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ABSTRACT:

The mapping of environmental information based on remote sensing requires a workflow that involves image processing, model
training usually based on machine learning, as well as model application and validation. Remote sensing data processing capabilit-
ies are nowadays simplified by cloud computing platforms. State of the art machine learning methods for spatial data which involve
a reduction of spatial overfitting, handling of extrapolation situations and a spatially explicit error assessment, however, are cur-
rently mostly implemented in local computation frameworks. Here we present a workflow that combines the improved processing
capabilities of the cloud computation platform openEO with state-of-the-art machine learning model development in R. OpenEO
is used for standardized imagery acquisition and preprocessing to provide predictors for model training. To reduce overfitting,
predictors which are meaningful for the mapping are identified via spatial variable selection as implemented in R packages. The
mapping accuracy is assessed via spatial cross-validation and predictions are limited to the ’Area of Applicability’ of the model.
The workflow is designed to enhance and assess the spatial transferability of machine learning models which is demonstrated by a
case study of a landcover classification based on Sentinel-2 imagery.

1. INTRODUCTION

Machine Learning (ML) models and their associated predic-
tions have become a key component in environmental science to
contribute to major contemporary challenges like achieving sus-
tainable development goals (Holloway and Mengersen, 2018)
or biodiversity monitoring (Reddy et al., 2021). Especially
in the field of remote sensing ML emerged as a indispensable
tool for the large-scale mapping of environmental information
(e.g. soil properties, (Hengl et al., 2017), species occurrence,
(van den Hoogen et al., 2019), or landuse (Venter and Syden-
ham, 2021)). Most mapping studies follow a similar logic. A
ML algorithm learns the statistical relations between the target
variable and predictors from the location of available reference
data. Once trained and validated, the model is applied to the
spatially continuous predictors to map the target variable for the
entire area of interest. While the modelling might be straight-
forward, in practice, the development of ML models from re-
mote sensing data faces several challenges.

Reference data are often heavily clustered in geographic space
(e.g. due to opportunistic field-sampling campaigns (Yates et
al., 2018)) which bears the risk of training spatially overfitted
models and a low ability of the model to make predictions for
new areas (i.e. low transferability Meyer et al. (2019); Meyer
and Pebesma (2021)). Hence, sub-optimal validation strategies
for spatial predictions can lead to incorrect conclusions about
the statistical model performance (observed by e.g. Roberts et
al. (2017); Meyer et al. (2018); Ploton et al. (2020)) which ulti-
mately leads to incorrect conclusions about the mapping error.
Spatial cross-validation strategies are therefore proposed to as-
sess model performances at unknown locations instead of com-
monly used random cross-validation approaches (Meyer et al.,
2018; Ploton et al., 2020; Mila et al., 2022).
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While changing the cross-validation strategy allows for a more
reliable error assessment, it does not solve the problem of over-
fitting. Reducing the risk of overfitting usually involves some
form of predictor selection (Ying, 2019). Simpler models -
i.e. models that utilize fewer predictors to map the target vari-
able - can be assumed to represent more generalized relations.
Meyer et al. (2018, 2019) have suggested a spatial variable se-
lection to identify only those predictors that are most useful for
a spatial prediction task, usually leading to higher prediction
performances when the model is transferred to new locations.
This model transfer often requires that predictions are made
for environments that are different from those used for model
training. Machine learning models, however, can only make
reliable predictions for new areas if the values of the predictor
variables involved are comparable to those encountered in the
training data. To assess the area to which this applies, Meyer
and Pebesma (2021) recently suggested a method to compute
the ”Area of Applicability” (AOA) of prediction models and
suggest that this should become common practice for spatial
predictive mapping.

A second major challenge is that ML models require large
amounts of training data in order to adequately learn (non-
linear) relations between the target variable and predictors.
Moreover, the model is usually applied to an even larger amount
of data for the desired prediction (e.g. Europe wide Sentinel-2
imagery, Venter and Sydenham (2021)). This is especially the
case for the development of global maps such as in Ma et al.
(2021); Hengl et al. (2017); Moreno-Martinez et al. (2018) or
van den Hoogen et al. (2019). Naturally, using ML in the con-
text of remote sensing depends on large amounts of earth ob-
servation data which usually requires extensive preprocessings
such as atmospheric correction, cloud masking or the compu-
tation of a composite. Especially if imagery from multiple
time periods or different sensors are required for the mapping,
the amount of data and computation resources quickly exceeds
what most researchers have available on their local machine.
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Ongoing improvements in spatial, temporal and spectral resol-
ution of satellite imagery with a nearly global coverage further
increases the amount of computation needed.

