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ABSTRACT: 

 

Global Earth Monitor (GEM, Horizon 2020) takes advantage of the large volumes of available Earth Observation (EO), weather, 

climate and other non-EO data to establish economically viable continuous monitoring of the Earth. Within the GEM framework, the 

development of scalable and cost-effective solutions is being tested on several use-cases, with crop identification being one of them. 

Crop identification uses a combination of EO and weather data to enable automatic identification of crops. The use case supports 

operational decisions when managing crops and the monitoring of actual vs. planned or reported agricultural land use (e.g., Common 

Agricultural Policy monitoring). Satellite data and weather data come at very different temporal and spatial resolutions: Sentinel-2 

constellation nominally provides an observation of a field every 5 days at 10 m spatial resolution, while weather data has continuous 

hourly time series at multi-km spatial resolution. We have designed ad-hoc routines to spatially aggregate satellite data at field level 

and to systematically compose layers of different time discretization series, so that each EO is associated with a complete time series 

(of opportune length) of weather variables at daily resolution. For each field, we extract the time series of the median over field pixels 

of Sentinel-2 L1C bands, cloud mask and cloud probability. For doing this we take advantage of Sentinel Hub's Statistical API 

(Sinergise, 2020), that enables the retrieval of statistics of band values and derived indices over a specified geographic area and time 

range. Using meteoblue dataset API (meteoblue, 2017), complete time series of daily weather data (NEMS4 model, meteoblue, 2008) 

are then associated to each field observation, following the systematic layer composition approach mentioned above. An opportune 

time series length is defined for each of the 17 weather variables we considered. To handle this kind of multi-dimensional layered data, 

we use a flexible encoding-decoding framework (FlexMod, designed by TUM as part of GEM project): multiple encoders are designed 

for features of different time length (namely EO data and weather variables) and are then passed to the decoder via a mediator. Thanks 

to the flexible design of FlexMod framework, different models and architectures can be easily tested by simply defining new encoders 

and/or decoders. We present results obtained on a dataset in Slovenia, where crop fields are labelled according to a Hierarchical Crop 

and Agriculture Taxonomy (HCAT). This taxonomy, based on the EAGLE-Matrix and EU regulations, is the one adopted in the 

EuroCrops project (Schneider et al. 2021). The classification of field crops takes advantage of Sentinel-2 satellite data and Numerical 

Weather Prediction model output data. We exploit the potential of FlexMod to test different feature extractors, temporal encoding 

frameworks and decoders and we present a comparison between results obtained training a long-short term memory (LSTM) 

implementation (Breizhcrops, Rußwurm et al. 2020) and a Self-attention transformer model (Vaswani et al. 2017), the latter showing 

the best performances with accuracy 0.904 and Cohen’s kappa 0.824.  We moreover investigate the role of weather data by 

benchmarking results against those obtained with just satellite imagery. To better appraise the influence of the weather data we analyse 

how perturbing weather data in the testing dataset affects the final results. So far, we obtain in both cases very similar accuracies and 

Cohen’s kappa. A deeper analysis of crop-specific scores (precision, recall, F1) suggests that the training and testing datasets are too 

limited in terms of size and crop variability to draw any general conclusion over the role of weather. As future developments, once the 

EuroCrops datasets are ready, we plan to expand the training and testing dataset to cover a higher variability of climatological areas 

and increase the numerosity of the so far under-represented crops, in the attempt to draw more general conclusions around the influence 

of weather and the predictability of specific crop classes. Moreover, given the encouraging scores, we aim to perform crop type 

mapping at least at European scale, thanks to the availability of the EuroCrops data and the cost-effective big data solutions developed 

during GEM project. 

 

 

1. INTRODUCTION 

1.1 Global Earth Monitor project 

Global Earth Monitor (GEM, Horizon 2020) takes advantage of 

the large volumes of available Earth Observation (EO), weather, 

climate and other non-EO data data to enable economically 

viable continuous monitoring of the Earth, driven by the 

transition from traditional "strip mode" monitoring to "spot 

mode" monitoring. This GEM approach is based on the drill 

down mechanism: fast (and cheap) global monitoring at low 

resolution, finding the areas of interest (AOI) to perform spot 

monitoring with (appropriately) high resolution data and more 

elaborate machine learning (ML) models.  Such processes can be 

run continuously on a monthly, weekly, or even daily basis 

provided they work in a sustainable way - adding more value than 

their cost - at least on a continental if not global scale, able to 

automatically improve accuracy and detect changes as they 

occur. 
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A proprietary concept of Adjustable Data Cubes (a combination 

of static and dynamic data cubes using Sentinel Hub batch 

processing) has been integrated with the EO-oriented open-

source Machine Learning (ML) framework eo-learn (Sinergise 

development team, 2019).  

