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ABSTRACT: 

 

Due to the relatively complex construction and demolition waste (C&DW) spectrum and texture, it is difficult to identify C&DW by 

simply constructing a remote sensing index. Therefore, this study proposes an automatic identification method of C&DW based on 

deep learning and the Gaofen-2 (GF-2) Data. Pingdingshan City and Jining City in China were selected as the research areas in the 

study. The dataset used for deep learning training and testing in the study area was captured by the GF-2 Data. On the basis of this 

dataset, the deep learning model DeepLabv3+ is used to identify C&DW. The overall accuracy rate of the deep learning model for 

identifying C&DW is 82.02%, and the overall mIoU is 82.39%. The accuracy of the model for the identification of C&DW areas is 

further verified by ground verification. The results of this study are helpful for the survey and management of C&DW, which is 

beneficial to the study of spatial and temporal distribution of urban C&DW, resource utilization and environmental pollution risk 

reduction. 

 

 

1. INTRODUCTION 

Construction and demolition waste (C&DW) refers to the solid 

waste generated by man-made or natural reasons in the 

production activities of construction and demolition of 

buildings, including waste concrete, residue soil, waste masonry, 

residual mud, abandoned materials and other wastes (Zhao et al., 

2019). With the development of the economy and the 

improvement of people’s demand for urban modernization, 

construction and related industries have developed rapidly. At 

the same time, the C&DW surge problem is increasingly serious. 

The generation of a large amount of C&DW leads to many 

urban environmental problems (Zhang et al., 2020), such as 

land waste, water pollution, air pollution, etc., which has 

aroused widespread attention in society. Due to the 

characteristics of uncertain stacking location, huge output and 

complex composition of C&DW, how to effectively identify 

and grasp the spatial distribution information of C&DW has 

become one of the hot issues in society. 

 

Compared with the traditional manual field survey for the 

positioning and detection of C&DW sites, the efficient, rapid 

and high-precision images generated by remote sensing 

technology are more likely to achieve ground object monitoring. 

With the rise of remote sensing technology, the application 

fields of high-resolution satellite remote sensing data have 

involved surveying and mapping, urban planning, land 

management, environment, agriculture and so on (Zhang et al., 

2021). Due to the particularity of C&DW in color, shape, 

texture and other aspects, and the great similarity between 

C&DW and other ground objects in the background in satellite 

images, C&DW identification based on high-resolution remote 

sensing images has become widely concerned and challenging 

research. C&DW identification based on remote sensing images 

can be divided into two aspects: composition monitoring of 

C&DW (Hang et al., 2018; Jia et al., 2021) and investigation of 

municipal solid waste (Zhang et al., 2013). At present, the 

research on the component identification of C&DW and the 

identification of municipal solid waste based on satellite remote 

sensing has established some discrimination basis for the 

spectrum and texture of C&DW, but a systematic theory of 

remote sensing monitoring method has not been established for 

C&DW. Therefore, there is still great uncertainty in the remote 

sensing monitoring of C&DW. 

 

 Machine learning has been successfully used for object 

recognition within images. Existing research shows that the 

random forest (RF) algorithm can identify trend characteristics 

of C&DW, and C&DW can be analyzed and classified by 

machine learning and spectral analysis. However, machine 

learning algorithms can have different recognition effects for 

the same class of objects (Ge et al., 2020). A machine learning 

algorithm is established to identify C&DW based on the Google 

Earth Engine platform (Zhou et al., 2021). Because traditional 

machine learning algorithms cannot capture the deep features of 

C&DW, it is difficult to effectively distinguish it from the 

surrounding ground objects, and image meta-misclassification 

occurs. And machine learning recognition results are dot rather 

than planar. Therefore, compared with traditional machine 

learning algorithms, deep learning is more suitable for 

identifying C&DW. 