To approach this problem, cloud computing frameworks
(e.g. Google Earth Engine (Amani et al., 2020) or openEO
(Schramm et al., 2021)) emerged as a promising possibility to
process large scale satellite imagery. In general, the idea of
these platforms is to provide products and processes for analysis
ready earth observation data without the need of downloading
the satellite imagery. As a consequence, mapping studies util-
izing cloud computing have seen a rise in popularity leading to
attempts of global scale predictions of e.g. soil nematodes (van
den Hoogen et al., 2019), plant biomass (Ma et al., 2021) or
landcover (Venter and Sydenham, 2021).

Automated cloud computing workflows are in development to
increase the accessibility of ML based mapping to users who
lack a deep understanding of the underlying methods (van den
Hoogen et al., 2021). While cloud computing platforms provide
implementations of ML algorithms, the possibilities for ad-
equate model development and validation are currently still lim-
ited due to lacking features (e.g. variable selection) that are,
however, relevant for spatial mapping. This is not an issue of
the platforms itself since they are meant for the processing of
earth observation data and not the development of ML models.
Consequently, the initial development of the ML model is of-
ten done locally (e.g. in van den Hoogen et al., 2019) with an
established ML framework in Python (sklearn, Pedregosa et al.
(2011)) or R (caret, Kuhn (2008)). This way, the model train-
ing and validation can incorporate already established methods
to overcome the aforementioned challenges of spatial predictive
modelling.

Here, we outline a workflow that utilizes the open-source cloud
computing platform openEO for standardized earth observation
imagery acquisition in combination with an R based ML model
development that is designed to improve the spatial transferab-
ility of prediction models. By doing so, we combine the com-
putational advantage of openEO with the possibilities of case
specific model development and validation strategies. The us-
age of the workflow is demonstrated with a case study of a land-
cover classification of Sentinel-2 imagery. We explicitly show
the benefits of spatial variable selection and the need for a trans-
ferability assessment with the AOA by applying the model to a
different region.

2. METHODS

The idea of the suggested workflow is to utilize the benefits of
the cloud computing platform openEO for the processing and
acquisition of earth observation data with advanced predictive
modelling methods provided by R (Fig. 1). Potential predictor
layers are first computed only for areas with available training
data. We then use spatial variable selection (Meyer et al., 2018,
2019) in order to find a set of predictors that, in combination,
are most suitable to map the target variable beyond the training
data locations. Model performances are validated with spatial
cross-validation. Only the selected predictors that are regarded
as relevant by the spatial variable selection are then acquired
via openEO and used for mapping the area of interest. To pre-
vent low quality and invalid model extrapolations, predictions
are finally limited to the AOA of the trained model (Meyer and
Pebesma, 2021).

Figure 1. Outline of the Workflow

2.1 Acquisition of predictors with openEO

OpenEO is an emerging cloud computing platform that aims
at harmonizing the access to earth observation data from dif-
ferent providers (Schramm et al., 2021). Following an open-
source paradigm, openEO enables a community-driven, trans-
parent and reproducible alternative to closed-source alternat-
ives such as Google Earth Engine™. Using the openeo R client
(Lahn, 2021) we developed a processing chain for the acquisi-
tion of analysis-ready Sentinel-2 L2A composites. Users define
the area of interest and a time interval for which the median
composite of all available Sentinel-2 scene with less than 20%
overall cloud cover is computed. In addition, the Sentinel-2
Scene Classification Layer (SCL) is utilized to mask remain-
ing clouds, shadows and low quality pixels in each time step.
The resulting composite may then be used for the calculation of
vegetation indices as additional potential predictor variables.

2.2 Modelling

The acquired predictors are then matched with the available ref-
erence data that contain the information of the target variable
and serve as the training data of the ML model. We use an
R-based modelling framework consisting of a spatial variable
selection, training of a random forest model, prediction and the
computation of the AOA (Fig. 1). However, ML models can be
very case specific since the quality of the outcome is heavily de-
pendent on the quality of training data, the used algorithm and
its parameters or tuning (Maxwell et al., 2018). Further, each
modelling task aims at different target variables, deals with dif-
ferent spatial units and might require different preprocessing
steps. Hence, the framework is flexible enough and can easily
be modified to the needs of a specific modelling task.

