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ABSTRACT: 

 

Carbon losses have enormous impacts on ecosystem and indicative meaning for ecological stability, which are, therefore, necessary to 

be evaluated. In recent years, with the increasingly number of people settling in Amazon basin, large areas of tropical forests have 

been exploited, which took the mainly responsible for local deforestation.  

Carbon losses are hardly to be evaluated directly but can be inferred from the relationship between potential carbon and forest structures 

referring to previous studies. Remote sensing-based methods are widely used because of the obvious advantages of, such as the 

repeatability of data collection, high correlations between spectral bands and vegetation parameters etc. However, the selection of the 

spatial resolution of data is a critical issue that should be taken into consideration for it influences the performance of image texture 

thereby the discrimination of land covers, especial in complex forest stand structure. The approach for image feature extraction used 

in the study is explained. 

Based on the available datasets, this study aims to estimate the potential carbon losses across selected plot in Nova Vida Ranch, 

Rondônia, Brazil between 1989 and 2001. The results showed that carbon potentials decreased at least 1.1*108 (Kg C) during the 12 

years, which would affect all the climate, wildlife habitats and biodiversity. The study suggested that it is significantly important to 

reduce the uncertainties that are caused by saturation in some of the tropic areas. To pursue this, the research on the integration of 

optical and radar data is worth to experiment in further study.  

 

1. INTRODUCTION 

 

In recent years, with the increasingly number of people settling 

in Amazon basin, large areas of tropical forests have been 

exploited. whatever the various purposes of exploitation were, for 

example, timber extraction, shifting cultivation, permanent 

agriculture and pasture (Moraes et al, 1998), at least 50% of 

tropical forest areas, were converted to agricultural lands from 

1980s to 1990s, which took the mainly responsible for local 

deforestation (Myers, 1991).  

 

Carbon loss due to deforestation and degradation has enormous 

impacts on ecosystem (Myers, 1991), and thus it is important to 

monitor the losses. Carbon losses are hardly to be evaluated 

directly but can be inferred from the relationship between 

potential carbon and forest structures referring to previous studies 

(Lu, 2006, Moraes et al, 1998, Steininger, 2000, Foody et al, 2003, 

Zheng et al, 2004). Many cases showed that traditional field 

measurements, remote sensing and GIS, were mainly used for 

estimation (Lu, 2006). Among them, remote sensing-based 

methods are widely used (Moraes et al, 1998, Steininger, 2000, 

Foody et al, 2003, Zheng et al, 2004),  depending on the 

advantages of remote sensed data on estimating biomass (Lu, 

2006), such as the repetitivity of data collection, high correlations 

between spectral bands and vegetation parameters etc.. For 

example, Liu et al (2020) calculated carbon loss through the 

changes of land use and land cover changes (LULCC) in wetland. 

Zheng et al (2004) bridges the application of remote sensing 

techniques with various forest management practices in 

Chequamegon National Forest, Wisconsin, USA by producing a 

high-resolution stand age map and a spatially explicit above-

ground biomass (AGB) map. Lu (2006) chose Landsat Thematic 

Mapper (TM) data to estimate AGB in relatively simple forest 

structure areas.  

 

Based on the available datasets, this paper aims to estimate the 

potential losses across the selected plot in Nova Vida Ranch, 

Rondônia, Brazil between 1989 and 2001. Firstly, deforestation 

is detected by analysing the LULCCs. In order to improve the 

discrimination of land covers (LCs), especial in complex forest 

stand structure, principal component analysis (PCA) is adopted 

in the study to enhance the ability of extraction of image features. 

Secondly, based on the carbon potentials for different types of 

land covers, the losses of carbon potentials are estimated, and the 

causes of loss are also discussed.  

 

2. METHOD 

2.1 Study area 

The study area (covering about 375km2) is located in the 

southwestern Brazilian Amazon basin, in Rondonia state (Figure 

1). The experimental site is conducted at Nova Vida Ranch (NVR) 

where has total area of 22000 ha (220 km2) (Graca et al, 1999). 

The climate of NVR is humid tropical with high annual 

precipitation of 2200mm (Bastos and Diniz, 1982). 

 

Natural vegetation has been classified as ‘open humid tropical 

forest’ and mainly consist of palm trees (Pirez and Prance, 1985). 