Modern ML technologies and approaches are used to construct 

global, scale-independent interpretation models with the special 

focus on causality and change detection. 

The development of scalable and cost-effective solutions is tested 

on five use-cases: the built-up area use-case exploits appropriate 

ML models to identify areas/settlements; the land cover 

classification use-case aims to perform a baseline multi-

user/multi-purpose land cover classification; the map-making 

use-case enables systematic lead detection of changes from mid- 

to very-high-resolution imagery; the conflict pre-warning use-

case combines data mining techniques, EO, weather and other 

geospatial data with open sources of information (e.g. 

distribution of ethnicities or religion) to support the detection of 

hot-spot areas and support political decision-making. The crop 

identification use-case, object of this paper, is presented in the 

next paragraph. 

 

1.2 Crop identification use-case 

Crop identification uses a combination of EO and weather data 

to enable automatic identification of crops. The service can 

support crop and land management, operational decisions when 

managing crops, the monitoring of actual vs. planned or reported 

agricultural land use (e.g., Common Agricultural Policy 

monitoring), environmental monitoring and governance, 

commodity supply and price prediction. 

From the EO perspective, agriculture is a complex phenomenon 

which poses unique challenges. For example, the same crop type 

can have different temporal and spectral appearance due to local 

land management, genotype features, site conditions or 

environmental factors such as weather. Temporal information is 

usually the key to differentiating individual crop types, making 

use of unique differences in seasonal growing characteristics. 

The goal is to develop a model to be run at least at European scale 

(for those states that share crop declarations data publicly) that 

combines satellite data and weather variables to discriminate 

between crop species, with uncertainties considered acceptable 

for operational purposes. 

 

 

2. DATA AND METHOD 

2.1 Data 

Satellite data and weather data come at very different temporal 

and spatial resolutions: Sentinel-2 constellation nominally 

provides an observation of a field every 5 days at 10 m spatial 

resolution, while weather data has continuous hourly time series 

at multi-km spatial resolution. 

We have designed ad-hoc routines to spatially aggregate satellite 

data at field level and to systematically compose layers of 

different time discretization series, so that each satellite 

observation is associated with a complete time series (of 

opportune length) of weather features at daily resolution.  

  

2.1.1 Satellite data: for each field, we extract the time series 

of the median over field pixels of Copernicus Sentinel-2 L1C top-

of-atmosphere reflectance, cloud mask and cloud probability, for 

a total of 15 variables (Copernicus Sentinel data, 2019). For 

doing this we take advantage of Sentinel Hub's Statistical API 

(Sinergise, 2020), that enables the retrieval of statistics of band 

values and derived indices over a specified geographic area and 

time range. 

 

2.1.2 Weather data: using meteoblue dataset API 

(meteoblue, 2017), complete time series of daily weather data at 

4 km resolution (NEMS4 model, meteoblue, 2008) are associated 

to each field observation, following a systematic layer 

composition approach, illustrated in Figure 1. The challenge 

when dealing with incomplete data is not to lose information 

(e.g., with accumulation techniques) as well as not to introduce 

artificial information (e.g., with interpolation techniques). To 

maximize and preserve the information content of weather and 

satellite data, we therefore extend dataset A (green squares in 

Figure 1, representing EO data) with a consistent number of 

instances of dataset B (blue squares in Figure 1, representing 

weather data), so that the time instances of B before the time 

instance of A could be looked at as additional channels of A. Note 

that the operation denoted by the red arrows is not necessarily 

equal to identity. That is, encoding, compression or accumulation 

techniques may come into play whereas their effect on the 

information contained by the data must be considered as 

described above. Using the encoding-decoding framework, 

presented in Section 2.2, many different techniques can be tried. 

