CO: to the atmosphere was 1.104<1012 Kg and
occurred in the first three years after forest burning. The total

amount of carbon released after twenty years was 1.472x1012 Kg.

The comparison is illustrated in Table 5. By comparison, it can
be concluded that forest shrink was the main cause of carbon
losses (over half of total losses) around Rondonia.

Kg C;
Forest carbon loss
was 2.97x<108 Kg C

Comparison
between 1989 and Moraes et al (1998)
2001

Study

areas 375 9200

(km?)

Carbon | The highest loss in 12 | The total release of 20
losses years was 5.270x108 | years was 1.472x10%?

Kg;
The highest release of
1.104x<10%? Kg;

Forest biomass
burning of 6.716>10*
Kg

Table 5 Comparing with the study of Moraes et al (1998)
3.3 The impact of carbon loss and deforestation

Through analysis, it could be inferred that carbon loss in NVR
was mainly caused by deforestation and soil degradation. Such
changes may result in effects on climate change, biological
diversity, and other environmental influences (LU, 2006). In
terms of carbon cycling process, the losses of carbon, which
originally stored in vegetation, soils and other organic matters,
were mainly discharged in forms of carbon dioxide (COz2).
Basically, atmospheric CO2 would be absorbed by
photosynthesis, however, due to the deforestation and soil
degradation, large amount of CO2 could not be absorbed which
resulted in the increase of CO2 concentration.

The increase of CO2would lead to the climate change. According
to Cao and Woodward (1998), who used terrestrial
biogeochemical model to quantify the dynamic variations in
ecosystem carbon fluxes from 1861 to 2070 in northern,

temperate and tropical areas. They estimated that between the
1860s and the 2060s, COz2 increases from 288 to 640 p.p.m.v.,
and global terrestrial temperature rises from 12.5 to 15.5 C°.

3.4  The impact of carbon loss and deforestation

It has been found that traditional optical sensors still have
insufficiencies in practical use. On the one hand, they are
vulnerable to climate and atmospheric conditions that they are
hardly to capture the textures and even spectral signals of LCs in
cloudy or rainy days. On the other hand, they are not able to
construct the structure of LCs, even if some studies simulated the
structures by means of index models, such as NDVI, RVI, LAI
and etc.(Wulder, 1998, Guillevic et al.,, 2002, Lu and
Shuttleworth, 2002), but still shows defects in physical and direct
understanding. That would affect the LCs recognition and
discrimination and thereby the estimation of carbon changes.

With the booming of non-optical sensors in recent years,
increasing of studies have been exploring the methods of
combinations of multi-source sensors in order to alleviate the
external influences and resolve the problem of class homogeneity
of LC discrimination. Researchers found that the estimation of
biomass and other forest structures were got significantly
improved by using the synergy of information obtained from
multi-source sensors. There are couples of sensors have been
discussing most these years. Lidar and Radar show the advantage
on supplying the accurate height and biomass measurements in
successional forest (Sang et al, 2007, Ban, 2003, Lim, 2003).
Because radar backscatter in the P and L bands is highly
correlated with major forest parameters and SAR L-band data
have proven to be particularly valuable for AGB estimation (Sun
et al. 2002). For example, Sang et al (2007) integrated the series
of ERS-1 data and SPOT XS image and got a slight improved
overall accuracy in discriminating different vegetation types. In
this case, future study would pay more attention on
experimenting effective combinations of sensors to improve the
estimation accuracies.

4. CONCLUSION

In conclude, the study deems that the deforestation and soil
degradation are the main causes of potential carbon losses in
tropical areas. The carbon potentials decreased at least 1.08x<108
(Kg C) and reach maximum of 5.27x108 (Kg C) in a span of 12
years. Climate, wildlife habitats and biodiversity would all be
affected. The carbon losses are estimated by using changed areas
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with published carbon potential data. In order to detect changed
area, supervised classification was carried out and the training
samples were selected based on the PCA and spectral signatures
of LC. The used methods are still required to be improved on
reducing the uncertainty and errors. In future, more attentions
would be paid on studying effective combinations of sensors to
improve the estimation accuracies.
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