 

In recent years, the rapid rise of deep learning technology has 

brought great impetus to remote sensing image analysis and 

research. And the deep learning method based on convolutional 

neural network has shown great potential in surface covering 

classification (Xu et al., 2017), target recognition and extraction 

(Zhu et al., 2018). Compared with the traditional remote 

sensing image analysis method, the deep learning method can 

abstract the high-level features of the image and reduce the 

dimension efficiently. It has shown better model generalization 

ability and higher prediction accuracy in the existing high-
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resolution remote sensing image analysis research. At this stage, 

most of the object identification studies based on high-

resolution remote sensing images are oriented to typical urban 

scenes, such as buildings (Li et al., 2021) and vehicles (Peng et 

al., 2021). There is little research on identifying C&DW. The 

transfer learning and Inception-V3 model were used for 

retraining to realize the automatic identification of C&DW (Zhu 

et al., 2021). Due to the complex texture, shape and color of 

C&DW, a simple CNN structure cannot be applied to identify 

C&DW in complex backgrounds. It is difficult to make a 

distinction between buildings, bare land and other objects 

missing or wrong. So the accuracy of remote sensing automatic 

identification of C&DW is not high. To extract the C&DW area 

accurately from remote sensing images with complex 

backgrounds, a deeper and more specific network architecture is 

needed. 

 

DeepLab algorithm was proposed by the Google team in 2015, 

which is a model focused on semantic segmentation. To 

improve the training performance of the whole network model, 

multi-scale features are introduced into the DeepLab algorithm. 

Design convolution and pooling operations with different 

parameters to obtain feature maps of different sizes, and 

effectively fuse the obtained feature maps in the network model. 

DeepLabv3+ algorithm is one of the most popular network 

models in the field of image semantic segmentation. Compared 

with simple CNN networks and other mainstream deep learning 

networks (U-Net (Olaf Ronneberger et al., 2015), PSPNET 

(Zhao et al., 2017)), DeepLabv3+ has a leading edge on 

multiple public datasets with its distinctive structural features. 

DeepLabv3+ in the ASPP module obtains more abundant 

contextual semantic information through multi-expansion rate 

hole convolution and extracts multi-scale features of C&DW. It 

can increase the model receptive field, avoid the problem of 

information loss caused by pooling operation, and maintain the 

spatial resolution of the image. And it shows excellent 

performance and is leading-edge on public datasets such as 

Cityscapes (Cordts et al., 2016), PASCAL VOC 2012 

(Everingham et al., 2015). DeepLabv3+ has been used on 

CubeSat images to map retrogressive thaw slumps (RTSs) on 

the Tibetan Plateau (Huang et al., 2020). This model can 

effectively recognize RTSs, although the colors and textures of 

the RTS are diverse and similar to those of the surrounding 

environment. RTS remote sensing recognition is similar to 

C&DW recognition from satellite images. DeepLabv3+ can 

identify ground objects that do not have typical textures and 

spectral features. Three-dimensional urban densification is 

monitored using Landsat data (Chen et al., 2020). Mapping 

horizontal and vertical urban densification in Denmark with 

Landsat time series from 1985 to 2018. The results show that an 

implementation of deep networks and the inclusion of multi-

scale contextual information greatly improve the classification 

and the model's ability to generalize across space and time. 

 

Therefore, this study proposes remote sensing automatic 

identification of C&DW based on deep learning network 

DeepLabv3+ and GF-2 data. Building a C&DW sample library 

based on GF-2 data, the deep learning model DeepLabv3+ is 

used to automatically identify the remote sensing image of 

C&DW, which provides a new idea for real-time urban 

monitoring and intelligent control of C&DW. 