 

 
Figure 1. Systematic layer composition approach for dealing 

with incomplete data. In our use case, the green and the blue 

squares symbolize satellite observations and weather variables, 

respectively. 

An opportune time series length is defined for each of the 17 

weather variables considered, the choice of the length based on 

agronomical considerations over the longer- or shorter-term 

effect that each weather variable may reasonably have on crop 

development and its appearance on satellite imagery (Table 1). 

 

Weather variables Time series length 

Precipitation, radiation 30 days 

Temperature (min, max, mean), 

growing degree days (T base 5 °C), 

temperature range 

14 days 

Wind speed (mean, maximum), wind 

gust (mean, maximum), number of 

frost days, number of icing days, 

number of heat days, number of 

tropical nights 

7 days 

Soil moisture, relative humidity 3 days 

Table 1. Weather variables and associated time series length. 
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2.1.3 Ground-truth data: to train the model and validate the 

results, we used a crop database of Slovenia (INSPIRE metadata 

Slovenia, 2019). The dataset is composed by field polygons 

associated to the recorded crop that was grown during 2019.  To 

build a homogeneous crop database that overcomes the country-

specific classification system, crop fields were re-labelled 

according to a Hierarchical Crop and Agriculture Taxonomy 

(HCAT). This taxonomy, based on the EAGLE-Matrix and EU 

regulations, is the one adopted in the EuroCrops project 

(Schneider et al. 2021) and is propaedeutic to the future 

expansion of crop identification to Europe. Its 81 classes are 

represented in Figure 2, where the circles represent further 

distinction levels from 0 (inner circle) to 4 (outer circle). 

 

 
Figure 2. A representation of the EuroCrops taxonomy classes 

and levels (Schneider et al. 2021). 

2.2 Encoding-decoding framework 

To handle this kind of multi-dimensional layered data, we use a 

flexible encoding-decoding framework (FlexMod, ongoing 

design by TUM as part of GEM project): multiple encoders are 

designed for features of different shape, so time length, 

discretization, or dimension, (namely EO data and weather 

variables) and are then passed to the decoder thanks to a 

mediator, as shown in Figure 3. 

 

Thanks to the flexible object-oriented design of the FlexMod 

framework, different models and architectures can be easily 

tested by simply defining new encoders, mediators and/or 

decoders. This flexibility is based on the ability to import any 

package, file, or even specific parts (method, class) of a file 

stored at any place on a machine. Although this is a technical 

detail, we emphasize this as the foundation of our flexible and 

agile development for many different configurations, of which 

we highlight some. 

 

The FlexMod itself only uses other models and combines them 

to a larger one which intrinsically enables to standardize things 

down the processing pipeline like the training or inference loops. 

Other standardized procedures include rasterization techniques to 

make maps out of our classification results for customers. 

Especially if these monitoring tasks shall be done on demand by 

a distributed system, standardized model frameworks foster easy 

implementation of coordinator nodes forwarding jobs for 

calculation. 

 

From the ML perspective, the FlexMod is a rather simple 

encoder-decoder structure where multiple encoders are used for 

multimodal data. For the sake of completeness, we note that the 

encoders could work as some scalers, standard methods or 

identity transforms as well. The mediator, however, could work 

as another encoder. In any case, the mediator concatenates the 

outputs of the foregoing encoders or feature extractors to one 

tensor. That is forwarded to the decoder (or classifier) then. In 

our experiment, the encoders are thought of as feature extractors 

from multimodal data whose results are concatenated by the 

mediator and analysed by the decoder then. The available 

configurations are illustrated in Figure 3. 

 

 
Figure 3. Basic concept of the FlexMod Framework fostering 

flexibility and standardization. Blue bars denote data or tensors 

not true to scale. 

 

2.3 Performance evaluation 

Experiments are evaluated by computing and comparing the 

accuracy, Cohen’s kappa, precision, recall and F1 scores, 

presented below.  