Two main soil types are classified by Moraes et al (1998) in terms 

of U. S. soil taxonomy, including Kandiudult (red yellow 

podzolic latosolic) and Ultisol (red yellow podolic soil). Both of 

them cover almost 60 per cent of the area of Amazon basin. 
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Figure 1 Study area. Modified from: Moraes et al, 1998 

 

2.2 Carbon losses estimation 

The calculation of the carbon losses between 1989 and 2001 

requires the knowledge of the areas of LULCC during this time 

period and the AGB estimate in different LC features. Olson et al 

(1983) summarised carbon potentials in major world ecosystem 

complexes, which provided the relevant carbon stored data. In 

that case, the LULCC is detected using post classification method. 

 

2.2.1 Data pre-processing 

Geometric correction is required in data pre-processing by using 

image to image registration that is used to geometrically aligns 

two images taken at different times and / or by different sensors 

(Zitova and Flusser, 2003). The two Landsat data that the early 

one (1989) is from Thematic Mapper (TM) sensor and the later 

one (2001) is from Enhance Thematic Mapper (ETM). Ten 

ground control points (GCPs) are chosen and the RMS was 

controlled within 0.1103 to get more accurate registration, as 

poor geometric accuracies could result in false relationships 

between AGB and the remote sensed data (Halme and Tomppo, 

2001). 

 

2.2.2 Land cover (LC) classification 

LC classification is conducted using supervised classification 

method. According to the previous studies on LC types in Nova 

Vida Ranch and Amazon basin (Moraes et al, 1998, Braswell et 

al, 2003), the LC are classified into 4 broad types including forest, 

soil/sparse grass (SSG), grassland and non-vegetation features 

(NVF). The details are showed in Table 1. 

 

Broad Types Content Colour 

Forest 
Woodland 

Dense vegetation 
Green 

Soil /Sparse 

grass 

(SSG) 

Bare soil 

Sparse grass 
Sienna 

Grassland 
Pasture 

Agricultural land 
Yellow 

Non-vegetation 

features (NVF) 

Urban area (Major type) 

Road 

Unknown 

Magenta 

 

Table 1 Land cover classification.  

 

Training samples are collected for supervised classification, of 

which the collected pixel should be as few, according to Moraes 

et al (1998) suggested of range of three to six, and 

homogenous(uniformly coloured area) as possible, because the 

high number of pixels results in high standard deviation thereby 

decreasing the classification accuracy (Moraes et al, 1998, Gong 

and Howarth, 1992). To ensure all types of textures within same 

LCs can be collected, it is no doubt to increase the workloads. 

 

A combination of spectral responses and image textures improves 

biomass estimation performance (Lu, 2006), since spectral 

information can help compensating textural losses in some 

degree. Principal component analysis (PCA) is adopted in this 

study and spectral signature is also used to detect the same LC 

types. Since PCA can convert a set of relevant variables into 

another group of irrelevant variables by linear transformation 

(Lin et al, 2012, Zhao et al, 2012) and can also reduce the 

topographic effects on vegetation reflectance. According to Li et 

al (2014), the first principal component (PC-1) is required to have 

the largest possible variance and the result of PCA show that the 

PC-1 obtain the highest eigenvalues in both images (Figure 2). 

Therefore, the PC-1 images are used to compare with true colour 

images to identify the LC types. Based on the characteristics of 

remotely sensed data, same LC features have similar spectral 

signals, which is conducive to classify the features that are too 

fragmented to identify from the images. Finally, both images are 

classified based on the training samples that are collected by 

using region of interest (ROI) function in ENVI.  

 

 

 

 

Figure 2 The result of principal component analysis; left: TM; 

right：ETM 

 

2.2.3 Carbon losses estimation 

The carbon potentials provided by Olson et al (1983) are 

estimated in world ecosystem scale thereby not very precisely. 

Therefore, instead of exact data, median and estimated range are 

adopted. Olson demonstrated the carbon potentials in specific 

types of LCs and corresponding to the environments of this study 

area, the following categories and values are considered 

reasonably to be adopted, as showed in Table 2. 

 

The carbon balances are estimated based on the LULCCs and the 

carbon potentials for each type of LC. The equation (Eq. 1) is 

showed as follow. 