 

2. STUDY AREA AND DATA SOURCE 

2.1 Study Area 

Pingdingshan City is located in the central and southern part of 

Henan Province in China, 33°08‘-34°20’N and 112°14‘-113°45’

E. The total area is 7882 square kilometers. In 2018, China 

launched the project “Construction Waste Precision Control 

Technology and Demonstration”, and Pingdingshan was 

included in the “13th Five-Year” national key research and 

development plan. Jining City is located in the southwest of 

Shandong Province, China. Its geographical coordinates are 

105°54' –117°06' E, 34°25' –35°55' N, with an area of 11,000 

square kilometers. As shown in figure 1, remote sensing images 

of Pingdingshan and Jining in central and eastern China.  

 

2.2 Data Source 

GF-2 is China's first civil optical remote sensing satellite with a 

spatial resolution better than 1 meter. it has an orbit height of 

631 km and an imaging width of 45 km. GF-2 data carries two 

cameras: a panchromatic camera and a multispectral camera 

with resolutions of 1 m and 4 m, respectively. It has the 

characteristics of high positioning accuracy, high spatial 

resolution and fast attitude maneuver capability, and the data 

characteristics have reached the international advanced level. 

GF-2 data was successfully launched on August 19, 2014. It is 

the first civilian optical remote sensing satellite with an 

independent intellectual property right with a spatial resolution 

of submeters. The spatial resolution of the point below the 

satellite can reach 0.8 meters. Data include panchromatic and 

four multispectral bands. 

 

 Figure 1. Study areas
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Load 
Spectrum 

band 

Spectral range 

(um) 

Spatial 

resolution (m) 

Pan and 

Multi-

spectral 

Sensor 

(PMS) 

1 0.45~0.9 1 

2 0.45~0.52 

4 
3 0.52~0.59 

4 0.63~0.69 

5 0.77~0.89 

Table 1. GF-2 data payload technical index 

The remote sensing data used in this study are GF-2 L1A data 

sources from China Resource Satellite Application Center 

(http://36.112.130.153:7777/DSSPlatform/productSearch.html). 

The imaging time is 2018-2020, and the cloud amount is less 

than 5%. Data include panchromatic and four multispectral 

bands.  

 

3. METHOD 

This study regards the C&DW identification problem as a two-

class semantic segmentation experiment. The preprocessing 

operation of the obtained remote sensing image focuses on the 

texture and spectral characteristics of C&DW on GF-2 data. 

And the sample set of C&DW is constructed by image clipping, 

image labeling, and data enhancement. In this study, the 

DeepLabv3+ model with Xception_65 as the backbone network 

was selected as the pre-training model for the semantic 

segmentation experiment of C&DW. The specific process is 

shown in figure 2: 

 

3.1 Dataset Producing 

3.1.1 Image Pretreatment 

The images were preprocessed with geometric correction, 

radiometric correction and image fusion. This study selects the 

NNDiffuse Pan Sharpening tool for image fusion. Pan Sharping 

algorithm is used by the NNDiffuse Pan Sharpening tool, which 

perfectly combines high spatial resolution panchromatic and 

low-resolution multispectral image content to generate high-

resolution color images, and high-resolution color images are 

generated. The spatial resolution of the fused image is 

consistent with that of the panchromatic band. The size of each 

fusion image is 28864 × 27511 pixels, and the resolution is 1m. 

To facilitate model training, cut them into unoverlapping areas 

of size 451×451. When the clipping region exceeds the image 

range, the pixels with a value of 0 are filled in the non-data 

region. In all cut images, 1510 sample images containing 

C&DW were selected by visual interpretation method. From the 

sample image randomly selected 70% as training set, 30% as 

validation set. 

 

3.1.2 Labelme Labeling 

This study only uses three-color band (RGB) to make data sets. 

Most of the C&DW dumps in the study area are formal waste 

dumps with green net coverage, so the ground objects in the 

study area are divided into two categories (C&DW and 

background). Background classes include buildings, roads, 

woodland, water, bare land, etc. Transform the clipped image 

lattice into JPG format and label the C&DW in the study area 

using LabelMe. The pixel value of C&DW is 128, and the 

background pixel value is 0. Label sample is RGB three 

channels 8-bit PNG format image. Original images and labeling 

samples are shown in figure 3. In semantic segmentation 

experiments, image labels need to be converted into single-

channel images. 