2.2.1 Spatial cross-validation One main challenge when
dealing with machine learning models is the prevention of over-
fitting (Ying, 2019). In the geo-spatial context, this means that
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the model has to be generalized enough to make valid predic-
tions for new geographic locations. Hence, the model evalu-
ation also has to account for the situation when the model is
applied to locations that are not present in the model training.
To do so, we use a spatial cross-validation approach for the as-
sessment of the model error (Meyer et al., 2018; Ploton et al.,
2020).

Spatial cross-validation and subsequently the spatial variable
selection requires the definition of suitable spatial units used to
define cross-validation folds. There is an ongoing discussion on
how these spatial units should look like. Here we suggest that
users of the workflow should strife for an optimal method for
their specific case (e.g. discussed in Mila et al., 2022; Meyer
and Pebesma, accepted).

2.2.2 Spatial variable selection and model tuning The
risk of overfitting is greatly increased if the model utilizes a
high number of predictors (Hassine et al., 2019), since this leads
to a high probability that new locations contain combinations of
predictor values that are not similar to the training data. Elimin-
ating irrelevant predictors is further advantageous for a models
computation time and interpretation (Maxwell et al., 2018).

In the context of spatial mapping, an adequate feature selection
limits predictors to those that can be meaningfully used to make
predictions for new geographic locations (Meyer et al., 2019;
Le Rest et al., 2014). We therefore use spatial cross-validation
in conjunction with a forward variable selection approach as
described in Meyer et al. (2018). By doing so, we select pre-
dictors based on the described cross-validation strategy. Pre-
dictors therefore get automatically reduced to those that lead
to the highest performance when making predictions for new
regions. We assume that this set of predictors should also min-
imize extrapolation situations since the reduced feature space
leads to a more generalized representation of the environment.

The resulting set of spatial predictors is used to train a ran-
dom forest model (Breiman, 2001) as implemented in ranger
(Wright and Ziegler, 2017). We use caret (Kuhn, 2008) for hy-
perparameter tuning in a grid search approach. Again, spatial
cross-validation is used to determine the optimal set of hyper-
parameters (Schratz et al., 2019) namely mtry, minimum node
size and the splitrule. The model internal variable importance is
computed by random permutation of each individual predictor
and measuring the effect on the model outcome. The tuned
model can then finally be applied to new areas to predict the
target variable. For this, the aforementioned openEO process
is used to obtain the selected predictors for the entire area of
interest.

2.3 Area of Applicability

Predictions in novel geographic areas might require model ex-
trapolation if predictor values differ from the training data.
This, however, is technically possible but not meaningful for
random forests and similar algorithms. To detect these areas,
we limit the prediction to the Area of Applicability (AOA) of
the model according to Meyer and Pebesma (2021). The AOA
is estimated for each pixel by calculating a ”dissimilarity in-
dex” (DI). The DI of a new location is its Euclidean distance
to the nearest training data point in the multidimensional pre-
dictor space, with predictors being weighted by their respective
importance in the model. The AOA is then derived by apply-
ing a threshold on the DI. The threshold is the (outlier-removed)

maximum DI of the training data derived from the spatial cross-
validation. Hence, a new data point is outside of the AOA if it is
more dissimilar in its predictor properties than the dissimilarity
observed in the training data set.

2.4 Case study

To demonstrate the proposed workflow we applied it in a typ-
ical satellite-based landcover classification (LCC) scenario. We
choose the case study of a LCC since landcover is one of the
most important drivers for environmental processes and also
widely used as a predictor for subsequent modeling. Further,
the reasoning and effects of the predictor selection and AOA are
depicted very clearly when applied to the use case of landcover
mapping. For example, the spectral properties within certain
classes might differ (Hermosilla et al., 2022), i.e. a deciduous
forest in Germany might look different from a deciduous forest
in Italy. Further, certain landcover types might be completely
missing in the training set, leading to the relevance of account-
ing for the AOA, especially when a trained model is transferred
to new geographic regions. This also holds true for models
that are applied to different time periods. Spectral properties of
landcover classes (e.g. deciduous forests) strongly depend on
the time of observation and a model trained with imagery from
spring might fail if it is faced with spectral data from a sum-
mer scene. This further supports the need for a standardized
earth observation data acquisition workflow since predictors in
the area of interest have to undergo the same processing steps
as the predictors used as the training data.