 

2.3.1 Accuracy: the overall accuracy of the prediction, 

defined as the fraction of correct predictions (Pedregosa et al., 

2011): 

Accuracy(𝑦, �̂�) =
1

𝑛samples
∑ 1(�̂�𝑖 = 𝑦𝑖)

𝑛samples−1

𝑖=0
  (1) 

 

where �̂� = predicted value of the -th sample 

 𝑦 = true value of the -th sample 

 𝑛samples = number of samples 

 1(x) = indicator function 

 

 

2.3.2 Cohen’s kappa: expressing the level of agreement 

between two annotators versus the possibility of the agreement 

occurring by chance (Cohen, 1960; Artstein and Poesio, 2008; 

Pedregosa et al., 2011): 

 

𝐶𝑜ℎ𝑒𝑛′𝑠 𝑘𝑎𝑝𝑝𝑎 =
𝑝0−𝑝𝑒

1−𝑝𝑒
  (2) 

 

where 𝑝𝑜= empirical probability of agreement on the label 

assigned to any sample 

𝑝𝑒 = expected agreement when both annotators assign 

labels randomly 

 

This score is deemed important in evaluating the results 

minimizing the bias due to strongly unbalanced classes in terms 

of samples’ numerosity (Powers, 2015). The model prediction 
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may in fact score high accuracies just for the fact that the 

annotator is always assigning the most numerous label. 

 

2.3.3 Precision and recall: they represent respectively the 

ability of the classifier not to label as positive a sample that is 

negative and to find all the positive samples (Olson and Delen, 

2008; Pedregosa et al., 2011): 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
   (4) 

 

where  𝑡𝑝 = number of true positives 

 𝑓𝑝 = number of false positives 

 𝑓𝑛 = number of false negatives 

 

2.3.4 F1-score: the weighted harmonic mean of precision and 

recall, where precision and recall are evenly weighted (Shantanu 

and Sunita, 2004; Wikipedia, 2022; Pedregosa et al., 2011): 

 

𝐹1 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (5) 

 

 

3. RESULTS AND CONCLUSIONS 

We present a selection of experiments (Table 2) carried out on 

the study area of Slovenia, using the crop database of year 2019, 

constituted by a total of 590720 fields and 45 different crops. 

We test the usage of Long-Short Term Memory (LSTM) 

implementation (Breizhcrops, Rußwurm et al. 2020) and a Self-

attention Transformer model (Vaswani et al. 2017) as decoders. 

As feature encoders, we try Multi-layer Perceptron (MLP) and 

Temporal Attention Encoder (TAE). 

 

 Features Model 

Test Satellite Weather Encoder Decoder 

1 yes yes MLP LSTM 

2 yes yes MLP 
Transformer 

classifier 

3 yes yes TAE 
Transformer 

classifier 

4 yes - (TAE) 
Transformer 

classifier 

5 yes 
perturbed in 

test subset 
TAE 

Transformer 

classifier 

Table 2. Summary of the experiments presented. 

3.1 Training and testing subset 

We split the ground-truth dataset in training, validation and 

testing subset. For doing this, we use Torch’s random split utility 

(PyTorch development team, 2019), setting the seed to grant 

reproducibility. This choice ensures the presence of all crop 

classes in each subset (see Table 6 in Appendix for more details). 

Training is performed on 60% of the data; the remaining 40% is 

further split in a validation subset (20% of the data), for 

monitoring model convergence, and a testing subset (20% of the 

data), where scores are evaluated. 

 

3.2 Model 

Crop identification is performed on the testing subset using 

LSTM and Self-attention Transformer model as decoders (test 1 

and 2 in Table 2). The resulting scores are compared in Table 3, 

where we report overall accuracy and Cohen’s kappa computed 

considering all crop classes and excluding the class “pasture / 

meadow”. We report also results without the “pasture / meadow” 

class  because it is by far the most numerous (more than 8 times 

the numerosity of other classes, see Figure 4) and is also one of 

the few representing a level 1 distinction, together with “arable 

crops”, “permanent crops” and “mushrooms, energy crops and 

genetically modified crops” (Figure 2). 

 

 
Figure 4. Number of samples per crop class in the testing 

dataset. For visualization purposes the y axis is limited to 8000. 

Two classes are more numerous: grain maize (9047 samples) 

and pasture / meadow (77684 samples). 

 
Including 

“pasture/meadow” 

Excluding 

“pasture/meadow” 

Model Accuracy 
Cohen’s 

kappa 
Accuracy 

Cohen’s 

kappa 

LSTM 0.888 0.796 0.728 0.687 

Transformer 0.902 0.819 0.750 0.715 

Table 3. Overall accuracy and Cohen’s kappa obtained on the 

testing subset using an LSTM and a Transformer model, both 

including and excluding the crop class “pasture/meadow” from 

scores computation. 