 

  
(a) Original image (b) Label Sample 

Figure 3. Single sample diagram 

 

3.1.3 Data Augmentation 

The number of samples that only rely on manual annotation is 

small. To avoid over-fitting of the model, data enhancement is 

needed. When training in deep learning, the input training 

GF-2 data

Radiation 
calibration

Image fusion(NNDiffuse Pan Sharpening)

Labelme 
labeling

DeepLabv3+

Training 
dataset

Training

Tensorflow 
framework

DeepLabv3+ 
network

Save model

Verification
+

Test

Verification
dataset

Evaluating 
indicator

OA

Reall

mIoU

Production of image dataset

Atmospheric 
correction

Orthophoto 
correction

Data 
augmentation

Image preprocessing

Dataset producing

 Figure 2. Technical roadmap
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image needs 8-bit color image or 8-bit gray image. If using 

OpenCV to do data enhancement, the input 8-bit color map will 

become 24-bit color map, resulting in the problem of the dataset 

that cannot be trained. So PIL is used to do data enhancement 

experiments, including rotation angle, flip, color, contrast, 

brightness changes. Finally, 7600 training data and 2001 

verification data were obtained. 

 

3.1.4 Dataset Producing 

The C&DW dataset used in the study is modeled according to 

PASCAL VOC2012. The original image, the corresponding tag 

file of the original image and the gray image are put into 

JPEGImages, SegmentationClass and SegmentationClassRaw 

respectively. The data set samples are remote sensing data 

clipped images, and there are similar features between adjacent 

samples. In order to avoid the problem of overfitting in network 

training, which leads to high training accuracy and low 

verification accuracy, the order of samples should be disturbed 

before training. The training set and validation set of the 

experimental data set are randomly assigned to 3:1. Two text 

files in the ImageSets folder: train.txt and val.txt store the 

names of the training data and validation data respectively. 

 

3.2 DeepLabv3+ Model 

DeepLabv3+ (Liang-Chieh Chen et al.) adopts an encoder-

decoder structure. In the encoder part, it is mainly used to 

extract the context information of the input image, that is, using 

the method of cavity convolution to extract the characteristics of 

various aspects. This method can obtain arbitrary resolution 

feature images in the process of analysis, then detect the 

characteristics of the convolution network according to the 

pyramid model. Further, analyze all the characteristics of the 

whole image. The decoder part is mainly used to strengthen the 

object boundary information. The main DeepLabv3+ network 

structure is shown in figure 4: 

Figure 4. DeepLabv3+ Network Structure 

The DeepLabv3+ model with Xception_65 as the backbone 

network was selected as the pre-training model to conduct the 

semantic segmentation experiment of C&DW. Compared with 

the VGG16 and ResNet used in the early Deeplab series 

network models, the lightweight network Xception can reduce 

the training parameters of the neural network while ensuring the 

depth of the model. It can greatly improve the efficiency of 

semantic segmentation. Xception_65 has 36 convolution layers, 

including 14 modules. As shown in figure 4, in the encoder 

section, the image primary features of C&DW are extracted 

with the backbone network, and then the original features are 

input into the ASPP module for feature compression, feature 

extraction, and global pooling. The obtained feature results are 

processed with a 1×1 convolution compression channel number, 

and input into the decoder through up-sampling. In the decoder 

part, the original image features extracted by the backbone 

network are first compressed by 1×1 convolution, and then 3×3 

convolutions are performed with the result features of the up-

sampling output in the encoder part. Finally, the resulting map 

is output by up-sampling. 

