The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume XLIII-B3-2022
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1327-2022
https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1327-2022
31 May 2022
 | 31 May 2022

SELF-SUPERVISED LEARNING – A WAY TO MINIMIZE TIME AND EFFORT FOR PRECISION AGRICULTURE?

M. L. Marszalek, B. Le Saux, P.-P. Mathieu, A. Nowakowski, and D. Springer

Keywords: Crop types, Self-Supervised Learning, Transformer, Random Forest, SimSiam, Remote Sensing

Abstract. Machine learning, satellites or local sensors are key factors for a sustainable and resource-saving optimisation of agriculture and proved its values for the management of agricultural land. Up to now, the main focus was on the enlargement of data which were evaluated by means of supervised learning methods. Nevertheless, the need for labels is also a limiting and time-consuming factor, while in contrast, ongoing technological development is already providing an ever-increasing amount of unlabeled data. Self-supervised learning (SSL) could overcome this limitation and incorporate existing unlabeled data. Therefore, a crop type data set was utilized to conduct experiments with SSL and compare it to supervised methods. A unique feature of our data set from 2016 to 2018 was a divergent climatological condition in 2018 that reduced yields and affected the spectral fingerprint of the plants. Our experiments focused on predicting 2018 using SLL without or a few labels to clarify whether new labels should be collected for an unknown year. Despite these challenging conditions, the results showed that SSL contributed to higher accuracies. We believe that the results will encourage further improvements in the field of precision farming, why the SSL framework and data will be published (Marszalek, 2021).