 

Carbon balance= 

∑carbon potentialsi×AreaIi - ∑Carbon potentiali×AreaFi    (1) 

 

where i is the type of LC, Ii is the initial area of each LC in 1989 

and Fi is the final area in 2001. 
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3. ULTS AND DISCUSSION  

3.1 Land cover changes   

In 1989, the LC types consisted mainly of forest and SSG. The 

distributions of grasslands were scattered around the margin of 

the forest and that of NVFs were relative concentrated. While in 

2001, the primary LC types were forest, grassland and NVFs. The 

original SSG lands were almost disappeared (Figure 3). As can 

be seen from Figure 4, the proportion of SSG decreased from 21 

per cent to 7 per cent and that of forest also shrank from 55 per 

cent to 48 per cent. In the contrast, the proportions of grassland 

and NVFs grew 12 and 9 per cent respectively. 

 

Land cover Category 

Carbon 

potentials 

Median 

(Kg C/m2)  

Carbon 

potentials 

Range 

(Kg C/m2) 

Forest 

Main tropical 

forest (broad-

leaved humid 

forest) 

12 4 -25 

Grassland 

Grass and shrub 

complexes (main 

grassland, warm 

and hot) 

0.9 0.5-3 

Soil / Sparse 

grass (SSG) 
Heath 1.0 1-2 

Non-

vegetation 

features 

(NVF) 

Marginal Lands 

(warm or hot 

settlements) 

0.8 0.6-2 

 

Table 2 Carbon potentials estimated for land covers 

 

 

 

 

 

Figure 3 The results of land cover classifications in 1989 (a) and 

2001 (b). Forest (green); Soil / Sparse grass (sienna), Grassland  

(yellow), Non-vegetation features (magenta). 

 

The specific changing patterns are showed in Figure 4 a, b, c, d 

and statistic results are showed in Table 3. Firstly, forest areas 

were mainly replaced by NVFs and grassland. The total 

deforestation area was 24.75 km2. Secondly, it is notable that 

almost all the original SSG lands were almost replaced by 

grassland and NVFs. The total SSG loss was 49.92 km2. Thirdly, 

Urban areas (NVFs) increased significantly across the 

experimental area during the period of time, however, parts of 

original areas were replaced by grassland. The total expansion 

was 32.32 km2. Finally, grassland area also had a dramatic 

increase, while only a small part of original grassland was 

replaced. From 1989 to 2001, grassland area grew 42.34 km2.  

 

 
 

 
Figure 4 The proportion of each land cover in 1989 and 2001 

 

3.2 Carbon loss 

Caused by the deforestation and exploitation of soils, the total 

carbon potentials displayed a deceased trend. From 1989 to 2001 

(Table 4), at least 1.08×108 (Kg C) carbon potentials were 

depleted and the maximum losses would reach 5.27×108 (Kg C). 

The median was 2.83×108 (Kg C). 

 

Comparing the result with previous study, Moraes et al (1998) 

also did a similar research in Rondonia, Brazil using a Landsat  

1989 
 

2001 
 

55%

14%

21%

10%

Forest Grassland

Soil / Sparse grass Non-vegetation

1989 
 

48%

26%

7%

19%

Forest Grassland

Soil / Sparse grass Non-vegetation

2001 
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 Initial 1989 

F
in

ia
l 

2
0

0
1
 

Area/ km2  Forest Grassland SSG NVF Row Total Class Total 

Forest 146.66 24.14 9.08 0.87 180.75 180.75 

Grassland 30.97 16.98 33.24 14.84 96.03 96.03 

SSG 11.10 3.06 9.86 3.72 27.74 27.74 

NVF 16.76 9.50 25.48 19.68 71.42 71.42 

Class Total 205.50 53.69 77.66 39.11 0 0 

Image 

Difference 
-24.75 42.34 -49.92 32.32 0 0 

 

Table 4 Change detection statistics 

 

TM image that was acquired in 1991. They once suggested that 

during forest burning and decay of unburnt biomass release a 

considerable amount of carbon to atmosphere. In the research, the 

mosaic pastures that were converted from deforested land were 

discriminated of different ages. The results showed that the 

highest release of CO2 to the atmosphere was 1.104×1012 Kg and 

occurred in the first three years after forest burning. The total 

amount of carbon released after twenty years was 1.472×1012 Kg. 