 

3.3 Model Training 

In this study, based on the DeepLabv3+ model under the 

framework of Tensorflow deep learning, this study uses 

Xception_65 as the backbone network to identify construction 

waste automatically. DeepLabv3+ network Training 

Experimental Environment as shown in table 2: 

 

Experimental Environment 

Display Card NVIDIA Quador P5000 

Display Memory 3.0 TB 

Operating systems Ubantu 20.04 LTS 

Train Framework Tensorflow 

Train Network DeepLabv3+ 

Table 2. DeepLabv3+ Network Training Experimental 

Environment 

To ensure the reliability and accuracy of the experimental 

results, the model needs to be trained repeatedly. Optimizing 

the network by observing the change in the Loss curve during 

training. When training the DeepLabv3+ network, the 

train_batch_size, learning_rate and learning_rate_decay_factor 

are set as 8, 0.001, 0.1, respectively. After 100000 training 

iterations, the learning rate decreased to 0. And the loss 

function value gradually tends to a stable value of 0.1. 

 

3.4 Model Evaluation 

The accuracy of the experimental model is evaluated from three 

aspects: parallel union ratio mIoU, overall accuracy OA and 

recall Recall. 

 

Evaluation 

Index 
Formula Implication 

OA 
TP+TN

OA
TP FP TNFN

=
+ + +

 
The proportion of 

correctly classified 

samples in all samples. 

Recall 
TP

Recall
TP FN

=
+

 

The proportion of all 

positive samples 

correctly identified as 

positive samples in the 

test set. 

mIoU 
TP

mIoU
TP FP FN

=
+ +

 

The ratio of 

intersection to the 

union between the 

pixel set of 

segmentation true 

value and prediction 

result. 

Table 3. Model evaluation formula 

TP, FN and FP are expressed as True Positive, False Negative 

and False Positive respectively. That is, the number of true 

samples, false-negative samples, false-positive samples as 

shown in table 4: 

1x1 Conv

3x3 Conv
Rate 6

1x1 Conv

1x1 Conv Concat 3x3 Conv

DCNN

Atrous Conv

3x3 Conv
Rate 12

3x3 Conv
Rate 18

Image
Pooiing

Upsample
By 4

Upsample
By 4

Encoder

Decoder Low-Level
Features

Image

Prediction
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 The predicted 

value is 1 

The predictive 

value is 0 

True value 1 TP FN 

True value 0 FP TN 

Table 4. Relationship among TP、FN、FP、TN 

 

4. RESULTS AND ANALYSIS 

4.1 Results 

The semantic segmentation results of experimental C&DW are 

shown in figure 3. The red region in the segmentation results is 

C&DW, and the black region is the background. In order to 

better observe the effect of C&DW extraction, the semantic 

segmentation results of C&DW are superimposed with remote 

sensing images. 

 

Most of the C&DW sites in the study area are covered with 

green dustproof nets, so the study is regarded as a supervised 

two-classification problem of C&DW, that is, C&DW covered 

with green dustproof net and background. As shown in Figure 

3(d), the overlay comparison between the predicted image and 

the original image C&DW location shows that: Under the 

background of complex ground objects in original images, the 

model is still quite sensitive to C&DW covered with green 

dustproof net. The experimental results are not mixed with other 

ground objects. And the model can still accurately identify the 

scope of C&DW when the green dustproof net of C&DW is 

damaged. Compared with Figure 3(b) and Figure 3(c), the 

boundary identification of C&DW by the network is more 

accurate. 

 

According to the study on validation dataset data, the model 

obtained after 100,000 iterative training was selected as the 

initial training model. The experimental verification data set 

was used to realize the random sampling verification of C&DW 

in the whole study area, and the results showed that the mIoU 

was 82.39%. The overall accuracy of C&DW identification is 

82. 02% and the recall rate is 84. 49%. 

 OA  Recall  

C&DW  82.02% 84.49% 

Background 98.03% 96.91% 

Table 5. Evaluation results 

The experimental results show that the method based on GF-2 

data and deep learning network DeepLabv3+ can accurately and 

efficiently identify C&DW. 