We collected 40 reference polygons for each of the landcover
classes agriculture, forest, grassland, roads, settlement and wa-
ter in the German state North Rhine-Westphalia (Fig. 2). Ad-
ditionally, we collected 20 reference polygons per class from
three geographically distinct areas that are used for independ-
ent validation indicating the transferability of the model. One
of the new regions is a coastal area on the Eiderstedt peninsula
in northern Germany. Here, the additional class ”sand” was
sampled which was not present in the training set.

For the training areas, we acquired the Sentinel-2 median com-
posite from all scenes between 2021-04-01 and 2021-10-01
(Bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, and 12, NDVI and EVI)
with a spatial resolution of 10m. Bands with a native resolution
other than 10m were resampled. As a service provider we use
the VITO backend through the openEO Platform early adop-
ters program. For model training and testing, we sampled 2500
pixels per class from the Sentinel-2 composite at the training
and test polygon locations respectively.

As spatial cross-validation strategy that was used during hyper-
parameter tuning and variable selection we applied a 20-fold
”leave-polygon-out” cross-validation, where all training poly-
gons were randomly divided into 20 groups. Hence we avoid
that reference pixel in the training and test sets are in spatial
proximity since they stem from different polygons.

We trained a random forest model that utilizes all 12 acquired
Sentinel-2 predictors for the landcover mapping and trained a
second model using spatial variable selection. We compared
both models in terms of classification accuracy using the inde-
pendent test data in the three regions (Fig. 2) as well as the
transferability of the model using the method to estimate the
AOA.
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Figure 2. Study Area, The most northern test area is depicted in
more detail in Figures 3 and 4

The code to reproduce the presented case study can be accessed
at: https://github.com/LOEK-RS/ISPRS2022LCC. The meth-
ods for spatial variable selection and AOA estimation are im-
plemented in the R-package CAST (Meyer and Ludwig, 2022).

3. RESULTS AND DISCUSSION

3.1 Effect of Spatial variable selection

The spatial variable selection identified bands 3, 4, 11 and 12,
along with NDVI as relevant to predict the landcover classes
with a spatial cross-validation accuracy of 0.83. Any further
predictor variable could not increase the accuracy. The model
that includes all 12 predictors led to nearly the same spatial
cross-validation accuracy (0.84, Tab. 2). This marginal differ-
ence of the cross-validation accuracy is arbitrary since it stems
from the randomness during model training. Thus, the reduc-
tion of predictors did not harm the model’s ability to accur-
ately fit held-back training data. Further, the prediction out-
come of both models was identical for 96% of all classified
pixels. Hence, there is no benefit of including more predict-
ors than needed in the model. We observed slight confusions
between the classes grassland, agriculture and settlement, (Tab.
1), which is expected as these classes share similar spectral fea-
tures. Arguably, the within-class spectral properties of these
classes is also diverse which makes it more difficult for the ran-
dom forest model to define characteristic split rules.

Table 1. Cross-validated confusion matrix of the simplified
model as the average percentage over the holdout data from the

20 folds (overall accuracy: 0.83).

agri. forest grass roads sett. water
agri. 13.59 0.37 2.40 0.65 0.71 0.05

forest 0.52 15.81 0.65 0.03 0.12 0.26
grass 1.06 0.23 13.34 0.18 0.25 0.02
roads 0.37 0.00 0.03 11.79 2.45 0.20

sett. 1.12 0.14 0.21 3.84 13.03 0.33
water 0.00 0.11 0.03 0.17 0.11 15.80

The validation with independent test data of geographically dis-
tinct areas revealed that the variable reduction increased the
accuracy of the predictions from 0.71 (all predictors) to 0.77
(reduced predictors). This indicates that the spatial variable se-
lection improved the transferability of the model, since the pre-
diction accuracy in regions without training data increased. As
a positive side-effect, the reduced number of variables led not
only to a higher prediction accuracy but also to reduced com-
putational requirements since only the selected variables had to
be processed in openEO Platform. The smaller predictor space
also drastically reduced the computation time of the AOA.

Table 2. Effects of the spatial variable selection on the
classification accuracy and AOA. (*) The class ”sand” was

neglected in these calculations since it was not present in the
training data.