The comparison is illustrated in Table 5. By comparison, it can 

be concluded that forest shrink was the main cause of carbon 

losses (over half of total losses) around Rondonia. 

 

 

Comparison 

between 1989 and 

2001 

Moraes et al (1998) 

Study 

areas 

(km2) 

 

375 

 

9200 

Carbon 

losses 

The highest loss in 12 

years was 5.270×108 

Kg C; 

Forest carbon loss 

was 2.97×108 Kg C 

 

The total release of 20 

years was 1.472×1012 

Kg; 

The highest release of 

1.104×1012 Kg; 

Forest biomass 

burning of 6.716×1011 

Kg 

 

Table 5 Comparing with the study of Moraes et al (1998) 

 

3.3 The impact of carbon loss and deforestation 

Through analysis, it could be inferred that carbon loss in NVR 

was mainly caused by deforestation and soil degradation. Such 

changes may result in effects on climate change, biological 

diversity, and other environmental influences (LU, 2006). In 

terms of carbon cycling process, the losses of carbon, which 

originally stored in vegetation, soils and other organic matters, 

were mainly discharged in forms of carbon dioxide (CO2). 

Basically, atmospheric CO2 would be absorbed by 

photosynthesis, however, due to the deforestation and soil 

degradation, large amount of CO2 could not be absorbed which 

resulted in the increase of CO2 concentration.  

 

The increase of CO2 would lead to the climate change. According 

to Cao and Woodward (1998), who used terrestrial 

biogeochemical model to quantify the dynamic variations in 

ecosystem carbon fluxes from 1861 to 2070 in northern, 

temperate and tropical areas. They estimated that between the 

1860s and the 2060s, CO2 increases from 288 to 640 p.p.m.v., 

and global terrestrial temperature rises from 12.5 to 15.5 ℃. 

 

3.4 The impact of carbon loss and deforestation 

It has been found that traditional optical sensors still have 

insufficiencies in practical use. On the one hand, they are 

vulnerable to climate and atmospheric conditions that they are 

hardly to capture the textures and even spectral signals of LCs in 

cloudy or rainy days. On the other hand, they are not able to 

construct the structure of LCs, even if some studies simulated the 

structures by means of index models, such as NDVI, RVI,  LAI 

and etc.(Wulder, 1998, Guillevic et al., 2002, Lu and 

Shuttleworth, 2002), but still shows defects in physical and direct 

understanding.  That would affect the LCs recognition and 

discrimination and thereby the estimation of carbon changes.  

With the booming of non-optical sensors in recent years, 

increasing of studies have been exploring the methods of 

combinations of multi-source sensors in order to alleviate the 

external influences and resolve the problem of class homogeneity 

of LC discrimination. Researchers found that the estimation of 

biomass and other forest structures were got significantly 

improved by using the synergy of information obtained from 

multi-source sensors. There are couples of sensors have been 

discussing most these years. Lidar and Radar show the advantage 

on supplying the accurate height and biomass measurements in 

successional forest (Sang et al, 2007, Ban, 2003, Lim, 2003). 

Because radar backscatter in the P and L bands is highly 

correlated with major forest parameters and SAR L-band data 

have proven to be particularly valuable for AGB estimation (Sun 

et al. 2002). For example, Sang et al (2007) integrated the series 

of ERS-1 data and SPOT XS image and got a slight improved 

overall accuracy in discriminating different vegetation types. In 

this case, future study would pay more attention on 

experimenting effective combinations of sensors to improve the 

estimation accuracies. 

 

4. CONCLUSION 

 

In conclude, the study deems that the deforestation and soil 

degradation are the main causes of potential carbon losses in 

tropical areas. The carbon potentials decreased at least 1.08×108 

(Kg C) and reach maximum of 5.27×108 (Kg C) in a span of 12 

years. Climate, wildlife habitats and biodiversity would all be 

affected. The carbon losses are estimated by using changed areas 
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with published carbon potential data. In order to detect changed 

area, supervised classification was carried out and the training 

samples were selected based on the PCA and spectral signatures 

of LC. The used methods are still required to be improved on 

reducing the uncertainty and errors. In future, more attentions 

would be paid on studying effective combinations of sensors to 

improve the estimation accuracies. 
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