The transformer classifier performs better, with scores overall 2-

3% higher than LSTM. This is generally true also for class-

specific scores (Figure 5). 
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Figure 5. Class-specific scores (precision, recall, F1) obtained 

with LSTM (blue) and Transformer classifier (orange). 

These tests are based on MLP feature encoders.  We also test the 

usage of a different encoder, in particular a Temporal Attention 

encoder, always in association with the better performing 

Transformer decoder (test 2 and 3 in Table 2). Prediction results 

are compared in Table 4 and Figure 6. 

The Transformer encoder performs only minimally better than 

MLPs, particularly on the most numerous classes. Apart from 

that, scores are very similar. 

Confusion matrices obtained with the transformer encoder-

decoder model are reported in Appendix, Figure 8 and Figure 9. 

 

 
Including 

“pasture/meadow” 

Excluding 

“pasture/meadow” 

Feature 

encoder 
Accuracy 

Cohen’s 

kappa 
Accuracy 

Cohen’s 

kappa 

MLP 0.902 0.819 0.750 0.715 

Transformer 0.904 0.824 0.757 0.722 

Table 4. Comparison of overall accuracy and Cohen’s kappa 

obtained on the testing subset with MLP and Transformer 

feature encoders. Both tests use a Transformer model as 

decoder. We present results including and excluding the crop 

class “pasture/meadow” from scores computation. 

 
Figure 6. Class-specific scores (precision, recall, F1) obtained 

using an MLP encoder (blue) and a Transformer encoder 

(orange). 

3.3 The role of weather 

To assess and quantify the value added of weather, prediction 

results are benchmarked against those obtained training the 

model using only satellite data. 

We present this comparison using the most promising model 

presented so far (self-attention transformer decoder, with self-

attention transformer feature encoder when using weather data). 

In addition, we also try perturbing the weather features of the 

testing subset with Gaussian white noise (Peebles, 2001; NumPy 

Developers, 2022) with zero mean and standard deviation equal 

to half the variability range of each weather variable. The same 

random perturbation is applied to all the weather observations of 

a given field. 

The resulting scores (test 3, 4 and 5 in Table 2) are reported in 

Table 5 and Figure 7. 

 

 
Including 

“pasture/meadow” 

Excluding 

“pasture/meadow” 

 Accuracy 
Cohen’s 

kappa 
Accuracy 

Cohen’s 

kappa 

Satellite + 

weather 
0.904 0.824 0.757 0.722 

Satellite 

only 
0.901 0.818 0.747 0.711 

Satellite + 

perturbed 

weather 

0.901 0.817 0.744 0.708 

Table 5. Overall accuracy and Cohen’s kappa obtained on the 

testing subset using a Transformer model trained with both 

satellite and weather data and only with satellite data. In the last 

row, the scores obtained perturbing the weather data of the 

testing subset with Gaussian white noise. 
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Figure 7. Class-specific scores (precision, recall, F1) obtained 

with a Transformer model trained only with satellite data (blue) 

and with both satellite and weather data (orange). In green, the 

scores obtained perturbing the weather data of the testing subset 

with Gaussian white noise. 

The overall accuracy and Cohen’s kappa (Table 5) seem to 

suggest that weather is not playing a role: scores obtained using 

only satellite data are very similar to those obtained also using 

weather data. In addition, even perturbing the weather data in the 

testing subset, accuracy and Cohen’s kappa remain almost 

unchanged. 

From a deeper analysis of the class-specific scores of Figure 7, 

though, we can derive some initial considerations, to be 

confirmed by future, more extensive testing. Weather seems to 

be less influent for winter species: this is particularly evident 

when looking at scores for the three most numerous classes of 

winter crops (winter common wheat and spelt, winter barley, 

winter triticale and winter rapeseed, Figure 4). The fact that 

weather is less relevant in distinguishing winter crops, is 

expected: winter crops in fact go through a long period of 

dormancy and their appearance is unchanged for the first 40-70 

days of the year (Liu et al., 2021). 

On the other hand, also the very numerous maize classes show 

little or no sensitivity to the presence of weather data, pointing 

more strongly towards the thesis that weather is not adding value 

to the analysis. 