Full
model

Simplified
model

Predictors 12 5
Spatial cross-validation
Accuracy 0.84 0.83
Testdata Accuracy* 0.71 0.77
False classifications
masked by AOA* 25% 35%
Correct classifications
masked by AOA* 4% 7%
Class ”sand”
identified as outside AOA 37% 76%

Applying the model to the coastal area resulted in the LCC
depicted in Fig. 3. By comparison with the independent test
data, we observed slight confusions of the classes agriculture
and grassland which was already observed during spatial cross-
validation (Tab. 1). The main observations in Fig. 3 how-
ever are the large settlement areas predicted near the coastline,
which are evidently erroneous classifications of the beach vis-
ible in Fig. 4. Since the class ”sand” was absent in the training
data, the model can never predict these cases correctly. The
model accuracy alone (or any model related quality metric)
gives no guidance about such cases where the model was not
able to learn about a certain class. Hence, the overall model
accuracy – even from spatial cross-validation – is not sufficient
to represent the mapping accuracy. In this case study, we can
identify the incorrect classifications by using the test polygons
from the area of interest. Independent and well distributed test
data, however, are most likely not available for many mapping
projects since the sole purpose of developing a spatial predic-
tion model is its application to areas were no data are available.
In a more complicated prediction task than a LCC (which can
still be evaluated visually), noticing such prediction errors is
challenging. Here, the AOA of the model can serve as a tool
to identify possibly erroneous predictions based on distances in
the predictor space.
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Figure 3. Landcover classification of the coastal area depicted in
Fig. 4 as predicted by the simplified model after spatial variable

selection

3.2 Area of Applicability comparison

The AOA of the model indicates locations where the predictor
values are similar enough to the predictor values of observations
in the training data. We computed the AOA for both models for
the three test regions (compared in Tab. 2). The AOA of the
model using all 12 spectral variables allowed avoiding 25% of
incorrectly classified pixels (as estimated using the test data).
Only a small amount of correctly classified pixels (4%) were
outside of the AOA. Reducing the amount of predictors with
spatial variable selection allowed avoiding 35% of false classi-
fications by limiting predictions to the AOA. Only marginally
more correctly classified pixels were outside the AOA of the
simplified model (7%) compared to the full model (4%).

Assessing the transferability of the simplified model in the
coastal area shown in Fig. 4 results in the AOA depicted in
Fig. 5. Besides some minor patches in the agriculture / grass-
land areas, the entire coastline is outside the AOA. This can be
expected since the coastline consists of spectral properties not
present in the training data. From the pixels that are declared
as ”sand” in the independent test polygons, the AOA was able
to mask off 76%. This is a major improvement compared to the
37% masked off sand pixels from the AOA of the model without
spatial feature selection (Tab. 2). The beach areas are not ap-
plicable for both models. The AOA of the simplified model
also shows ambiguous shallow areas as not applicable that are
declared as ”sand” in the training area, but predicted as water
by the model (Fig. 5).

This case study shows that defining and visualising the AOA for
a spatial prediction model is a useful tool to prevent low quality
predictions. The AOA is therefore a crucial part of the spatially
explicit mapping error estimation since it can depict where the
estimated model performance can be expected to hold because
the model was enabled to learn about such environments. The
AOA can further give new insights on missing training data and
where new sampling are required to adequately represent the
entire prediction domain.

Figure 4. Sentinel-2 true color composite of a coastal area in
Germany with the location of test polygons and the associated

landcover class. Polygon locations are shown as centroid points
for visualization purposes.

4. CONCLUSION

Spatial predictive modelling heavily benefits from novel meth-
ods that are so far developed for local use only. The results of
the case study e.g. show the benefits of spatial variable selec-
tion and consideration of the AOA to increase and assess the
transferability of predictive mapping models. We therefore re-
gard the combination of cloud based earth observation data pro-
cessing and local model development with established frame-
works as currently the best compromise to produce high quality
spatial prediction models. Our presented open source workflow
streamlines the access to satellite based training data for the
purpose of model development. In a next step, the locally de-
veloped model should be re-implemented or used directly in the
cloud computing platform. In openEO Platform, this function-
ality is currently in development. Besides shareable and repro-
ducible access to homogenized satellite data, the open source
aspect of openEO Platform will also enable the implementation
of the AOA in cloud environments to further reduce computa-
tional costs for users and enhance the spatial mapping workflow
overall.
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