 

4.2 Ground Verification 

In order to verify the credibility of the experimental results and 

better reflect the identification effect of experimental methods 

on C&DW, we conducted field visits to C&DW dumps in the 

study area. Ground verification of C&DW identification results. 

Taking Jining City as an example, as shown in Figure 6 : 

The survey time was 2021.10. Remote sensing images on the 

left recorded the approximate location of C&DW dumps in 

Jining City (including regular accommodation and informal 

C&DW areas), the field situation of randomly selected C&DW 

dump on the right. In order to prevent pollution in Jining, 

C&DW landfills are covered by green nets. Most of the C&DW 

piled in the regular accommodation areas restarts the project on 

schedule and starts the work of accommodation and 

reconstruction. However, due to the long-term natural effect of 

C&DW in informal areas, the surface green net is seriously 

damaged, which has threatened environmental safety. 

 Figure 6. Ground verification on C&DW 

In order to highlight the identification details of C&DW in the 

study, the storage areas of formal and informal C&DW were 

compared with the visual interpretation results. (I) is the 

identification result of formal C&DW dump, (II) is the 

identification result of informal waste dump. 

    

    

    

    
(a)Original 

images 
(b) Tag 

images 
(c) Predicted 

images 
(d)Overlay 

display 

Figure 5. C&DW identification results 
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(I)

(II)

 
(a)Original 

images 

(b)Visual 

interpretation 

image 

(c)Predicted 

images 

Figure 7. Identification details comparison 

By comparing the visual interpretation results with the 

experimental results, the method of combining GF-2 data and 

deep learning has a good identification effect on the C&DW 

area. As shown in figure 7. (I), for formal C&DW dumps, most 

of the C&DW has green net cover. Although there is damage to 

the net surface, the model can still be accurately identified. In 

comparison, Figure 7. (II) shows that the C&DW net in the 

informal C&DW area is seriously damaged, and other ground 

objects are often confused, resulting in the omission of 

identification results of the model. 

 

5. CONCLUSION 

With the rise of high-consumption and high-emission 

construction industry, the number of C&DW has been 

increasing year by year. The environmental problems caused by 

the accumulation of C&DW have become one of the most 

urgent problems in the world. The traditional target detection 

algorithm is more suitable for ground objects with obvious 

features and simple background. Due to the relatively complex 

C&DW spectrum and texture, it is difficult to identify C&DW 

by simply constructing a remote sensing index. Therefore, this 

study proposes a method for automatic identification of C&DW 

based on deep learning and high-resolution remote sensing 

images. First, there is no open dataset available to realize the 

deep-learning-based remote sensing identification of C&DW. In 

this study, we generated a C&DW remote sensing dataset based 

on remote sensing images captured by the GF-2 data. On the 

basis of this data set, this study chooses the DeepLabv3+ 

semantic segmentation model combined with the Xception_65 

feature extraction network to realize the semantic segmentation 

of C&DW. Its mIoU reaches 82.39%, achieving the maximum 

separation effect within the allowable range of hardware 

environment. Finally, the feasibility of this method in C&DW 

identification is proved by ground verification. And it is 

beneficial to the monitoring and control of urban C&DW. 

 

Although the experimental results preliminarily meet the 

regulatory identification requirements of semantic segmentation 

of C&DW, there are still deficiencies : 

 

(1) The complex features of C&DW increase many difficulties 

for the identification of C&DW. The study of semantic 

segmentation based on GF-2 data and DeepLabv3+ model for 

binary classification of C&DW. Good identification accuracy 

and ground verification results were obtained, but no 

comparative experiments were conducted with other models. 

Then other models can be used to explore the effect of C&DW 

identification. 

 

(2) The study on the automatic identification method of C&DW 

is only a preliminary exploration of the dynamic information 

change detection of C&DW, and it can only realize the 

identification and location of C&DW. It is impossible to 

accurately estimate the quantitative characteristics of C&DW, 

such as the volume of C&DW yard. 
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