The model seems to benefit from the presence of weather data in 

those cases where the performances of the model with satellite 

data only are relatively low (e.g., winter rye, summer barley, 

summer oats, summer triticale, peas, beans and lupins, sugar beet, 

sunflowers), suggesting that weather could help detect crops that 

are most hard to distinguish from Earth Observation only. 

Despite this, it remains difficult to explain why predictions 

perturbing weather data present in most cases scores very similar 

to those obtained on the unperturbed dataset. The most sensible 

reasoning is that the dataset in Slovenia is too small to pick apart 

differences in crop phenologies that arise from local weather 

phenomena. 

 

3.4 Conclusions and future development 

As part of the GEM Horizon 2020 project, we developed a novel, 

flexible encoding-decoding framework, that allows to easily 

setup experiments to train, test and compare different models.  

Building on API services of Sinergise and meteoblue, we can 

efficiently associate EO and weather data to ground-truth 

datasets. 

The available crop databases, progressively collected and 

harmonized within the EuroCrops project, are pre-processed and 

prepared for training machine learning models. The models 

predict, based on satellite data and weather model data, what crop 

is grown during a particular year, in a certain field. We validate 

the results on subset of the crop database, not used for training. 

Performances of different encoder-decoder models are evaluated 

on a subset of Slovenia dataset of year 2019, the best results 

obtained for classification of 45 crop types so far with a Self-

attention (transformers) encoder-decoder showing accuracy of 

0.904 and Cohen’s kappa 0.824.  

We moreover investigate the role of weather data by 

benchmarking results against those obtained with just satellite 

imagery. To better appraise the influence of the weather data we 

analyse how perturbing weather data in the testing dataset affects 

the final results. So far, we obtain in both cases very similar 

accuracies and Cohen’s kappa, suggesting that the training and 

testing datasets are too limited in terms of size and crop 

variability to draw any general conclusion over the role of 

weather.  

As future developments, we aim to expand the training and 

testing dataset to cover a higher variability of climatological 

areas and increase the numerosity of the so far under-represented 

crops. We would like, for example, to train different models on 

different climatological areas and benchmark these results 

against the usage of a single model. This will allow us to draw 

more general conclusions around the influence of weather and the 

predictability of specific crop classes. 

Independently from considerations around weather, given the 

encouraging scores, we plan to perform crop type mapping at 

European scale, thanks to the cost-effective big data solutions 

developed during GEM project. 

 

 

ACKNOWLEDGEMENTS 

This work was carried out in the framework of the European 

Union’s Horizon 2020 Global Earth Monitor project, grant 

agreements No. 101004112. 

 

 

REFERENCES 

Artstein, R., Poesio, M., 2008. “Inter-coder agreement for 

computational linguistics”. Computational Linguistics 

34(4):555-596. 

 

Cohen, J., 1960. “A coefficient of agreement for nominal scales”. 

Educational and Psychological Measurement 20(1):37-46. 

doi:10.1177/001316446002000104. 

 

Copernicus Sentinel data, 2019, processed by ESA, retrieved 

from Sentinel-Hub. 

 

GEM Global Earth Monitor, European Union project, 

https://www.globalearthmonitor.eu/ 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1301-2022 | © Author(s) 2022. CC BY 4.0 License.

 
1306

https://www.globalearthmonitor.eu/


 

INSPIRE metadata Slovenia, 2019. Agriculture parcels with 

declared crop, http://data.europa.eu/88u/dataset/21ecba4a-1214-

4617-8bf4-020d2f235a25 

 

Liu, F., Chen, Y., Bai, N., Xiao, D., Bai, H., Tao, F., Ge, Q., 2021. 

Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-

2275-2021 

 

meteoblue AG, 2008. NEMS4 model, 

https://docs.meteoblue.com/en/meteo/data-

sources/datasets#nems 

 

meteoblue AG, 2017. Dataset API, 

https://docs.meteoblue.com/en/weather-apis/dataset-api/dataset-

api 

 

NumPy Developers, 2022. NumPy random generator normal. 

https://numpy.org/doc/stable/reference/random/generated/nump

y.random.Generator.normal.html 

 

Olson, D. L, Delen, D., 2008. Advanced Data Mining 

Techniques, Springer, 1st edition, page 138, ISBN 3-540-76916-

1 

 

Pedregosa et al., 2011. Scikit-learn: Machine Learning in Python, 

JMLR 12, pp. 2825-2830. Accuracy score, https://scikit-

learn.org/stable/modules/model_evaluation.html#accuracy-

score 

 

Peebles P. R. Jr., 2001 . “Central Limit Theorem” in “Probability, 

Random Variables and Random Signal Principles”, 4th ed., pp. 

51, 51, 125. 

 

Pelletier, C., Webb, G. I., Petitjean, F., 2019. Temporal 

convolutional neural network for the classification of satellite 

image time series. Remote Sensing, 11(5), 523.  

 

Powers, D. M. W., 2015. What the F-measure doesn't measure. 

arXiv:1503.06410. 

 

PyTorch, 2019. Dataset random split. 

https://pytorch.org/docs/stable/_modules/torch/utils/data/dataset

.html#random_split 

 

Rußwurm, M., Pelletier, C., Zollner, M., Lefevre, S., Körner, M., 

2020. BreizhCrops: a time series dataset for crop type mapping, 

https://arxiv.org/abs/1905.11893. 

 

Shantanu G., Sunita S., 2004. Discriminative Methods for Multi-

labeled Classification Advances in Knowledge Discovery and 

Data Mining, pp. 22-30. 

 

Schneider, M., Körner, M. EuroCrops, 2021. A Pan-European 

Dataset for Crop Classification from Satellite Data and official 

Reference Data. BIDS Conference. 

https://www.eurocrops.tum.de/ 

 

Sinergise development team, 2019. eo-learn, 

https://github.com/sentinel-hub/eo-learn 

 

Sinergise LTD, 2020. Sentinel Hub Statistical API, 

https://docs.sentinel-hub.com/api/latest/api/statistical/ 

 

Turkoglu, M. O., D’Aronco, S., Wegner, J. D., Schindler, K., 

2019. Gating Revisited: Deep Multi-layer RNNs That Can Be 

Trained. arXiv preprint arXiv:1911.11033. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A. N., Kaiser, L., Polosukhin, I., 2017. Attention Is All 

You Need. CoRR, abs/1706.03762. 

http://arxiv.org/abs/1706.03762. 

 

Wikipedia, 2022. F-score. https://en.wikipedia.org/wiki/F-score 

 

 

APPENDIX 

Complete list of crop classes (Slovenia 2019 database) and their 

numerosity in the training and testing subset, as a result of a 

random split. 

 

Crop class Training Testing 

summer common wheat and spelt 359 119 

winter common wheat and spelt 15299 5075 

summer durum wheat 9 2 

winter durum wheat 30 8 

summer rye 7 2 

winter rye 713 227 

summer barley 569 176 

winter barley 15449 5343 

summer oats 827 264 

winter oats 381 119 

grain maize 27207 9047 

summer triticale 147 43 

winter triticale 3957 1340 

millet 84 28 

other cereals for the production of 

grain 702 208 

peas, field beans and sweet lupins 303 98 

other dry pulses 17 5 

potatoes 3190 1067 

sugar beet 71 25 

fodder roots and brassicas 415 138 

cotton 392 131 

rapeseed and turnip rapeseed 17 5 

summer rapeseed 31 7 

winter rapeseed 1277 437 

sunflower and yellow bloomer 242 84 

soya 634 213 

other oil seed crops 71 24 

flax 22 6 

hemp 240 83 

aromatic, medicinal and culinary 

plants 7 2 

other industrial crops 6764 2220 

fresh vegetables, melons and 

strawberries 2917 941 

radish/turnips 6 1 

cucurbits 3011 1007 

flowers and ornamental plants 135 51 

green maize 19290 6403 

other plants harvested green 76 19 

fallow land (not crop) 978 303 

pasture / meadow 233128 77684 

permanent crops 2 1 

olive plantations 1110 383 

vineyards 14160 4735 

nurseries 164 61 

other permanent crops 20 9 

Table 6. Numerosity of each crop class in the training and 

testing subsets. 
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Confusion matrices obtained with the best performing model 

(transformer encoder-decoder), using satellite and weather data. 

 
Figure 8. Confusion matrix normalized by target label. 

 
Figure 9. Confusion matrix normalized by predicted label. 
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